1
|
Loomis S, Silva DG, Savopoulos R, Cilia J, Li J, Davis MD, Virley D, Foley A, Loro E, McCreary AC. Behavioral and transcriptomic effects of a novel cannabinoid on a rat valproic acid model of autism. Neuropharmacology 2025; 273:110450. [PMID: 40187640 DOI: 10.1016/j.neuropharm.2025.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impaired social communication, restricted interests, repetitive behavior and irritability. Exposure to valproic acid (VPA) during pregnancy has been shown to increase the risk of autism in children and has led to the development of the in-utero VPA rat model that elicits neurodevelopmental autistic-like features. Offspring exhibit behavioral and neurobiological alterations modelling ASD symptoms. We performed a behavioral and molecular assessment in a rat in-utero VPA model treated with a novel botanical cannabinoid, JZP541. Male offspring from dams treated with VPA were tested acutely and sub-chronically with JZP541 (10, 30, or 100 mg/kg, intraperitoneally). A behavioral testing battery was performed, and brain frontal cortex and hippocampus used for RNA sequencing. In utero exposure to VPA resulted in progeny showing behavioral phenotypes characteristic of ASD. JZP541 attenuated these deficits in social, stereotypic, hyperactivity and irritability behavior in a dose-dependent fashion. VPA exposure was associated with a substantial transcriptional dysregulation impacting multiple key biological processes in a tissue-dependent manner. The expression profiles were integrated with publicly available datasets of autism-associated genes to support the validity of the model used and to focus on the effects of treatment on known autism-relevant transcriptional targets. This approach indicated a strong and dose-dependent reduction of the autism-associated gene expression signature in brain samples from animals dosed with JZP541. Our findings demonstrate JZP541 was able to ameliorate ASD associated behavioral deficits, and this was supported by improvements in putative transcriptional biomarkers of ASD.
Collapse
Affiliation(s)
- Sally Loomis
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK.
| | - Diogo G Silva
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | | | - Jackie Cilia
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | - Jennifer Li
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | - Mat D Davis
- Jazz Pharmaceuticals Inc., Palo Alto, CA, USA
| | - David Virley
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | | | - Emanuele Loro
- Jazz Pharmaceuticals Research UK Ltd., Cambridge, UK
| | | |
Collapse
|
2
|
Elsherif R, Mm Abdel-Hafez A, Hussein OA, Sabry D, Abdelzaher LA, Bayoumy AA. The potential ameliorative effect of mesenchymal stem cells-derived exosomes on cerebellar histopathology and their modifying role on PI3k-mTOR signaling in rat model of autism spectrum disorder. J Mol Histol 2025; 56:65. [PMID: 39760823 DOI: 10.1007/s10735-024-10335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders. This study aimed to elucidate the potential ameliorating effect of postnatal administration of MSCs-derived Exo in a rat model of ASD. Male pups were divided into control (Cont), (VPA); pups of pregnant rats injected with VPA subcutaneously (S.C.) at embryonic day (ED) 13, and (VPA + Exo); pups were intravenously (I.V.) injected with MSCs-derived Exo either at postnatal day (P) 21 (adolescent VPA + Exo) or P70 (adult VPA + Exo). They were evaluated for physiological, histopathological and immunohistochemical changes of cerebellar structure, and genetic expression of PI3k and mTOR. The VPA adult group showed increased locomotor activity and impaired social activity, and anxiety. The cerebellar histological structure was disrupted in VPA groups. VPA + Exo groups showed preservation of the normal histological structure of the cerebellum. Immunohistochemical studies revealed enhanced expression of caspase-3, GFAP, Nestin, and VEGF in VPA groups beside modifying PI3K and mTOR genetic expression. MSCs-derived Exo ameliorated most of the rat cerebellar histopathological alterations and behavioral changes. Their mitigating effect could be established through their antiapoptotic, anti-inflammatory and anti-neurogenesis effect besides modifying PI3k-mTOR signaling.
Collapse
Affiliation(s)
- Raghda Elsherif
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Amel Mm Abdel-Hafez
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Histology, Sphinx University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Badr University, Cairo, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Cairo, Egypt
| | - Ayat Ah Bayoumy
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Muzyko EA, Lukina AS, Karelina DA, Tarasov AS, Perfilova VN, Frolov EM, Frolov MY. [The study of the behavioral reactions and duration of ultrasonic vocalization in rats from females stressed during pregnancy]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:117-123. [PMID: 40195110 DOI: 10.17116/jnevro2025125031117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
OBJECTIVE To study the psycho-emotional state and its relationship to the duration of ultrasonic vocalization in the offspring of rats with physiological and stress-complicated pregnancy. MATERIAL AND METHODS The experiments were performed on the offspring (n=120) of rats with physiological pregnancy and the offspring of animals stressed during the entire gestation period (21-23 days). Study animals were divided into the following groups: 1 - intact - males and females (n=52) born to healthy rats; 2 - stress - males and females (n=68) born to rats that underwent stress during pregnancy. At the age of 17 days, the total vocalization duration (at 50 kHz) was recorded in rats. To assess the psycho-emotional state of the offspring, the open field and elevated plus maze tests were performed at 22 days, marble burying at 35 days, and Porsolt forced swimming test at 47 days. To assess cognitive function in the offspring, short-term working memory was examined in the recognition of a new object test at 35 days and long-term memory in the conditioned passive avoidance reflex test at the age of 47 days. RESULTS The results of the open field and elevated plus maze tests indicated that the offspring of females stressed during pregnancy showed anxious behavior. In addition, animals from stressed rats exhibited compulsive and depressive behaviors in the marble burying and Porsolt forced swimming tests. The offspring of stressed rats showed impaired reproduction of the memory traces in the conditioned passive avoidance reflex test. CONCLUSION In the offspring of females stressed during pregnancy, anxious, compulsive, and depressive behavior is observed, accompanied by an increase in the duration of ultrasonic vocalization at 50 kHz.
