1
|
Vudjung C, Nuinu P, Yupas P, Seelakun R, Saengsuwan S. Styrene-assisted acrylic acid grafting onto polypropylene surfaces: preparation, characterization, and an automatically latex-coagulating application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Özmen F, Korpayev S, Kavaklı PA, Kavaklı C. Activation of inert polyethylene/polypropylene nonwoven fiber (NWF) by plasma-initiated grafting and amine functionalization of the grafts for Cu (II), Co (II), Cr (III), Cd (II) and Pb (II) removal. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Huang YJ, Huang CL, Lai RY, Zhuang CH, Chiu WH, Lee KM. Microstructure and Biological Properties of Electrospun In Situ Polymerization of Polycaprolactone-Graft-Polyacrylic Acid Nanofibers and Its Composite Nanofiber Dressings. Polymers (Basel) 2021; 13:4246. [PMID: 34883754 PMCID: PMC8659835 DOI: 10.3390/polym13234246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
In this study, polycaprolactone (PCL)- and poly(acrylic acid) (PAA)-based electrospun nanofibers were prepared for the carriers of antimicrobials and designed composite nanofiber mats for chronic wound care. The PCL- and PAA-based electrospun nanofibers were prepared through in situ polymerization starting from PCL and acrylic acid (AA). Different amounts of AA were introduced to improve the hydrophilicity of the PCL electrospun nanofibers. A compatibilizer and a photoinitiator were then added to the electrospinning solution to form a grafted structure composed of PCL and PAA (PCL-g-PAA). The grafted PAA was mainly located on the surface of a PCL nanofiber. The optimization of the composition of PCL, AA, compatibilizer, and photoinitiator was studied, and the PCL-g-PAA electrospun nanofibers were characterized through scanning electron microscopy and 1H-NMR spectroscopy. Results showed that the addition of AA to PCL improved the hydrophilicity of the electrospun PCL nanofibers, and a PCL/AA ratio of 80/20 presented the best composition and had smooth nanofiber morphology. Moreover, poly[2 -(tert-butylaminoethyl) methacrylate]-grafted graphene oxide nanosheets (GO-g-PTA) functioned as an antimicrobial agent and was used as filler for PCL-g-PAA nanofibers in the preparation of composite nanofiber mats, which exerted synergistic effects promoted by the antibacterial properties of GO-g-PTA and the hydrophilicity of PCL-g-PAA electrospun nanofibers. Thus, the composite nanofiber mats had antibacterial properties and absorbed body fluids in the wound healing process, thereby promoting cell proliferation. The biodegradation of the PCL-g-PAA electrospun nanofibers also demonstrated an encouraging result of three-fold weight reduction compared to the neat PCL nanofiber. Our findings may serve as guidelines for the fabrication of electrospun nanofiber composites that can be used mats for chronic wound care.
Collapse
Affiliation(s)
- Yi-Jen Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Chien-Lin Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Ruo-Yu Lai
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Cheng-Han Zhuang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Wei-Hao Chiu
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Kun-Mu Lee
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| |
Collapse
|
4
|
Kim B, Lee JS. Thermally reversible shape transformation of nano-patterned PNIPAAm hydrogel. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Nguyen TN, Rangel A, Migonney V. Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting “from” ozonized poly (ϵ-caprolactone) surfaces. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Razmjooee K, Saber-Samandari S, Keshvari H, Ahmadi S. Improving anti thrombogenicity of nanofibrous polycaprolactone through surface modification. J Biomater Appl 2019; 34:408-418. [PMID: 31184253 DOI: 10.1177/0885328219855719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kavoos Razmjooee
- 1 Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Saber-Samandari
- 2 New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Hamid Keshvari
- 1 Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Sara Ahmadi
- 2 New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
7
|
Kuo CFJ, Chen JB. Synthesis of high-solid-content, acrylic pressure-sensitive adhesives by solvent polymerization. J Appl Polym Sci 2018. [DOI: 10.1002/app.46257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chung-Feng Jeffrey Kuo
- Department of Materials Science and Engineering; National Taiwan University of Science and Technology; Taipei 106 Taiwan
| | - Jiong-Bo Chen
- Department of Materials Science and Engineering; National Taiwan University of Science and Technology; Taipei 106 Taiwan
| |
Collapse
|
8
|
