1
|
Goodarzi K, Rao SS. Structurally decoupled hyaluronic acid hydrogels for studying matrix metalloproteinase-mediated invasion of metastatic breast cancer cells. Int J Biol Macromol 2024; 277:134493. [PMID: 39111478 DOI: 10.1016/j.ijbiomac.2024.134493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024]
Abstract
In recent years, polymeric hydrogels have been employed to investigate cancer cell-extracellular matrix (ECM) interactions in vitro. In the context of breast cancer, cancer cells are known to degrade the ECM using matrix-metalloproteinases (MMPs) to support invasion resulting in disease progression. Polymeric hydrogels incorporating MMP-cleavable peptides have been employed to study cancer cell invasion, however, the approaches employed to incorporate these peptides often change other hydrogel properties. This underscores the need for decoupling hydrogel properties while incorporating MMP-cleavable peptides. Herein, we report structurally decoupled hyaluronic acid (HA) hydrogels formulated using varying ratios of a biologically sensitive MMP-cleavable peptide and an insensitive counterpart (Dithiothreitol (DTT) or polyethylene glycol dithiol (PEGDT)) to study MMP-mediated metastatic breast cancer cell invasion. Rheological, swelling ratio, estimated mesh size, and permeability measurements showed similar mechanical and physical properties for hydrogels crosslinked with different DTT (or PEGDT)/MMP ratios. However, their degradation rate in the presence of collagenase correlated with the ratio of MMP-cleavable peptide. Encapsulated metastatic breast cancer spheroids in HA hydrogels with MMP sensitivity exhibited increased invasiveness compared to those without MMP sensitivity after 14 days of culture. Overall, such structurally decoupled HA hydrogels provide a platform to study MMP-mediated breast cancer cell invasion in vitro.
Collapse
Affiliation(s)
- Kasra Goodarzi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
2
|
Cui X, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Li M, Zhang H, Chao B, Wang Z, Wu M. Advanced tumor organoid bioprinting strategy for oncology research. Mater Today Bio 2024; 28:101198. [PMID: 39205873 PMCID: PMC11357813 DOI: 10.1016/j.mtbio.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Bioprinting is a groundbreaking technology that enables precise distribution of cell-containing bioinks to construct organoid models that accurately reflect the characteristics of tumors in vivo. By incorporating different types of tumor cells into the bioink, the heterogeneity of tumors can be replicated, enabling studies to simulate real-life situations closely. Precise reproduction of the arrangement and interactions of tumor cells using bioprinting methods provides a more realistic representation of the tumor microenvironment. By mimicking the complexity of the tumor microenvironment, the growth patterns and diffusion of tumors can be demonstrated. This approach can also be used to evaluate the response of tumors to drugs, including drug permeability and cytotoxicity, and other characteristics. Therefore, organoid models can provide a more accurate oncology research and treatment simulation platform. This review summarizes the latest advancements in bioprinting to construct tumor organoid models. First, we describe the bioink used for tumor organoid model construction, followed by an introduction to various bioprinting methods for tumor model formation. Subsequently, we provide an overview of existing bioprinted tumor organoid models.
Collapse
Affiliation(s)
- Xiangran Cui
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| |
Collapse
|
3
|
Shen Z, Liu Z, Li M, Han L, Wang J, Wu X, Sang S. Effects of TET2-mediated methylation reconstruction on A2058 melanoma cell sensitivity to matrix stiffness in a 3D culture system. Exp Cell Res 2024; 442:114224. [PMID: 39187151 DOI: 10.1016/j.yexcr.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Matrix stiffness is a crucial factor in the tumor microenvironment, impacting tumor progression and development. TET2 is vital for epigenetic regulation in melanoma and is significantly reduced in advanced melanomas compared with nevi and thin melanomas. However, it is unclear how TET2 mediates the effect of matrix stiffness on melanoma cells. This study utilized A2058 cell lines and prepared different stiffness collagen hydrogels to evaluate TET2 overexpression (TET2OE) and mutant (TET2M) melanoma cells' activity, proliferation, and invasion. A2058 melanoma cells' viability and invasion decreased with increased matrix stiffness, with TET2OE cells experiencing a more significant impact than TET2M cells. Methylation analysis revealed that TET2 determines gene methylation levels, influencing cell-ECM interactions. Transcriptome analysis confirmed that TET2 promotes matrix stiffness's effect on melanoma cell fate. This research provides promising directions and opportunities for melanoma treatment.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan, 030809, China
| | - Xunwei Wu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China; Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China; Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
4
|
Wang Q, Wang Z, Zhang D, Gu J, Ma Y, Zhang Y, Chen J. Circular Patterns of Dynamic Covalent Hydrogels with Gradient Stiffness for Screening of the Stem Cell Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47461-47471. [PMID: 36240467 DOI: 10.1021/acsami.2c14924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As extracellular matrix (ECM) mimetic materials, hydrogels have been widely used for broad biomedical applications. However, with so many physical or chemical cues in the matrix that regulate cell behaviors or functions, it remains challenging to design a customizable hydrogel with the desired properties on demand. In the current study, we aim to establish a circular-patterned hydrogel model with gradient stiffness for screening the most favorable ECM environment for specific cells or certain application purposes. First, six types of hydrogels with a wide stiffness range of 1.2-28.9 kPa were prepared by dynamic covalent cross-linking between gelatin derivatives and oxidized hyaluronic acid. Taking advantage of their instantaneous self-healing property from dynamic chemistry, the hydrogels were further spliced into one whole piece of circular-patterned hydrogel. When rabbit bone marrow mesenchymal stem cells were seeded in the center, the influences of matrix stiffness on the regulation of stem cell adhesion, migration, and differentiation were directly observed and compared under one visual field. In addition, these hydrogels all possessed good biocompatibility, degradability, and injectability, showing great potential for tissue-engineering-related applications.