Collapse
Affiliation(s)
- E A Muzyko
- Volgograd State Medical University, Volgograd, Russia
| | - A S Lukina
- Volgograd State Medical University, Volgograd, Russia
| | - D A Karelina
- Volgograd State Medical University, Volgograd, Russia
| | - A S Tarasov
- Volgograd State Medical University, Volgograd, Russia
| | - V N Perfilova
- Volgograd State Medical University, Volgograd, Russia
| | - E M Frolov
- Volgograd State Medical University, Volgograd, Russia
| | - M Yu Frolov
- Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
4
|
Ornoy A, Echefu B, Becker M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int J Mol Sci 2024; 25:10469. [PMID: 39408797 PMCID: PMC11477392 DOI: 10.3390/ijms251910469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Appropriate animal models of human diseases are a cornerstone in the advancement of science and medicine. To create animal models of neuropsychiatric and neurobehavioral diseases such as autism spectrum disorder (ASD) necessitates the development of sufficient neurobehavioral measuring tools to translate human behavior to expected measurable behavioral features in animals. If possible, the severity of the symptoms should also be assessed. Indeed, at least in rodents, adequate neurobehavioral and neurological tests have been developed. Since ASD is characterized by a number of specific behavioral trends with significant severity, animal models of autistic-like behavior have to demonstrate the specific characteristic features, namely impaired social interactions, communication deficits, and restricted, repetitive behavioral patterns, with association to several additional impairments such as somatosensory, motor, and memory impairments. Thus, an appropriate model must show behavioral impairment of a minimal number of neurobehavioral characteristics using an adequate number of behavioral tests. The proper animal models enable the study of ASD-like-behavior from the etiologic, pathogenetic, and therapeutic aspects. From the etiologic aspects, models have been developed by the use of immunogenic substances like polyinosinic-polycytidylic acid (PolyIC), lipopolysaccharide (LPS), and propionic acid, or other well-documented immunogens or pathogens, like Mycobacterium tuberculosis. Another approach is the use of chemicals like valproic acid, polychlorinated biphenyls (PCBs), organophosphate pesticides like chlorpyrifos (CPF), and others. These substances were administered either prenatally, generally after the period of major organogenesis, or, especially in rodents, during early postnatal life. In addition, using modern genetic manipulation methods, genetic models have been created of almost all human genetic diseases that are manifested by autistic-like behavior (i.e., fragile X, Rett syndrome, SHANK gene mutation, neuroligin genes, and others). Ideally, we should not only evaluate the different behavioral modes affected by the ASD-like behavior, but also assess the severity of the behavioral deviations by an appropriate scoring system, as applied to humans. We therefore propose a scoring system for improved assessment of ASD-like behavior in animal models.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Hadassah Academic College, Jerusalem 9101001, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
5
|
Santana-Coelho D, Pranske ZJ, Nolan SO, Hodges SL, Binder MS, Womble PD, Narvaiz DA, Muhammad I, Lugo JN. Neonatal immune stimulation results in sex-specific changes in ultrasonic vocalizations but does not affect seizure susceptibility in neonatal mice. Int J Dev Neurosci 2024; 84:381-391. [PMID: 38712612 DOI: 10.1002/jdn.10333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Neuroinflammation during the neonatal period has been linked to disorders such as autism and epilepsy. In this study, we investigated the early life behavioral consequences of a single injection of lipopolysaccharide (LPS) at postnatal day 10 (PD10) in mice. To assess deficits in communication, we performed the isolation-induced ultrasonic vocalizations (USVs) test at PD12. To determine if early life immune stimulus could alter seizure susceptibility, latency to flurothyl-induced generalized seizures was measured at 4 hours (hrs), 2 days, or 5 days after LPS injections. LPS had a sex-dependent effect on USV number. LPS-treated male mice presented significantly fewer USVs than LPS-treated female mice. However, the number of calls did not significantly differ between control and LPS for either sex. In male mice, we found that downward, short, and composite calls were significantly more prevalent in the LPS treatment group, while upward, chevron, and complex calls were less prevalent than in controls (p < 0.05). Female mice that received LPS presented a significantly higher proportion of short, frequency steps, two-syllable, and composite calls in their repertoire when compared with female control mice (p < 0.05). Seizure latency was not altered by early-life inflammation at any of the time points measured. Our findings suggest that early-life immune stimulation at PD10 disrupts vocal development but does not alter the susceptibility to flurothyl-induced seizures during the neonatal period. Additionally, the effect of inflammation in the disruption of vocalization is sex-dependent.
Collapse
Affiliation(s)
| | - Zachary J Pranske
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | | | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - David A Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Ilyasah Muhammad
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studets, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
6
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024; 253:109963. [PMID: 38657945 PMCID: PMC11127754 DOI: 10.1016/j.neuropharm.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Morgan Sainsbury
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, USA; Molecular, Cellular and Integrative Neurosciences Program, USA.
| |
Collapse
|
7
|
Adiguzel E, Bozkurt NM, Unal G. Independent and combined effects of astaxanthin and omega-3 on behavioral deficits and molecular changes in a prenatal valproic acid model of autism in rats. Nutr Neurosci 2024; 27:590-606. [PMID: 37534957 DOI: 10.1080/1028415x.2023.2239575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Objectives: Autism is a devastating neurodevelopmental disorder and recent studies showed that omega-3 or astaxanthin might reduce autistic symptoms due to their anti-inflammatory properties. Therefore, we investigated the effects of omega-3 and astaxanthin on the VPA-induced autism model of rats.Material and Methods: Female Wistar albino pups (n = 40) were grouped as control, autistic, astaxanthin (2 mg/kg), omega-3 (200 mg/kg), and astaxanthin (2 mg/kg)+omega-3 (200 mg/kg). All groups except the control were prenatally exposed to VPA. Astaxanthin and omega-3 were orally administered from the postnatal day 41 to 68 and behavioral tests were performed between day 69 and 73. The rats were decapitated 24 h after the behavioral tests and hippocampal and prefrontal cytokines and 5-HT levels were analyzed by ELISA.Results: VPA rats have increased grooming behavior while decreased sociability (SI), social preference index (SPI), discrimination index (DI), and prepulse inhibition (PPI) compared to control. Additionally, IL-1β, IL-6, TNF-α, and IFN-γ levels increased while IL-10 and 5-HT levels decreased in both brain regions. Astaxanthin treatment raised SI, SPI, DI, PPI, and prefrontal IL-10 levels. It also raised 5-HT levels and decreased IL-6 levels in both brain regions. Omega-3 and astaxanthin + omega-3 increased the SI, SPI, DI, and PPI and decreased grooming behavior. Moreover, they increased IL-10 and 5-HT levels whereas decreased IL-1β, IL-6, TNF-α, IFN-γ levels in both brain regions.Conclusions: Our results showed that VPA administration mimicked the behavioral and molecular changes of autism in rats. Single and combined administration of astaxanthin and omega-3 improved the autistic-like behavioral and molecular changes in the VPA model of rats.