Anjum S, Singh S, Benedicte L, Roger P, Panigrahi M, Gupta B. Biomodification Strategies for the Development of Antimicrobial Urinary Catheters: Overview and Advances. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1700068. [PMID: 31565299 PMCID: PMC6607219 DOI: 10.1002/gch2.201700068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/05/2017] [Indexed: 05/27/2023]
Abstract
Microbial burden associated with medical devices poses serious health challenges and is accountable for an increased number of deaths leading to enormous medical costs. Catheter-associated urinary tract infections are the most common hospital-acquired infections with enhanced patient morbidity. Quite often, catheter-associated bacteriuria produces apparent adverse outcomes such as urosepsis and even death. Taking this into account, the methods to modify urinary catheters to control microbial infections with relevance to clinical drug resistance are systematically evaluated in this review. Technologies to restrict biofilm formation at initial stages by using functional nanomaterials are elucidated. The conventional methodology of using single therapeutic intervention for developing an antimicrobial catheter lacks clinically meaningful benefit. Therefore, catheter modification using naturally derived antimicrobials such as essential oils, curcumin, enzymes, and antimicrobial peptides in combination with synthetic antibiotics/nanoantibiotics is likely to exert sufficient inhibitory effect on uropathogens and is extensively discussed. Futuristic efforts in this area are projected here that demand clinical studies to address areas of uncertainty to avoid development of bacterial resistance to the new generation therapy with minimum discomfort to the patients.
Collapse
Affiliation(s)
- Sadiya Anjum
- Bioengineering LaboratoryDepartment of Textile TechnologyIndian Institute of TechnologyNew Delhi110016India
| | - Surabhi Singh
- Bioengineering LaboratoryDepartment of Textile TechnologyIndian Institute of TechnologyNew Delhi110016India
| | - Lepoittevin Benedicte
- ICMMO ‐ LG2M ‐ Bât 420Université Paris‐Sud XI, 15rue Georges Clémenceau91405Orsay CedexFrance
| | - Philippe Roger
- ICMMO ‐ LG2M ‐ Bât 420Université Paris‐Sud XI, 15rue Georges Clémenceau91405Orsay CedexFrance
| | - Manoj Panigrahi
- Department of Urology and PathologySikkim Manipal Institute of Medical SciencesGangtokSikkim737101India
| | - Bhuvanesh Gupta
- Bioengineering LaboratoryDepartment of Textile TechnologyIndian Institute of TechnologyNew Delhi110016India
| |
Collapse
|
9
|
Swilem AE, Lehocký M, Humpolíček P, Kucekova Z, Novák I, Mičušík M, Abd El-Rehim HA, Hegazy ESA, Hamed AA, Kousal J. Description of D-glucosamine immobilization kinetics onto poly(lactic acid) surface via a multistep physicochemical approach for preparation of novel active biomaterials. J Biomed Mater Res A 2017; 105:3176-3188. [PMID: 28707422 DOI: 10.1002/jbm.a.36158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/06/2017] [Accepted: 06/28/2017] [Indexed: 11/05/2022]
Abstract
Poly(lactic acid) (PLA) has shown much success in the preparation of tissue engineering scaffolds as it can be fabricated with a tailored architecture. However, the PLA surface has drawbacks including the lack of biofunctional motifs which are essential for high affinity to biological cells. Therefore, this study describes a multistep physicochemical approach for the immobilization of d-glucosamine (GlcN), a naturally occurring monosaccharide having many biological functions, on the PLA surface aiming at enhancing the cell proliferation activity. In this approach, poly(acrylic acid) (PAAc) spacer arms are first introduced into the PLA surface via plasma post-irradiation grafting technique. Then, covalent coupling or physical adsorption of GlcN with/on the PAAc spacer is carried out. Factors affecting the grafting yield are controlled to produce a suitable spacer for bioimmobilization. X-ray photon spectroscopic (XPS) analyses confirm the immobilization of GlcN on the PLA surface. The XPS results reveal also that increasing the yield of grafted PAAc spacer on the PLA surface increases the amount of covalently immobilized GlcN, but actually inhibits the immobilization process using the physical adsorption method. Contact angle measurements and atomic force microscopy (AFM) show a substantial increase of surface energy and roughness of PLA surface, respectively, upon the multistep modification procedure. The cytocompatibility of the modified surfaces is assessed using a mouse embryonic fibroblast (MEF) cell line. Observation from the cell culture basically demonstrates the potential of GlcN immobilization in improving the cytocompatibility of the PLA surface. Moreover, the covalent immobilization of GlcN seems to produce more cytocompatible surfaces if compared with the physical adsorption method. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3176-3188, 2017.