Collapse
Affiliation(s)
- Qimeng Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ziyan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Difei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
5
|
A three-dimensional electrochemical biosensor integrated with hydrogel for cells culture and lactate release monitoring. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Aydin A, Demirtas Z, Ok M, Erkus H, Cebi G, Uysal E, Gunduz O, Ustundag CB. 3D printing in the battle against COVID-19. EMERGENT MATERIALS 2021; 4:363-386. [PMID: 33585793 PMCID: PMC7868677 DOI: 10.1007/s42247-021-00164-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/12/2021] [Indexed: 05/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19) that is SARS-CoV-2, previously called 2019-nCoV, is a kind of human infectious disease caused by severe acute respiratory syndrome coronavirus. Based on the prompt increase of human infection rate, COVID-19 outbreak was distinguished as a pandemic by the World Health Organization (WHO). By 2020, COVID-19 becomes a major health problem all around the world. Due to the battle against COVID-19, there are some adversities that are encountered with. The most significant difficulty is the lack of equipment for the COVID-19 battle. Lately, there is not sufficient personal protective equipment (PPE) for hospital workers on the front lines in this terrifying time. All around the world, hospitals are overwhelmed by the volume of patients and the lack of personal protective equipment including face masks, gloves, eye protection and clothing. In addition, the lack of nasal swabs, which are necessary components, that are used for testing is another issue that is being faced. There are a small number of respirators, which are emergency devices that help patients breathe for a short period of time. To overcome the limited number of equipment available, the foremost solution can be 3D printing that allows three-dimensional renderings to be realized as physical objects with the use of a printer and that revolutionized prototyping. Low-cost desktop 3D printers allow economical 3D models and guides but have less quality approvals. 3D printing is already well integrated into the process of COVID-19 battle by manufacturing the equipment that are convenient. The goals of this review are to explore the techniques of 3D printing for the equipment that are used for COVID-19 battle and evaluate the materials that are used for manufacturing and the manufactured equipment. Lastly, the advantages and disadvantages of 3D printing are figured out.
Collapse
Affiliation(s)
- Ayca Aydin
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Zeynep Demirtas
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Merve Ok
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Huseyin Erkus
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Gizem Cebi
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Ebru Uysal
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
- Vocational School of Health Care Services, Istanbul Yeni Yuzyil University, 34010 Istanbul, Turkey
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|
7
|
Blanco‐Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003129. [PMID: 33643799 PMCID: PMC7887602 DOI: 10.1002/advs.202003129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Indexed: 05/14/2023]
Abstract
The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.
Collapse
Affiliation(s)
- Barbara Blanco‐Fernandez
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
- Materials Science and Metallurgical EngineeringPolytechnical University of Catalonia (UPC)Eduard Maristany 16Barcelona08019Spain
- CIBER en BioingenieríaBiomateriales y NanomedicinaCIBER‐BBNMadrid28029Spain
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
8
|
Zhang J, Zhou L, Du Q, Shen Z, Hu J, Zhang Y. Assembly of peptides in mica-graphene nanocapillaries controlled by confined water. NANOSCALE 2019; 11:8210-8218. [PMID: 30973561 DOI: 10.1039/c9nr01092k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water in nanoscale-confined geometries has unique physicochemical properties in contrast to bulk water, and is believed to play important roles in biological processes although there is less direct information available in the literature. Here, we report the self-assembly behaviors of a neurodegenerative disease related peptide termed GAV-9 encapsulated in mica-graphene nanocapillaries interacting with water nanofilms condensed under ambient conditions, based on atomic force microscopy (AFM) imaging and molecular dynamics (MD) simulations. The results revealed that, upon increase in the humidity, the GAV-9 peptide monomers adsorbed the confined water molecules and transitioned to unexpected hydrogel-like structures. Our MD simulations also suggested that in the confined mica-graphene nanocapillaries, the GAV-9 peptide monomers would indeed form water-rich hydrogel structures instead of highly ordered nanofilaments. The interfacial water confined in the mica-graphene nanocapillary is found to be crucial for such a transition. Moreover, the distribution of confined water layers largely depended on the locations of the preformed peptide nanofilaments, and the peptide nanofilaments further assembled into nanosheets with the water layer increasing, but depolymerized to amorphous peptide assemblies with the water layer decreasing. The polymerization and depolymerization of the peptide nanofilaments could be controlled in a reversible manner. Our results have supplied a simplified model system to uncover the effects of the confined interfacial water on the biological process at the molecular level.