Collapse
Affiliation(s)
- Emre Adiguzel
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Nuh Mehmet Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| | - Gokhan Unal
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| |
Collapse
|
8
|
Kosmer K, Kulesza R. Cortical dysmorphology and reduced cortico-collicular projections in an animal model of autism spectrum disorder. Cereb Cortex 2024; 34:146-160. [PMID: 38696608 PMCID: PMC11484449 DOI: 10.1093/cercor/bhad501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 05/04/2024] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disability that includes sensory disturbances. Hearing is frequently affected and ranges from deafness to hypersensitivity. In utero exposure to the antiepileptic valproic acid is associated with increased risk of autism spectrum disorder in humans and timed valproic acid exposure is a biologically relevant and validated animal model of autism spectrum disorder. Valproic acid-exposed rats have fewer neurons in their auditory brainstem and thalamus, fewer calbindin-positive neurons, reduced ascending projections to the midbrain and thalamus, elevated thresholds, and delayed auditory brainstem responses. Additionally, in the auditory cortex, valproic acid exposure results in abnormal responses, decreased phase-locking, elevated thresholds, and abnormal tonotopic maps. We therefore hypothesized that in utero, valproic acid exposure would result in fewer neurons in auditory cortex, neuronal dysmorphology, fewer calbindin-positive neurons, and reduced connectivity. We approached this hypothesis using morphometric analyses, immunohistochemistry, and retrograde tract tracing. We found thinner cortical layers but no changes in the density of neurons, smaller pyramidal and non-pyramidal neurons in several regions, fewer neurons immunoreactive for calbindin-positive, and fewer cortical neurons projecting to the inferior colliculus. These results support the widespread impact of the auditory system in autism spectrum disorder and valproic acid-exposed animals and emphasize the utility of simple, noninvasive auditory screening for autism spectrum disorder.
Collapse
Affiliation(s)
- Kara Kosmer
- RWJBH Monmouth Medical CenterLong Branch, NJ 07740, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, United States
| |
Collapse
|
9
|
Popik P, Cyrano E, Piotrowska D, Holuj M, Golebiowska J, Malikowska-Racia N, Potasiewicz A, Nikiforuk A. Effects of ketamine on rat social behavior as analyzed by DeepLabCut and SimBA deep learning algorithms. Front Pharmacol 2024; 14:1329424. [PMID: 38269275 PMCID: PMC10806163 DOI: 10.3389/fphar.2023.1329424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Traditional methods of rat social behavior assessment are extremely time-consuming and susceptible to the subjective biases. In contrast, novel digital techniques allow for rapid and objective measurements. This study sought to assess the feasibility of implementing a digital workflow to compare the effects of (R,S)-ketamine and a veterinary ketamine preparation Vetoquinol (both at 20 mg/kg) on the social behaviors of rat pairs. Historical and novel videos were used to train the DeepLabCut neural network. The numerical data generated by DeepLabCut from 14 video samples, representing various body parts in time and space were subjected to the Simple Behavioral Analysis (SimBA) toolkit, to build classifiers for 12 distinct social and non-social behaviors. To validate the workflow, previously annotated by the trained observer historical videos were analyzed with SimBA classifiers, and regression analysis of the total time of social interactions yielded R 2 = 0.75, slope 1.04; p < 0.001 (N = 101). Remarkable similarities between human and computer annotations allowed for using the digital workflow to analyze 24 novel videos of rats treated with vehicle and ketamine preparations. Digital workflow revealed similarities in the reduction of social behavior by both compounds, and no substantial differences between them. However, the digital workflow also demonstrated ketamine-induced increases in self-grooming, increased transitions from social contacts to self-grooming, and no effects on adjacent lying time. This study confirms and extends the utility of deep learning in analyzing rat social behavior and highlights its efficiency and objectivity. It provides a faster and objective alternative to human workflow.
Collapse
|
10
|
Oak S, Nguyen C, Rodney-Hernández P, Rincón-Cortés M. Behavioral responses to natural rewards in developing male and female rats. Dev Psychobiol 2024; 66:e22448. [PMID: 38131245 DOI: 10.1002/dev.22448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Reward deficits are a hallmark feature of multiple psychiatric disorders and often recapitulated in rodent models useful for the study of psychiatric disorders, including those employing early life stress. Moreover, rodent studies have shown sex differences during adulthood in response to natural and drug rewards under normative conditions and in stress-based rodent models. Yet, little is known about the development of reward-related responses under normative conditions, including how these may differ in rats of both sexes during early development. Comparing reward-related behavioral responses between developing male and female rats may be useful for understanding how these processes may be affected in rodent models relevant to psychiatric disorders. To this end, we tested behavioral responses to natural rewards in male and female rats using sucrose consumption, sweet palatable food intake and social play tests at two timepoints (peripuberty, adolescence). Our results suggest comparable responses to consummatory and social rewards in male and female rats during peripuberty and adolescence as no sex differences were found for sucrose preference, chocolate candy intake or a subset of play behaviors (dorsal contacts, pins). These findings suggest that sex differences in response to these natural rewards emerge and may be more robust during adulthood.
Collapse
Affiliation(s)
- Sasha Oak
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas, USA
| | - Christine Nguyen
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas, USA
| | | | - Millie Rincón-Cortés
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
11
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571709. [PMID: 38168404 PMCID: PMC10760095 DOI: 10.1101/2023.12.14.571709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic AMPA receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions. Highlights Prenatal exposure of valproic acid (VPA) in mice significantly reduces synaptic δ-catenin protein and AMPA receptor levels in the pups' brains.VPA treatment significantly impairs dendritic branching in cultured cortical neurons, which is reversed by increased δ-catenin expression.VPA exposed pups exhibit impaired communication such as ultrasonic vocalization.Neuronal activation linked to ultrasonic vocalization is absent in VPA-exposed pups.The loss of δ-catenin functions underlies VPA-induced autism spectrum disorder (ASD) in early childhood.
