1
|
Kuzminova A, Dmitrenko M, Zolotarev A, Myznikov D, Selyutin A, Su R, Penkova A. Pervaporation Polyvinyl Alcohol Membranes Modified with Zr-Based Metal Organic Frameworks for Isopropanol Dehydration. MEMBRANES 2022; 12:908. [PMID: 36295667 PMCID: PMC9611522 DOI: 10.3390/membranes12100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are perceptive modifiers for the creation of mixed matrix membranes to improve the pervaporation performance of polymeric membranes. In this study, novel membranes based on polyvinyl alcohol (PVA) modified with Zr-MOFs (MIL-140A, MIL-140A-AcOH, and MIL-140A-AcOH-EDTA) particles were developed for enhanced pervaporation dehydration of isopropanol. Two membrane types (substrateless-freestanding; and formed on polyacrylonitrile support-composite) were prepared. The additional cross-linking of membranes with glutaraldehyde was carried out to circumvent membrane stability in pervaporation dehydration of diluted solutions. The synthesized Zr-MOFs were characterized by scanning electron microscopy, X-ray powder diffraction analysis, and specific surface area measurement. The structure and physicochemical properties of the developed membranes were investigated by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, thermogravimetric analysis, swelling experiments, and contact angle measurements. The PVA and PVA/Zr-MOFs membranes were evaluated in pervaporation dehydration of isopropanol in a wide concentration range. It was found that the composite cross-linked PVA membrane with 10 wt% MIL-140A had optimal pervaporation performance in the isopropanol dehydration (12-100 wt% water) at 22 °C: 0.15-1.33 kg/(m2h) permeation flux, 99.9 wt% water in the permeate, and is promising for the use in the industrial dehydration of alcohols.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Danila Myznikov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Yue D, Zhang H, Liu M, Li B, Ge Y, Sun D, Li F. A novel 5-sulfosalicylic acid - Polyvinyl alcohol - Hydroxyethyl cellulose vapor permeation membrane for gas dehumidification. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Development of dynamic PVA/PAN membranes for pervaporation: correlation between kinetics of gel layer formation, preparation conditions, and separation performance. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
A Review of Recent Developments of Pervaporation Membranes for Ethylene Glycol Purification. MEMBRANES 2022; 12:membranes12030312. [PMID: 35323787 PMCID: PMC8956067 DOI: 10.3390/membranes12030312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Ethylene glycol (EG) is an essential reagent in the chemical industry including polyester and antifreeze manufacture. In view of the constantly expanding field of EG applications, the search for and implementation of novel economical and environmentally friendly technologies for the separation of organic and aqueous–organic solutions remain an issue. Pervaporation is currently known to significantly reduce the energy and resource consumption of a manufacturer when obtaining high-purity components using automatic, easily scalable, and compact equipment. This review provides an overview of the current research and advances in the pervaporation of EG-containing mixtures (water/EG and methanol/EG), as well as a detailed analysis of the relationship of pervaporation performance with the membrane structure and properties of membrane materials. It is discussed that a controlled change in the structure and transport properties of a membrane is possible using modification methods such as treatment with organic solvents, introduction of nonvolatile additives, polymer blending, crosslinking, and heat treatment. The use of various modifiers is also described, and a particularly positive effect of membrane modification on the separation selectivity is highlighted. Among various polymers, hydrophilic PVA-based membranes stand out for optimal transport properties that they offer for EG dehydrating. Fabricating of TFC membranes with a microporous support layer appears to be a viable approach to the development of productivity without selectivity loss. Special attention is given to the recovery of methanol from EG, including extensive studies of the separation performance of polymer membranes. Membranes based on a CS/PVP blend with inorganic modifiers are specifically promising for methanol removal. With regard to polymer wettability properties, it is worth mentioning that membranes based on hydrophobic polymers (e.g., SPEEK, PBI/PEI, PEC, PPO) are capable of exhibiting much higher selectivity due to diffusion limitations.
