1
|
Xiao K, Fang Y, Wang Z, Ni N, Liu Z, Kim S, An Z, Lyu Z, Xu Y, Yang X. Bio-Sourced, High-Performance Carbon Fiber Reinforced Itaconic Acid-Based Epoxy Composites with High Hygrothermal Stability and Durability. Polymers (Basel) 2024; 16:1649. [PMID: 38931999 PMCID: PMC11207418 DOI: 10.3390/polym16121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Thermosetting polymers and composites are a class of high-performance materials with significant industrial applications. However, the widespread use of thermosets and their composites generates large quantities of waste and leads to serious economic and environmental problems, there is a critical need in the elaboration of sustainable composite materials. Here, we propose a method to prepare sustainable carbon fiber reinforced composites with different degrees of greenness by blending environmentally friendly EIA with DGEBA in different ratios, and the properties compared with a well-known commercial petroleum-based epoxy resin. The prepared carbon fiber reinforced polymer (CFRP) composites with different degrees of greenness had excellent dimensional stability under extreme hygrothermal aging. After aging, the green CFRP composite T700/EIA-30 has higher strength and performance retention than that of petroleum-based CFRP composites. The higher hygrothermal stability and durability of EIA-based epoxy resins as compared with BPA-based epoxy resins demonstrated significant evidence to design and develop a novel bio-based epoxy resin with high performance to substitute the petroleum-based epoxy resin.
Collapse
Affiliation(s)
- Kaixuan Xiao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Yuan Fang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Zhaodi Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Nannan Ni
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Ziqian Liu
- Yangtze River Delta Carbon Fiber and Composites Innovation Center, Changzhou 213000, China;
| | - Soochan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (Z.A.)
| | - Zongfu An
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (Z.A.)
| | - Zhiyi Lyu
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea;
| | - Yahong Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Xin Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| |
Collapse
|
2
|
Ma J, Zhou S, Lai Y, Wang Z, Ni N, Dai F, Xu Y, Yang X. Ionic Liquids Facilitate the Dispersion of Branched Polyethylenimine Grafted ZIF-8 for Reinforced Epoxy Composites. Polymers (Basel) 2023; 15:polym15081837. [PMID: 37111984 PMCID: PMC10146677 DOI: 10.3390/polym15081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been previously shown as an emerging modified class of epoxy resin. In this work, we report a simple strategy for preventing zeolitic imidazolate framework (ZIF-8) nanoparticles from agglomerating in epoxy resin (EP). Branched polyethylenimine grafted ZIF-8 in ionic liquid (BPEI-ZIF-8) nanofluid with good dispersion was prepared successfully using an ionic liquid as both the dispersant and curing agent. Results indicated that the thermogravimetric curve of the composite material had no noticeable change with increasing BPEI-ZIF-8/IL content. The glass transition temperature (Tg) of the epoxy composite was reduced with the addition of BPEI-ZIF-8/IL. The addition of 2 wt% BPEI-ZIF-8/IL into EP effectively improved the flexural strength to about 21.7%, and the inclusion of 0.5 wt% of BPEI-ZIF-8/IL EP composites increased the impact strength by about 83% compared to pure EP. The effect of adding BPEI-ZIF-8/IL on the Tg of epoxy resin was explored, and its toughening mechanism was analyzed in combination with SEM images showing fractures in the EP composites. Moreover, the damping and dielectric properties of the composites were improved by adding BPEI-ZIF-8/IL.
Collapse
Affiliation(s)
- Junchi Ma
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Shihao Zhou
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yuanchang Lai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Zhaodi Wang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Nannan Ni
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Feng Dai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yahong Xu
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Xin Yang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
3
|
Approximation Method for Stress–Strain Using Metamodel Parameter Updating. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The properties of the material applied to the finite element (FE) simulation can be expressed by constitutive models, and simple constitutive and complex constitutive models can be used to show the actual phenomenon. The technology to improve the accuracy of the constitutive model applied to FE simulation is the inverse method. The inverse method is a method to curve fit the FE simulation result to the test data by utilizing finite element model updating (FEMU). Inverse methods are general approaches to update material properties. The inverse method can iteratively run many FE simulations for constitutive model optimization and consider metamodel-based simulation optimization (MBSO) to reduce this resource waste. With MBSO, one can obtain significant results with fewer resources. However, the MBSO algorithm has the problem in that the optimization performance deteriorates as the number of parameters increases. The typical process of the inverse method is to adjust these factor values individually. If there are many factors in the constitutive model, the optimization result may deteriorate owing to the performance limit of the MBSO when the structural method is used. This paper proposes a method of fitting a stress–strain constitutive model with a scaling factor to improve the efficiency of the inversion method using MBSO. For this purpose, a process was performed to determine the curve characteristics during the pretreatment stage. The results show that the proposed method significantly improved the prediction efficiency of the combination function. Thus, we conclude that initializing the combination function and setting the parameters of the inverse method by applying the proposed approach improves the efficiency of large deformation analyses.