Collapse
|
12
|
Schwarting RKW. Behavioral analysis in laboratory rats: Challenges and usefulness of 50-kHz ultrasonic vocalizations. Neurosci Biobehav Rev 2023; 152:105260. [PMID: 37268181 DOI: 10.1016/j.neubiorev.2023.105260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Many rodent species emit and detect vocalizations in the ultrasonic range. Rats use three classes of ultrasonic vocalizations depending on developmental stage, experience and the behavioral situation. Calls from one class emitted by juvenile and adult rats, the so-called 50-kHz calls, are typical for appetitive and social situations. This review provides a brief historical account on the introduction of 50-kHz calls in behavioral research followed by a survey of their scientific applications focusing on the last five years, where 50-kHz publications reached a climax. Then, specific methodological challenges will be addressed, like how to measure and report 50-kHz USV, the problem of assignment of acoustic signals to a specific sender in a social situation, and individual variability in call propensity. Finally, the intricacy of interpreting 50-kHz results will be discussed focusing on the most prevalent ones, namely as communicative signals and/or readouts of the sender's emotional status.
Collapse
Affiliation(s)
- Rainer K W Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstrasse 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
13
|
Achterberg EJM, Vanderschuren LJMJ. The neurobiology of social play behaviour: Past, present and future. Neurosci Biobehav Rev 2023; 152:105319. [PMID: 37454882 DOI: 10.1016/j.neubiorev.2023.105319] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Social play behaviour is a highly energetic and rewarding activity that is of great importance for the development of brain and behaviour. Social play is abundant during the juvenile and early adolescent phases of life, and it occurs in most mammalian species, as well as in certain birds and reptiles. To date, the majority of research into the neural mechanisms of social play behaviour has been performed in male rats. In the present review we summarize studies on the neurobiology of social play behaviour in rats, including work on pharmacological and genetic models for autism spectrum disorders, early life manipulations and environmental factors that influence play in rats. We describe several recent developments that expand the field, and highlight outstanding questions that may guide future studies.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| | - Louk J M J Vanderschuren
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
14
|
Malhotra AS, Kulesza R. Abnormal auditory brainstem responses in an animal model of autism spectrum disorder. Hear Res 2023; 436:108816. [PMID: 37285705 DOI: 10.1016/j.heares.2023.108816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Auditory dysfunction is a common feature of autism spectrum disorder (ASD) and ranges from deafness to hypersensitivity. The auditory brainstem response (ABR) permits study of the amplitude and latency of synchronized electrical activity along the ascending auditory pathway in response to clicks and pure tone stimuli. Indeed, numerous studies have shown that subjects with ASD have ABR abnormalities. In utero exposure to the antiepileptic drug valproic acid (VPA) is associated with human cases of ASD and is used as an animal model of ASD. Previous studies have shown that VPA-exposed animals have significantly fewer neurons in the auditory brainstem and thalamus, reduced ascending projections to the auditory midbrain and thalamus and increased neuronal activation in response to pure tone stimuli. Accordingly, we hypothesized that VPA-exposed animals would have abnormal ABRs throughout their lifespans. We approached this hypothesis in two cohorts. First, we examined ABRs from both ears on postnatal day 22 (P22). Then, we examined monaural ABRs in animals at P28, 60, 120, 180, 240, 300 and 360. Our results suggest that at P22, VPA-exposed animals have elevated thresholds and increased peak latencies. However, by P60 these differences largely normalize with differences appearing only near hearing threshold. Additionally, our analysis revealed that maturation of ABR waves occurred at different trajectories in control and VPA-exposed animals. These results, together with our previous work, suggest that VPA exposure not only impacts total neuron number and connectivity, but also auditory evoked responses. Finally, our longitudinal analysis suggests that delayed maturation of auditory brainstem circuits may impact ABRs throughout the lifespan of the animal.
Collapse
Affiliation(s)
- Arjun S Malhotra
- Department of Anatomy Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA; Millcreek Community Hospital LECOM Health, Department of Orthopedic Surgery, Erie, Pennsylvania, USA
| | - Randy Kulesza
- Department of Anatomy Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA.
| |
Collapse
|
15
|
Gzieło K, Piotrowska D, Litwa E, Popik P, Nikiforuk A. Maternal immune activation affects socio-communicative behavior in adult rats. Sci Rep 2023; 13:1918. [PMID: 36732579 PMCID: PMC9894913 DOI: 10.1038/s41598-023-28919-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
A wide body of evidence suggests a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD). Since social and communicative deficits are included in the first diagnostic criterion of ASD, we aimed to characterize socio-communicative behaviors in the MIA model based on prenatal exposure to poly(I:C). Our previous studies demonstrated impaired socio-communicative functioning in poly(I:C)-exposed adolescent rats. Therefore, the current study sought to clarify whether these changes would persist beyond adolescence. For this purpose, we analyzed behavior during the social interaction test and recorded ultrasonic vocalizations (USVs) accompanying interactions between adult poly(I:C) rats. The results demonstrated that the altered pattern of social behavior in poly(I:C) males was accompanied by the changes in acoustic parameters of emitted USVs. Poly(I:C) males also demonstrated an impaired olfactory preference for social stimuli. While poly(I:C) females did not differ from controls in socio-positive behaviors, they displayed aggression during the social encounter and were more reactive to somatosensory stimulation. Furthermore, the locomotor pattern of poly(I:C) animals were characterized by repetitive behaviors. Finally, poly(I:C) reduced parvalbumin and GAD67 expression in the cerebellum. The results showed that prenatal poly(I:C) exposure altered the pattern of socio-communicative behaviors of adult rats in a sex-specific manner.