Collapse
|
5
|
Raza W, Wang J, Yang J, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Ahmadi M, Ansaloni L, Hillestad M, Deng L. Solvent Regeneration by Thermopervaporation in Subsea Natural Gas Dehydration: An Experimental and Simulation Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahdi Ahmadi
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Luca Ansaloni
- Department of Sustainable Energy Technology, SINTEF Industry, Oslo 0373, Norway
| | - Magne Hillestad
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| |
Collapse
|
7
|
Şahin MO, Şanlı O. In situ synthesis of ZnO nanoparticles in poly(vinyl alcohol) membranes and its use in separation of acetone/water mixtures via pervaporation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Tailoring physical machinery and biodegradation properties of unsaturated polyesters through manipulation of synthesis and curing conditions. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Yan M, Lu Y, Li N, Zeng F, Wang Q, Bai H, Xie Z. Hyperbranch-Crosslinked S-SEBS Block Copolymer Membranes for Desalination by Pervaporation. MEMBRANES 2020; 10:membranes10100277. [PMID: 33050535 PMCID: PMC7599453 DOI: 10.3390/membranes10100277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
Sulfonated aromatic polymer (SAP) featuring hydrophilic nanochannels for water transport is a promising membrane material for desalination. SAPs with a high sulfonation degree favor water transport but suffer from reduced mechanical strength and membrane swelling. In this work, a hyperbranched polyester, H302, was introduced to crosslink a sulfonated styrene-ethylene/butylene-styrene (S-SEBS) copolymer membrane. The effects of crosslinking temperature and amount of H302 on the microstructure, and the pervaporation desalination performance of the membrane, were investigated. H302/S-SEBS copolymer membranes with different crosslinking conditions were characterized by various techniques including FTIR, DSC, EA, SEM, TEM and SAXS, and tensile strength, water sorption and contact angle measurements. The results indicate that the introduction of hyperbranched polyester enlarged the hydrophilic microdomain of the S-SEBS membrane. Crosslinking with hyperbranched polyester with heat treatment effectively enhanced the mechanical strength of the S-SEBS membrane, with the tensile strength being increased by 140–200% and the swelling ratio reduced by 45–70%, while reasonable water flux was maintained. When treating 5 wt% hypersaline water at 65 °C, the optimized crosslinked membrane containing 15 wt% H302 and heated at 100 °C reached a water flux of 9.3 kg·m−2·h−1 and a salt rejection of 99.9%. The results indicate that the hyperbranched-S-SEBS membrane is promising for use in PV desalination.
Collapse
Affiliation(s)
- Mengyu Yan
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (M.Y.); (Y.L.); (F.Z.); (Q.W.)
| | - Yunyun Lu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (M.Y.); (Y.L.); (F.Z.); (Q.W.)
| | - Na Li
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (M.Y.); (Y.L.); (F.Z.); (Q.W.)
- Correspondence: (N.L.); (Z.X.)
| | - Feixiang Zeng
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (M.Y.); (Y.L.); (F.Z.); (Q.W.)
| | - Qinzhuo Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (M.Y.); (Y.L.); (F.Z.); (Q.W.)
| | - Hongcun Bai
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South MDC, VIC 3169, Australia
- Correspondence: (N.L.); (Z.X.)
| |
Collapse
|
10
|
PVA/SO42−-AAO difunctional catalytic-pervaporation membranes: Preparation and characterization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Liu M, Zhao LB, Yu LY, Wei YM, Xu ZL. Structure and Properties of PSf Hollow Fiber Membranes with Different Molecular Weight Hyperbranched Polyester Using Pentaerythritol as Core. Polymers (Basel) 2020; 12:E383. [PMID: 32046341 PMCID: PMC7077391 DOI: 10.3390/polym12020383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022] Open
Abstract
A homologous series of hyperbranched polyesters (HBPEs) was successfully synthesized via an esterification reaction of 2,2-bis(methylol)propionic acid (bis-MPA) with pentaerythritol. The molecular weights of the HBPEs were 2160, 2660, 4150 and 5840 g/mol, respectively. These HBPEs were used as additives to prepare polysulfone (PSf) hollow fiber membranes via non-solvent induced phase separation. The characteristic behaviors of the casting solution were investigated, as well as the morphologies, hydrophilicity and mechanical properties of the PSf membranes. The results showed that the initial viscosities of the casting solutions were increased, and the shear-thinning phenomenon became increasingly obvious. The demixing rate first increased and then decreased when increasing the HBPE molecular weight, and the turning point was 2660 g/mol. The PSf hollow fiber membranes with different molecular weights of HBPEs had a co-existing morphology of double finger-like and sponge-like structures. The starting pure water contact angle decreased obviously, and the mechanical properties improved.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Long-Bao Zhao
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, ECUST, 130 Meilong Road, Shanghai 200237, China; (L.-B.Z.); (Y.-M.W.)
| | - Li-Yun Yu
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark;
| | - Yong-Ming Wei
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, ECUST, 130 Meilong Road, Shanghai 200237, China; (L.-B.Z.); (Y.-M.W.)
| | - Zhen-Liang Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, ECUST, 130 Meilong Road, Shanghai 200237, China; (L.-B.Z.); (Y.-M.W.)