Collapse
|
4
|
|
5
|
Ranjbar Z, Ranjbar B, Foroughirad S. Biopolymers in Automotive Industry. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
New Insights on Expandability of Pre-Cured Epoxy Using a Solid-State CO 2-Foaming Technique. Polymers (Basel) 2021; 13:polym13152441. [PMID: 34372043 PMCID: PMC8348596 DOI: 10.3390/polym13152441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/18/2022] Open
Abstract
Foaming an epoxy is challenging because the process involves the curing reaction of epoxy and hardener (from monomer to oligomer, to a gel and a final three-dimensional crosslinked network) and the loading of gas phase into the epoxy phase to develop the cellular structure. The latter process needs to be carried out at the optimum curing stage of epoxy to avoid cell coalescence and to allow expansion. The environmental concern regarding the usage of chemical blowing agent also limits the development of epoxy foams. To surmount these challenges, this study proposes a solid-state CO2 foaming of epoxy. Firstly, the resin mixture of diglycidylether of bisphenol-A (DGEBA) epoxy and polyamide hardener is pre-cured to achieve various solid-state sheets (preEs) of specific storage moduli. Secondly, these preEs undergo CO2 absorption using an autoclave. Thirdly, CO2 absorbed preEs are allowed to free-foam/expand in a conventional oven at various temperatures; lastly, the epoxy foams are post-cured. PreE has a distinctive behavior once being heated; the storage modulus is reduced and then increases due to further curing. Epoxy foams in a broad range of densities could be fabricated. PreE with a storage modulus of 4 × 104–1.5 × 105 Pa at 30 °C could be foamed to densities of 0.32–0.45 g/cm3. The cell morphologies were revealed to be star polygon shaped, spherical and irregularly shaped. The research proved that the solid-state CO2-foaming technique can be used to fabricate epoxy foams with controlled density.
Collapse
|
7
|
Biodegradable Polymeric Foams Based on Modified Castor Oil, Styrene, and Isobornyl Methacrylate. Polymers (Basel) 2021; 13:polym13111872. [PMID: 34200002 PMCID: PMC8200243 DOI: 10.3390/polym13111872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
The environmental issues of petroleum-derived polymeric foams have necessitated seeking renewable alternatives. This work aims to prepare renewable free-radically polymerized polymeric foams with the ability to biodegrade. Furthermore, this work attempted to incorporate a bio-based reactive diluent, which has not been reported in the literature. The synthesis of maleated castor oil glycerides was performed with products analyzed by Fourier transform infrared spectrometry using attenuated total reflection (ATR-FTIR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. Polymeric foams were prepared using maleated castor oil glycerides via free radical copolymerization with styrene and isobornyl methacrylate as reactive diluents. Scanning electron microscopy (SEM) was used to determine anisotropic macrocellular morphology, with log-normal cell diameter distributions. The compressive mechanical and energy absorption properties were investigated; the polymeric foams displayed Young’s modulus up to 26.85 ± 1.07 MPa and strength up to 1.11 ± 0.021 MPa using styrene as the reactive diluent, and Young’s modulus up to 1.38 ± 0.055 MPa and strength up to 0.088 MPa when incorporating isobornyl methacrylate. Furthermore, a thorough analysis of the cellular structure–property relationships was performed, indicating relationships to cell diameter, cell wall thickness and apparent density. The polymeric foams displayed rapid mass loss in an aerobic soil environment with multiple erosion sites revealed by SEM. In conclusion, renewable polymeric foams with excellent compressive properties were achieved using styrene as reactive diluent, but the incorporation of isobornyl methacrylate decreased strength-related properties.