Collapse
Affiliation(s)
- Kinga Gzieło
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Diana Piotrowska
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Ewa Litwa
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
16
|
The Effects of Positive Allosteric Modulators of α7–nAChR on Social Play Behavior in Adolescent Rats Prenatally Exposed to Valproic Acid. Pharmaceuticals (Basel) 2022; 15:ph15111417. [PMID: 36422547 PMCID: PMC9697996 DOI: 10.3390/ph15111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
There is still no effective treatment that addresses the core symptoms of autism spectrum disorders (ASD), including social and communication deficits. A comprehensive body of evidence points to the cholinergic system, including alpha7–nicotinic acetylcholine receptors (α7–nAChRs), as a potential target of pharmacotherapy. A promising approach is based on positive allosteric modulators (PAMs) of these receptors due to their advantages over direct agonists. Nevertheless, α7 n–AChR ligands have not been widely studied in the context of autism. Therefore, using one of the most widely used rodent models of ASD, that is, prenatal exposure to valproic acid (VPA), we examined the impact of α7–nAChR PAMs (PNU–120596 and CCMI) on socio-communicative behavior during social play in adolescent male and female rats. The current study demonstrated that PAM treatment affected certain aspects of socio-communicative behavior in adolescent rats. Accordingly, PNU–120596 ameliorated deficient play abilities in VPA-exposed males, as revealed by increased play time during a social encounter. In addition, this compound enhanced the emission of ultrasonic vocalizations that accompanied playful interactions. Moreover, we observed the overall effect of PNU–120596 on non-playful forms of social behavior (i.e., social exploration) and acoustic parameters (i.e., the duration) of emitted calls. The present results suggest the ability of α7–nAChR PAMs to facilitate socio-communicative behavior in adolescent rats.
Collapse
|
17
|
Podgorac J, Sekulić S, Petković B, Stojadinović G, Martać L, Pešić V. The influence of continuous prenatal exposure to valproic acid on physical, nociceptive, emotional and psychomotor responses during adolescence in mice: Dose-related effects within sexes. Front Behav Neurosci 2022; 16:982811. [PMID: 36248030 PMCID: PMC9557044 DOI: 10.3389/fnbeh.2022.982811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Clinical findings show that the use of valproic acid (VPA) during pregnancy increases the risk of birth defects and autism spectrum disorder in offspring. Although there is a consensus that monitoring of potential long-term outcomes of VPA exposure is needed, especially in undiagnosed individuals, preclinical studies addressing this issue are rare. The present study examined the effects of continuous intrauterine exposure to a wide dose range of VPA (50, 100, 200, and 400 mg/kg/day) on the physical and behavioral response in peripubertal mice as a rodent model of adolescence. Body weight and the hot plate test [on postnatal days (PND) 25 and 32], the elevated plus-maze test (on PND35), and the open field test (on PND40) served to examine physical growth, the supraspinal reflex response to a painful thermal stimulus and conditional learning, anxiety-like/risk-assessment behavior, as well as novelty-induced psychomotor activity, respectively. VPA exposure produced the following responses: (i) a negative effect on body weight, except for the dose of 100 mg/kg/day in both sexes; (ii) an increase in the percentage of animals that responded to the thermal stimulus above the defined cut-off time interval and the response latency in both sexes; (iii) dose-specific changes within sexes in behavior provoked by a novel anxiogenic environment, i.e., in females less anxiety-like/risk-assessment behavior in response to the lowest exposure dose, and in males more pronounced anxiety-like/risk-assessment behavior after exposure to the highest dose and 100 mg/kg/day; (iv) dose-specific changes within sexes in novelty-induced psychomotor activity, i.e., in females a decrease in stereotypy-like activity along with an increase in rearing, and in males a decrease in stereotypy-like activity only. These findings show that continuous intrauterine exposure to VPA produces maladaptive functioning in different behavioral domains in adolescence and that the consequences are delicate to assess as they are dose-related within sexes.
Collapse
Affiliation(s)
- Jelena Podgorac
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slobodan Sekulić
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department of Neurology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Gordana Stojadinović
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Martać
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Qi C, Chen A, Mao H, Hu E, Ge J, Ma G, Ren K, Xue Q, Wang W, Wu S. Excitatory and Inhibitory Synaptic Imbalance Caused by Brain-Derived Neurotrophic Factor Deficits During Development in a Valproic Acid Mouse Model of Autism. Front Mol Neurosci 2022; 15:860275. [PMID: 35465089 PMCID: PMC9019547 DOI: 10.3389/fnmol.2022.860275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental factors, such as medication during pregnancy, are one of the major causes of autism spectrum disorder (ASD). Valproic acid (VPA) intake during pregnancy has been reported to dramatically elevate autism risk in offspring. Recently, researchers have proposed that VPA exposure could induce excitatory or inhibitory synaptic dysfunction. However, it remains to be determined whether and how alterations in the excitatory/inhibitory (E/I) balance contribute to VPA-induced ASD in a mouse model. In the present study, we explored changes in the E/I balance during different developmental periods in a VPA mouse model. We found that typical markers of pre- and postsynaptic excitatory and inhibitory function involved in E/I balance markedly decreased during development, reflecting difficulties in the development of synaptic plasticity in VPA-exposed mice. The expression of brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the formation and maturation of glutamatergic and GABAergic synapses during postnatal development, was severely reduced in the VPA-exposed group. Treatment with exogenous BDNF during the critical E/I imbalance period rescued synaptic functions and autism-like behaviors, such as social defects. With these results, we experimentally showed that social dysfunction in the VPA mouse model of autism might be caused by E/I imbalance stemming from BDNF deficits during the developmental stage.
Collapse
Affiliation(s)
- Chuchu Qi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Andi Chen
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Erling Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Junye Ge
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi’an, China
| | - Guaiguai Ma
- Department of Physiology, Medical College of Yan’an University, Yan’an, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Wenting Wang,
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- Shengxi Wu,
| |
Collapse
|
19
|
Aamodt CM, White SA. Inhibition of miR-128 Enhances Vocal Sequence Organization in Juvenile Songbirds. Front Behav Neurosci 2022; 16:833383. [PMID: 35283744 PMCID: PMC8914539 DOI: 10.3389/fnbeh.2022.833383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying learned vocal communication are not well characterized. This is a major barrier for developing treatments for conditions affecting social communication, such as autism spectrum disorder (ASD). Our group previously generated an activity-dependent gene expression network in the striatopallidal song control nucleus, Area X, in adult zebra finches to identify master regulators of learned vocal behavior. This dataset revealed that the two host genes for microRNA-128, ARPP21 and R3HDM1, are among the top genes whose expression correlates to how much birds sing. Here we examined whether miR-128 itself is behaviorally regulated in Area X and found that its levels decline with singing. We hypothesized that reducing miR-128 during the critical period for vocal plasticity would enhance vocal learning. To test this, we bilaterally injected an antisense miR-128 construct (AS miR-128) or a control scrambled sequence into Area X at post-hatch day 30 (30 d) using sibling-matched experimental and control pupils. The juveniles were then returned to their home cage and raised with their tutors. Strikingly, inhibition of miR-128 in young birds enhanced the organization of learned vocal sequences. Tutor and pupil stereotypy scores were positively correlated, though the correlation was stronger between tutors and control pupils compared to tutors and AS miR-128 pupils. This difference was driven by AS miR-128 pupils achieving higher stereotypy scores despite their tutors’ lower syntax scores. AS miR-128 birds with tutors on the higher end of the stereotypy spectrum were more likely to produce songs with faster tempos relative to sibling controls. Our results suggest that low levels of miR-128 facilitate vocal sequence stereotypy. By analogy, reducing miR-128 could enhance the capacity to learn to speak in patients with non-verbal ASD. To our knowledge, this study is the first to directly link miR-128 to learned vocal communication and provides support for miR-128 as a potential therapeutic target for ASD.