| |
Collapse
|
12
|
Thermopervaporation for regeneration of triethylene glycol (TEG):Experimental and model development. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
A facile route to synthesize hyperbranched polyester derived from cellulose and serine and its biodegradability. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Wu JK, Ye CC, Zhang WH, Wang NX, Lee KR, An QF. Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Dalane K, Hillestad M, Deng L. Subsea natural gas dehydration with membrane processes: Simulation and process optimization. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Simultaneous toughening and reinforcing of cyanate ester/benzoxazine resins with improved mechanical and thermal properties by using hyperbranched polyesters. JOURNAL OF POLYMER ENGINEERING 2018. [DOI: 10.1515/polyeng-2017-0376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present study, the influence of incorporating various amounts of hyperbranched polyester (HBPE) into thermosetting resin blends composed of cyanate ester (CE) and benzoxazine (BOZ) resins was investigated for their structural, morphological, mechanical, and thermal properties. The FTIR spectra revealed that the CE/BOZ resin had reacted with the functional groups of HBPE, and the SEM test confirmed the morphological changes from a smooth surface that was observed for the virgin CE/BOZ resin to a rough surface for the maximum HBPE content. Moreover, the mechanical and thermal properties were found to be pointedly enhanced as we increased the content of HBPE. These remarkable enhancements may be due to the chemical structure of the HBPE which could form a cross-linked structure through a strong hydrogen bonding with the CE/BOZ resin. As a result, a considerable amount of applied mechanical load can be absorbed, and in parallel, the thermal stability can also be improved. We believe that the HBPE can be a good toughener for the CE/BOZ resins that could possibly expand their range of applications in various industrial sectors.
Collapse
|
17
|
Label-free immunosensor based on hyperbranched polyester for specific detection of α-fetoprotein. Biosens Bioelectron 2017; 92:1-7. [DOI: 10.1016/j.bios.2017.01.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 01/11/2023]
|
18
|
Zhang S, Zou Y, Wei T, Mu C, Liu X, Tong Z. Pervaporation dehydration of binary and ternary mixtures of n-butyl acetate, n-butanol and water using PVA-CS blended membranes. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.09.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Kong X, Zhang Y, Zeng SY, Zhu BK, Zhu LP, Fang LF, Matsuyama H. Incorporating hyperbranched polyester into cross-linked polyamide layer to enhance both permeability and selectivity of nanofiltration membrane. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.07.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Zhou X, Obadia MM, Venna SR, Roth EA, Serghei A, Luebke DR, Myers C, Chang Z, Enick R, Drockenmuller E, Nulwala HB. Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Li D, Niu Y, Yang Y, Wang X, Yang F, Shen H, Wu D. Synthesis and self-assembly behavior of POSS-embedded hyperbranched polymers. Chem Commun (Camb) 2015; 51:8296-9. [DOI: 10.1039/c5cc01338k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We demonstrate a simple approach to prepare POSS-embedded hyperbranched amphiphiles, presenting morphological transition from micelle to vesicle in aqueous solution.
Collapse
Affiliation(s)
- Dawei Li
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yuguang Niu
- ENT Department
- Affiliated Hospital of Academy of Military Medical Sciences
- Beijing 100071
- China
| | - Yanyu Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
22
|
Guo M, Fei M, Liu H, Wu X, Yang P. A novel biodegradable hyperbranched polyester prepared from cellulose and tyrosine via the synthesis route of glycopeptides. Polym Chem 2015. [DOI: 10.1039/c4py01731e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hyperbranched polyester has been prepared through the polycondensation of an ABn-type monomer, which was synthesized from a glycopeptide reaction.
Collapse
Affiliation(s)
- Ming Guo
- Department of Chemistry
- Zhejiang Agricultural & Forestry University
- Hangzhou
- China
- National Engineering and Technology Research Center of Wood-based Resources Comprehensive Utilization
| | - Meng Fei
- Department of Chemistry
- Zhejiang Agricultural & Forestry University
- Hangzhou
- China
- National Engineering and Technology Research Center of Wood-based Resources Comprehensive Utilization
| | - Hongzhi Liu
- National Engineering and Technology Research Center of Wood-based Resources Comprehensive Utilization
- Zhejiang Agricultural & Forestry University
- Hangzhou
- China
- School of Engineering
| | - Xiaopeng Wu
- Department of Chemistry
- Zhejiang Agricultural & Forestry University
- Hangzhou
- China
- National Engineering and Technology Research Center of Wood-based Resources Comprehensive Utilization
| | - Ping Yang
- Department of Chemistry
- Zhejiang Agricultural & Forestry University
- Hangzhou
- China
- National Engineering and Technology Research Center of Wood-based Resources Comprehensive Utilization
| |
Collapse
|