Collapse
|
8
|
Thermal Stability and Flammability of Epoxy Composites Filled with Multi-Walled Carbon Nanotubes, Boric Acid, and Sodium Bicarbonate. Polymers (Basel) 2021; 13:polym13040638. [PMID: 33669925 PMCID: PMC7924867 DOI: 10.3390/polym13040638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Epoxy composites filled with 0.5 wt% of multi-walled carbon nanotubes (MWCNTs), 10 and 15 wt% of boric acid and sodium bicarbonate separately, as well as composites filled with a combination of MWCNTs-boric acid and MWCNTs-sodium bicarbonate were prepared. The thermal behavior of the prepared samples was investigated under heating in oxidative environment using thermogravimetric analysis. The hardness was measured using the Shore D hardness test. To evaluate the flammability of the samples, the ignition temperature and time-to-ignition were determined. It was concluded that sodium bicarbonate in the studied concentrations (10 and 15 wt%) is not appropriate for use as a filler capable of improving the thermooxidative stability and reducing the flammability of epoxy polymers. The improvement in the thermal properties can be achieved by using the combination of boric acid and multi-walled carbon nanotubes as fillers. The thermooxidative destruction of the samples filled with boric acid passes more slowly and more evenly via the formation of B2O3 as a result of its decomposition.
Collapse
|
9
|
Nikafshar S, Fang Z, Nejad M. Development of a Novel Curing Accelerator-Blowing Agent for Formulating Epoxy Rigid Foam Containing Aminated-Lignin. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Saeid Nikafshar
- Department of Forestry, Michigan State University, 480 Wilson Rd, East Lansing, Michigan 48824, United States
| | - Zhen Fang
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
- Great Lakes Bioenergy Research Center, Michigan State University, 164 Food Safety and Toxicology Building, East Lansing, Michigan 48824, United States
| | - Mojgan Nejad
- Department of Forestry, Michigan State University, 480 Wilson Rd, East Lansing, Michigan 48824, United States
- Chemical Engineering and Materials Science, Michigan State University, 428 S Shaw Ln, East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Approximation of Non-Linear Stress–Strain Curve for GFRP Tensile Specimens by Inverse Method. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studying the characteristics of materials through a finite element analysis (FEA) has various benefits; hence, many studies have been conducted to improve the reliability of the analysis results. In general, the mechanical properties used in FEA for metals and metal composites are stress–strain data obtained through tensile tests, which are used for modeling from a macroscopic perspective. While many studies have been conducted on metal materials, there are limited studies on the analysis of polymer composite materials produced through injection and special processing. In this study, existing inverse methods were applied, and an FEA was conducted to reproduce the axial displacement of the tensile specimens comprising glass fiber-reinforced polymer (GFRP); further, errors were examined by comparing the test and analysis results. To reduce such errors, the experiment and the FEA results were analyzed through parameter optimization based on various empirical formulas. The accuracy of various inverse methods were examined and an inverse method suitable for GFRP was proposed.
Collapse
|
11
|
Agnihotri S, Shukla S, Pradeep SA, Pilla S. Biobased thermosetting cellular blends: Exploiting the ecological advantage of epoxidized soybean oil in structural foams. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Uy Lan DN, Fauzi MS, Viet CX, Raps D, Altstädt V. Viscoelastic epoxy foams by an aqueous emulsion foaming process. J CELL PLAST 2019. [DOI: 10.1177/0021955x19864016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The research proposed an aqueous emulsion foaming process to produce a viscoelastic epoxy foam having a density of 0.33–0.36 g/cm3 from the polyamide–epoxy adduct, which uses a reverse ratio of epoxy and polyamide hardener. The process is simple, economical and uses no surfactant, thanks to the emulsifying ability of polyamide hardener. Firstly, the mixture of excess polyamide, epoxy and sodium bicarbonate was emulsified with distilled water using high-speed stirring to form dispersed epoxy droplets in water. Secondly, a solution of ammonium chloride was added, which reacted with sodium bicarbonate to produce carbon dioxide and ammonia gases dispersed in the epoxy emulsion. The expanding gases induced flocculation and partial coalescence of the epoxy droplets; sequentially water molecules were entrapped within them. Finally, a curing process was carried out to stabilise the foam morphology and structure. Two types of pore morphologies were observed: a large foam-pore generated from blowing-agent gases and a cell-wall pore formed from the vapourisation of entrapped water (as the void template). Porosity and pore morphologies depended on blowing-agent content, and the viscoelasticity was affected by the epoxy/polyamide ratio. The obtained viscoelastic foams showed a large number of interconnected cells and exhibited high compression set values.