Collapse
Affiliation(s)
- Caitlin M. Aamodt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, United States
- *Correspondence: Caitlin M. Aamodt,
| | - Stephanie A. White
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Stephanie A. White,
| |
Collapse
|
20
|
Northcutt KV, Leal-Medina TS, Yoon YS. Early postnatal hypothyroidism reduces juvenile play behavior, but prenatal hypothyroidism compensates for these effects. Physiol Behav 2021; 241:113594. [PMID: 34536436 DOI: 10.1016/j.physbeh.2021.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/22/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Perinatal hypothyroidism causes long-lasting effects on behavior, including hyperactivity, cognitive delays/deficits, and a reduction in anxiety. Although there is some evidence that hypothyroidism during fetal development in humans has been associated with later autism spectrum disorder diagnosis or autism-like traits, the relationships between early thyroid hormones and social behaviors are largely unknown. Previously, we found that a moderate dose of the hypothyroid-inducing drug methimazole during embryonic and postnatal development dramatically increased juvenile play in male and female rats. The goal of the current study was to determine the extent to which thyroid hormones act in prenatal or postnatal development to organize later social behaviors. Subjects were exposed to methimazole in the drinking water during prenatal (embryonic day 12 to birth), postnatal (birth to postnatal day 23), or pre- and postnatal development; control animals received regular drinking water throughout the experiment. They were tested for play behavior as juveniles (P30-32). We found an interaction between pre- and postnatal methimazole administration such that postnatal hypothyroidism decreased some play behaviors, whereas sustained pre- and postnatal hypothyroidism restored play to control levels. The effects were similar in males and females. To our knowledge, this is the first report of an interaction between pre- and postnatal hypothyroidism on later behavior. The complexity of the timing of these effects may help explain why epidemiological studies have not consistently found a relationship between gestational hypothyroidism and later behavior.
Collapse
Affiliation(s)
- Katharine V Northcutt
- Biology Department and Neuroscience Program, Mercer University, 1501 Mercer University Dr., Macon, GA 31207, USA.
| | - Tanya S Leal-Medina
- Biology Department and Neuroscience Program, Mercer University, 1501 Mercer University Dr., Macon, GA 31207, USA
| | - Ye S Yoon
- Biology Department and Neuroscience Program, Mercer University, 1501 Mercer University Dr., Macon, GA 31207, USA
| |
Collapse
|
21
|
Gzielo K, Nikiforuk A. Astroglia in Autism Spectrum Disorder. Int J Mol Sci 2021; 22:11544. [PMID: 34768975 PMCID: PMC8583956 DOI: 10.3390/ijms222111544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term encompassing several neurodevelopmental disorders such as Asperger syndrome or autism. It is characterised by the occurrence of distinct deficits in social behaviour and communication and repetitive patterns of behaviour. The symptoms may be of different intensity and may vary in types. Risk factors for ASD include disturbed brain homeostasis, genetic predispositions, or inflammation during the prenatal period caused by viruses or bacteria. The number of diagnosed cases is growing, but the main cause and mechanism leading to ASD is still uncertain. Recent findings from animal models and human cases highlight the contribution of glia to the ASD pathophysiology. It is known that glia cells are not only "gluing" neurons together but are key players participating in different processes crucial for proper brain functioning, including neurogenesis, synaptogenesis, inflammation, myelination, proper glutamate processing and many others. Despite the prerequisites for the involvement of glia in the processes related to the onset of autism, there are far too little data regarding the engagement of these cells in the development of ASD.
Collapse
Affiliation(s)
- Kinga Gzielo
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, 12 Smętna Street, 31-343 Kraków, Poland;
| | | |
Collapse
|
22
|
Burke CJ, Markovina M, Pellis SM, Euston DR. Rat 50 kHz Trill Calls Are Tied to the Expectation of Social Interaction. Brain Sci 2021; 11:brainsci11091142. [PMID: 34573164 PMCID: PMC8468548 DOI: 10.3390/brainsci11091142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022] Open
Abstract
Rats emit a variety of calls in the 40–80 kHz range (50 kHz calls). While these calls are generally associated with positive affect, it is unclear whether certain calls might be used selectively in certain contexts. To examine this, we looked at ultrasonic calls in 30–40 day old male rats during the expectation of either play or food, both of which are reinforcing. Behavior and vocalizations were recorded while rats were in a test chamber awaiting the arrival of a play partner or food over seven days of testing. Control groups were included for the non-specific effects of food deprivation and social isolation. Play reward led to an increase in 50 kHz vocalizations, generally, with specific increases in trill and “trill with jump” calls not seen in other groups. Expectation of food reward did not lead to a significant increase in vocalizations of any type, perhaps due to the young age of our study group. Further, rats that were food deprived for the food expectation study showed markedly lower calls overall and had a different profile of call types compared to rats that were socially isolated. Taken together, the results suggest that trill-associated calls may be used selectively when rats are socially isolated and/or expecting a social encounter.
Collapse
Affiliation(s)
- Candace J. Burke
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (C.J.B.); (S.M.P.)
| | - Mariya Markovina
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Sergio M. Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (C.J.B.); (S.M.P.)
| | - David R. Euston
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (C.J.B.); (S.M.P.)