Collapse
Affiliation(s)
- Ahmed E Swilem
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic.,Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Marian Lehocký
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic
| | - Zdenka Kucekova
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic
| | - Igor Novák
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia, 845 41
| | - Matej Mičušík
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia, 845 41
| | - Hassan A Abd El-Rehim
- Department of Polymers, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, 11371, Egypt
| | - El-Sayed A Hegazy
- Department of Polymers, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, 11371, Egypt
| | - Ashraf A Hamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Jaroslav Kousal
- Faculty of Mathematics and Physics, Charles University Prague, V Holesovickach 2, Prague 8, 18000, Czech Republic
| |
Collapse
|
10
|
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:805-824. [DOI: 10.1080/09205063.2017.1354671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elbay Malikmammadov
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Tugba Endogan Tanir
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Aysel Kiziltay
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Vasif Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Nesrin Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
11
|
Wu CS, Shih WL, Liao HT, Chan WC, Tsou CH. Fabrication, characterization, cytocompatibility, and biological activity of lemon fiber-filled polyester composites. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1309542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan, Republic of China
| | - Wen-Ling Shih
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Taiwan, Republic of China
| | - Hsin-Tzu Liao
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan, Republic of China
| | - Wen-Chia Chan
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan, Republic of China
| | - Chi-Hui Tsou
- Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
12
|
Maharana T, Pattanaik S, Routaray A, Nath N, Sutar AK. Synthesis and characterization of poly(lactic acid) based graft copolymers. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.05.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Ribeiro VP, Almeida LR, Martins AR, Pashkuleva I, Marques AP, Ribeiro AS, Silva CJ, Bonifácio G, Sousa RA, Reis RL, Oliveira AL. Influence of different surface modification treatments on silk biotextiles for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2015; 104:496-507. [PMID: 25939722 DOI: 10.1002/jbm.b.33400] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/15/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
Biotextile structures from silk fibroin have demonstrated to be particularly interesting for tissue engineering (TE) applications due to their high mechanical strength, interconnectivity, porosity, and ability to degrade under physiological conditions. In this work, we described several surface treatments of knitted silk fibroin (SF) scaffolds, namely sodium hydroxide (NaOH) solution, ultraviolet radiation exposure in an ozone atmosphere (UV/O3) and oxygen (O2) plasma treatment followed by acrylic acid (AAc), vinyl phosphonic acid (VPA), and vinyl sulfonic acid (VSA) immersion. The effect of these treatments on the mechanical properties of the textile constructs was evaluated by tensile tests in dry and hydrated states. Surface properties such as morphology, topography, wettability and elemental composition were also affected by the applied treatments. The in vitro biological behavior of L929 fibroblasts revealed that cells were able to adhere and spread both on the untreated and surface-modified textile constructs. The applied treatments had different effects on the scaffolds' surface properties, confirming that these modifications can be considered as useful techniques to modulate the surface of biomaterials according to the targeted application.
Collapse
Affiliation(s)
- Viviana P Ribeiro
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Portugal.,ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Lília R Almeida
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Portugal.,ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Ana R Martins
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Portugal.,ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Portugal.,ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Portugal.,ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Ana S Ribeiro
- CeNTI, Centre for Nanotechnology and Smart Materials, V.N. Famalicão, Portugal
| | - Carla J Silva
- CeNTI, Centre for Nanotechnology and Smart Materials, V.N. Famalicão, Portugal
| | - Graça Bonifácio
- CITEVE, Technological Centre for Textile and Clothing Industry, V.N. Famalicão, Portugal
| | - Rui A Sousa
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Portugal.,ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Portugal.,ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Ana L Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Portugal.,ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal.,CBQF-Center for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, Porto, 4200-401, Portugal
| |
Collapse
|
14
|
|