Collapse
Affiliation(s)
- Du Ngoc Uy Lan
- School of Material Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | | | - Cao Xuan Viet
- Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam
| | - Daniel Raps
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Volker Altstädt
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
13
|
Tailoring Acrylated Soybean Oil-Containing Terpolymers through Emulsion Polymerization. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2040046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work focuses on the synthesis of terpolymers using methyl methacrylate (MMA) and vinyl pivalate (VPi), along with the incorporation of methacrylate acid (MA) and acrylated fatty acids (AFA) derived from commercial soybean oil. Emulsion polymerizations were carried out using different monomeric species, along with different initiator concentrations ranging from 0.5 g∙L−1 to 2.2 g∙L−1. The thermal properties of the terpolymers were improved when acrylated fatty acid was incorporated into the polymer chains, expressing glass transition temperatures (Tg) ranging from 70 °C to 90 °C and degradation temperatures in the interval between 350 °C and 450 °C for acrylated fatty acid concentrations ranging from 5 wt% to 10 wt%. Furthermore, a change was noted in the molar mass distributions as a result of acrylated fatty oil present in the polymers. The materials with 5 and 10 wt% of acrylated fatty oil presented mass-average molar masses of 225 kg∙mol−1 and 181 kg∙mol−1, respectively. As the results in this work suggest, the molar masses of the formed polymers are significantly altered by the presence of modified fatty acids.
Collapse
|
14
|
|
15
|
Dupuis A, Perrin FX, Ulloa Torres A, Habas JP, Belec L, Chailan JF. Photo-oxidative degradation behavior of linseed oil based epoxy resin. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2016.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Cornille A, Guillet C, Benyahya S, Negrell C, Boutevin B, Caillol S. Room temperature flexible isocyanate-free polyurethane foams. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.05.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Chen Y, Xi Z, Zhao L. New bio-based polymeric thermosets synthesized by ring-opening polymerization of epoxidized soybean oil with a green curing agent. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.08.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Chen Y, Xi Z, Zhao L. Curing kinetics of bio-based epoxy resin based on epoxidized soybean oil and green curing agent. AIChE J 2016. [DOI: 10.1002/aic.15486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yahua Chen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Zhenhao Xi
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Ling Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
19
|
High Temperature Epoxy Foam: Optimization of Process Parameters. Polymers (Basel) 2016; 8:polym8060215. [PMID: 30979317 PMCID: PMC6432331 DOI: 10.3390/polym8060215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022] Open
Abstract
For many years, reduction of fuel consumption has been a major aim in terms of both costs and environmental concerns. One option is to reduce the weight of fuel consumers. For this purpose, the use of a lightweight material based on rigid foams is a relevant choice. This paper deals with a new high temperature epoxy expanded material as substitution of phenolic resin, classified as potentially mutagenic by European directive Reach. The optimization of thermoset foam depends on two major parameters, the reticulation process and the expansion of the foaming agent. Controlling these two phenomena can lead to a fully expanded and cured material. The rheological behavior of epoxy resin is studied and gel time is determined at various temperatures. The expansion of foaming agent is investigated by thermomechanical analysis. Results are correlated and compared with samples foamed in the same temperature conditions. The ideal foaming/gelation temperature is then determined. The second part of this research concerns the optimization of curing cycle of a high temperature trifunctional epoxy resin. A two-step curing cycle was defined by considering the influence of different curing schedules on the glass transition temperature of the material. The final foamed material has a glass transition temperature of 270 °C.
Collapse
|
20
|
Synthesis and Thermomechanical Properties of Polyurethanes and Biocomposites Derived from Macauba Oil and Coconut Husk Fibers. COATINGS 2015. [DOI: 10.3390/coatings5030527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|