- Correspondence:
| |
Collapse
|
23
|
Vitor-Vieira F, Vilela FC, Giusti-Paiva A. Hyperactivation of the amygdala correlates with impaired social play behavior of prepubertal male rats in a maternal immune activation model. Behav Brain Res 2021; 414:113503. [PMID: 34331970 DOI: 10.1016/j.bbr.2021.113503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Maternal infection during pregnancy is an environmental risk factor for neurodevelopmental dysfunction, such as autism spectrum disorder (ASD). This study investigated the effect of maternal immune activation (MIA) on the behavior profile of prepubertal offspring and whether MIA alters the neuronal activation pattern of brain areas related to social play behavior. Pregnant Wistar rats received 500 μg/kg of lipopolysaccharide or saline solution on gestational day 16. Their offspring were tested using behavioral tasks to capture some of the core and associated ASD-like symptoms. Neuronal activation, indexed via c-fos expression after social play behavior, was evaluated in several brain areas. MIA had a number of adverse effects on dams and reduced the number of successful births and litter size. MIA induced sex-specific autistic-like features by a reduction in ultrasonic vocalizations in response to separation from the mother and nest, reduction in discrimination between neutral odors and their nest odor, moderate effect in stereotypies in the hole-board test, impaired risk assessment phenotype, and reduction in social play behavior without changes in locomotor activity only in prepubertal male offspring. A decrease in social play behavior may be associated with a decrease in the number of c-fos-positive cells in the prefrontal cortex and striatum, but hyperactivation of the basolateral and basomedial amygdala. Prenatal immune challenge results in ASD-like symptoms such as impaired risk assessment behavior, communication, and social interactions in male prepubertal offspring. Impaired social play behavior is correlated with neuronal hyperactivation in the amygdala.
Collapse
Affiliation(s)
- Fernando Vitor-Vieira
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil
| | - Fabiana C Vilela
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil.
| |
Collapse
|
24
|
Thornton AM, Humphrey RM, Kerr DM, Finn DP, Roche M. Increasing Endocannabinoid Tone Alters Anxiety-Like and Stress Coping Behaviour in Female Rats Prenatally Exposed to Valproic Acid. Molecules 2021; 26:molecules26123720. [PMID: 34207178 PMCID: PMC8233839 DOI: 10.3390/molecules26123720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Given the sex differences evident in the prevalence of autism, there is an increased awareness of the importance of including females in autism research to determine sexual dimorphism and sex-specific treatments. Cannabinoids and endocannabinoid modulators have been proposed as potential novel treatments for autism-related symptoms; however, few studies to date have examined if these pharmacological agents elicit sex-specific effects. The aim of the present study was to use the valproic acid (VPA) model of autism to compare the behavioural responses of male and female rats and examine the effects of increasing endocannabinoid tone on the behavioural responses of VPA-exposed female rats. These data revealed that VPA-exposed male, but not female, rats exhibit reduced social responding in the three-chamber and olfactory habituation/dishabituation (OHD) test during adolescence. In comparison, VPA-exposed female, but not male, adolescent rats exhibited anxiety-like behaviour in the elevated plus maze (EPM) and open field test (OFT). In VPA-exposed female rats, increasing 2-AG levels augmented anxiety-like behaviour in the EPM and OFT, while increasing AEA levels reduced stress coping behaviour in the swim stress test. These data highlight sexual dimorphic behaviours in the VPA model and indicate that enhancing endocannabinoid levels may exacerbate negative affective behaviour in VPA-exposed females. Thus, considerations should be paid to the possible sex-specific effects of cannabinoids for the treatment of symptoms associated with autism.
Collapse
Affiliation(s)
- Aoife M. Thornton
- Physiology, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (A.M.T.); (R.M.H.)
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
| | - Rachel M. Humphrey
- Physiology, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (A.M.T.); (R.M.H.)
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Daniel M. Kerr
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
| | - David P. Finn
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (A.M.T.); (R.M.H.)
- Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Correspondence:
| |
Collapse
|
25
|
Wöhr M, Kisko TM, Schwarting RK. Social Behavior and Ultrasonic Vocalizations in a Genetic Rat Model Haploinsufficient for the Cross-Disorder Risk Gene Cacna1c. Brain Sci 2021; 11:brainsci11060724. [PMID: 34072335 PMCID: PMC8229447 DOI: 10.3390/brainsci11060724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023] Open
Abstract
The top-ranked cross-disorder risk gene CACNA1C is strongly associated with multiple neuropsychiatric dysfunctions. In a recent series of studies, we applied a genomically informed approach and contributed extensively to the behavioral characterization of a genetic rat model haploinsufficient for the cross-disorder risk gene Cacna1c. Because deficits in processing social signals are associated with reduced social functioning as commonly seen in neuropsychiatric disorders, we focused on socio-affective communication through 22-kHz and 50-kHz ultrasonic vocalizations (USV). Specifically, we applied a reciprocal approach for studying socio-affective communication in sender and receiver by including rough-and-tumble play and playback of 22-kHz and 50-kHz USV. Here, we review the findings obtained in this recent series of studies and link them to the key features of 50-kHz USV emission during rough-and-tumble play and social approach behavior evoked by playback of 22-kHz and 50-kHz USV. We conclude that Cacna1c haploinsufficiency in rats leads to robust deficits in socio-affective communication through 22-kHz and 50-kHz USV and associated alterations in social behavior, such as rough-and-tumble play behavior.
Collapse
Affiliation(s)
- Markus Wöhr
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000 Leuven, Belgium
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
- Correspondence: ; Tel.: +32-16-19-45-57
| | - Theresa M. Kisko
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| | - Rainer K.W. Schwarting
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, D-35032 Marburg, Germany; (T.M.K.); (R.K.W.S.)
- Center for Mind, Brain, and Behavior, Philipps-University of Marburg, D-35032 Marburg, Germany
| |
Collapse
|
26
|
Adjimann TS, Argañaraz CV, Soiza-Reilly M. Serotonin-related rodent models of early-life exposure relevant for neurodevelopmental vulnerability to psychiatric disorders. Transl Psychiatry 2021; 11:280. [PMID: 33976122 PMCID: PMC8113523 DOI: 10.1038/s41398-021-01388-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
Mental disorders including depression and anxiety are continuously rising their prevalence across the globe. Early-life experience of individuals emerges as a main risk factor contributing to the developmental vulnerability to psychiatric disorders. That is, perturbing environmental conditions during neurodevelopmental stages can have detrimental effects on adult mood and emotional responses. However, the possible maladaptive neural mechanisms contributing to such psychopathological phenomenon still remain poorly understood. In this review, we explore preclinical rodent models of developmental vulnerability to psychiatric disorders, focusing on the impact of early-life environmental perturbations on behavioral aspects relevant to stress-related and psychiatric disorders. We limit our analysis to well-established models in which alterations in the serotonin (5-HT) system appear to have a crucial role in the pathophysiological mechanisms. We analyze long-term behavioral outcomes produced by early-life exposures to stress and psychotropic drugs such as the selective 5-HT reuptake inhibitor (SSRI) antidepressants or the anticonvulsant valproic acid (VPA). We perform a comparative analysis, identifying differences and commonalities in the behavioral effects produced in these models. Furthermore, this review discusses recent advances on neurodevelopmental substrates engaged in these behavioral effects, emphasizing the possible existence of maladaptive mechanisms that could be shared by the different models.
Collapse
Affiliation(s)
- Tamara S. Adjimann
- grid.7345.50000 0001 0056 1981Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla V. Argañaraz
- grid.7345.50000 0001 0056 1981Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Soiza-Reilly
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Brudzynski SM. Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation. Brain Sci 2021; 11:brainsci11050605. [PMID: 34065107 PMCID: PMC8150717 DOI: 10.3390/brainsci11050605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
This review summarizes all reported and suspected functions of ultrasonic vocalizations in infant and adult rats. The review leads to the conclusion that all types of ultrasonic vocalizations subserving all functions are vocal expressions of emotional arousal initiated by the activity of the reticular core of the brainstem. The emotional arousal is dichotomic in nature and is initiated by two opposite-in-function ascending reticular systems that are separate from the cognitive reticular activating system. The mesolimbic cholinergic system initiates the aversive state of anxiety with concomitant emission of 22 kHz calls, while the mesolimbic dopaminergic system initiates the appetitive state of hedonia with concomitant emission of 50 kHz vocalizations. These two mutually exclusive arousal systems prepare the animal for two different behavioral outcomes. The transition from broadband infant isolation calls to the well-structured adult types of vocalizations is explained, and the social importance of adult rat vocal communication is emphasized. The association of 22 kHz and 50 kHz vocalizations with aversive and appetitive states, respectively, was utilized in numerous quantitatively measured preclinical models of physiological, psychological, neurological, neuropsychiatric, and neurodevelopmental investigations. The present review should help in understanding and the interpretation of these models in biomedical research.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
28
|
A Need for Consistency in Behavioral Phenotyping for ASD: Analysis of the Valproic Acid Model. AUTISM RESEARCH AND TREATMENT 2021; 2021:8863256. [PMID: 33828864 PMCID: PMC8004365 DOI: 10.1155/2021/8863256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent and impairing neurodevelopmental disorder that affects 1 : 54 persons. Over the last several decades, the reported incidence of ASD in the US has increased potentially due to increased awareness and improved diagnostic measurement. Although ASD prevalence is increasing, the etiology of ASD remains relatively unknown. To better understand the neurological basis of ASD, rodent models of ASD have been developed for research. Currently, there is not a standardized set of behavioral tests to quantify ASD-like behavior in rodents. The goal of this review is to present an overview of the methodologies used to analyze ASD-like behaviors in rodents, focusing on the valproic acid (VPA) model, and illustrate inconsistencies between different approaches. Despite that the in utero VPA rodent model for ASD is widely used and extensively characterized, behaviors vary substantially between different researchers. Moving forward, consistency in behavioral method analytics would benefit progress in evaluating interventions for all models of ASD and help to uncover unique qualities underlying mechanisms causing ASD signs and symptoms.
Collapse
|
29
|
Lenell C, Broadfoot CK, Schaen-Heacock NE, Ciucci MR. Biological and Acoustic Sex Differences in Rat Ultrasonic Vocalization. Brain Sci 2021; 11:459. [PMID: 33916537 PMCID: PMC8067311 DOI: 10.3390/brainsci11040459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
The rat model is a useful tool for understanding peripheral and central mechanisms of laryngeal biology. Rats produce ultrasonic vocalizations (USVs) that have communicative intent and are altered by experimental conditions such as social environment, stress, diet, drugs, age, and neurological diseases, validating the rat model's utility for studying communication and related deficits. Sex differences are apparent in both the rat larynx and USV acoustics and are differentially affected by experimental conditions. Therefore, the purpose of this review paper is to highlight the known sex differences in rat USV production, acoustics, and laryngeal biology detailed in the literature across the lifespan.
Collapse
Affiliation(s)
- Charles Lenell
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Communicative Sciences and Disorders, New York University, New York, NY 10001, USA
| | - Courtney K. Broadfoot
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Nicole E. Schaen-Heacock
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Michelle R. Ciucci
- Department of Surgery, University of Wisconsin Madison, Madison, WI 53792, USA; (C.L.); (C.K.B.); (N.E.S.-H.)
- Department of Communication Sciences and Disorders, University of Wisconsin Madison, Madison, WI 53706, USA
| |
Collapse
|
30
|
The Effect of Maternal Immune Activation on Social Play-Induced Ultrasonic Vocalization in Rats. Brain Sci 2021; 11:brainsci11030344. [PMID: 33803154 PMCID: PMC8001568 DOI: 10.3390/brainsci11030344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Prenatal maternal infection is associated with an increased risk of various neurodevelopmental disorders, including autism spectrum disorders (ASD). Maternal immune activation (MIA) can be experimentally induced by prenatal administration of polyinosinic:polycytidylic acid (poly I:C), a synthetic viral-like double-stranded RNA. Although this MIA model is adopted in many studies, social and communicative deficits, included in the first diagnostic criterion of ASD, are poorly described in the offspring of poly(I:C)-exposed dams. This study aimed to characterize the impact of prenatal poly(I:C) exposure on socio-communicative behaviors in adolescent rats. For this purpose, social play behavior was assessed in both males and females. We also analyzed quantitative and structural changes in ultrasonic vocalizations (USVs) emitted by rats during the play test. Deficits of social play behaviors were evident only in male rats. Males also emitted a significantly decreased number of USVs during social encounters. Prenatal poly(I:C) exposure also affected acoustic call parameters, as reflected by the increased peak frequencies. Additionally, repetitive behaviors were demonstrated in autistic-like animals regardless of sex. This study demonstrates that prenatal poly(I:C) exposure impairs socio-communicative functioning in adolescent rats. USVs may be a useful tool for identifying early autistic-like abnormalities.
Collapse
|