Collapse
Affiliation(s)
- Jinjin Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | | | | | | | | | | |
Collapse
|
9
|
Lee DS, Kang JI, Hwang BH, Park KM. Interpenetrating Polymer Network Hydrogels of Gelatin and Poly(ethylene glycol) as an Engineered 3D Tumor Microenvironment. Macromol Res 2019. [DOI: 10.1007/s13233-019-7072-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Murphy RD, Kimmins S, Hibbitts AJ, Heise A. 3D-extrusion printing of stable constructs composed of photoresponsive polypeptide hydrogels. Polym Chem 2019. [DOI: 10.1039/c9py00796b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Printing of novel linear polypeptide hydrogel bioinks and stabilisation of structures by post-printing UV-triggered crosslinking through catalyst free thiol–yne click chemistry of cysteine and propiolated 4-arm PEG.
Collapse
Affiliation(s)
- Robert D. Murphy
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | - Scott Kimmins
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
- Institute for Biological and Medical Engineering
| | - Alan J. Hibbitts
- Tissue Engineering Research Group
- Department of Anatomy
- Royal College of Surgeons in Ireland
- Dublin
- Ireland
| | - Andreas Heise
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI and TCD
| |
Collapse
|
11
|
Li Y, Kumacheva E. Hydrogel microenvironments for cancer spheroid growth and drug screening. SCIENCE ADVANCES 2018; 4:eaas8998. [PMID: 29719868 PMCID: PMC5922799 DOI: 10.1126/sciadv.aas8998] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 05/06/2023]
Abstract
Multicellular cancer spheroids (MCSs) have emerged as a promising in vitro model that replicates many features of solid tumors in vivo. Biomimetic hydrogel scaffolds for MCS growth offer a broad spectrum of biophysical and biochemical cues that help to recapitulate the behavior of natural extracellular matrix, essential for regulating cancer cell behavior. This perspective highlights recent advances in the development of hydrogel environments for MCS growth, release, and drug screening. We review the use of different types of hydrogels for MCS growth, the effect of biophysical and biochemical cues on MCS fate, the isolation of MCSs from hydrogel scaffolds, the utilization of microtechnologies, and the applications of MCSs grown in hydrogels. We conclude with the discussion of new research directions in the development of hydrogels for MCS growth.
Collapse
Affiliation(s)
- Yunfeng Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
- Corresponding author.
| |
Collapse
|
12
|
Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm 2017; 532:313-317. [DOI: 10.1016/j.ijpharm.2017.09.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022]
|
13
|
Wei Z, Lewis DM, Xu Y, Gerecht S. Dual Cross-Linked Biofunctional and Self-Healing Networks to Generate User-Defined Modular Gradient Hydrogel Constructs. Adv Healthc Mater 2017; 6. [PMID: 28544647 DOI: 10.1002/adhm.201700523] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 12/22/2022]
Abstract
Gradient hydrogels have been developed to mimic the spatiotemporal differences of multiple gradient cues in tissues. Current approaches used to generate such hydrogels are restricted to a single gradient shape and distribution. Here, a hydrogel is designed that includes two chemical cross-linking networks, biofunctional, and self-healing networks, enabling the customizable formation of modular gradient hydrogel construct with various gradient distributions and flexible shapes. The biofunctional networks are formed via Michael addition between the acrylates of oxidized acrylated hyaluronic acid (OAHA) and the dithiol of matrix metalloproteinase (MMP)-sensitive cross-linker and RGD peptides. The self-healing networks are formed via dynamic Schiff base reaction between N-carboxyethyl chitosan (CEC) and OAHA, which drives the modular gradient units to self-heal into an integral modular gradient hydrogel. The CEC-OAHA-MMP hydrogel exhibits excellent flowability at 37 °C under shear stress, enabling its injection to generate gradient distributions and shapes. Furthermore, encapsulated sarcoma cells respond to the gradient cues of RGD peptides and MMP-sensitive cross-linkers in the hydrogel. With these superior properties, the dual cross-linked CEC-OAHA-MMP hydrogel holds significant potential for generating customizable gradient hydrogel constructs, to study and guide cellular responses to their microenvironment such as in tumor mimicking, tissue engineering, and stem cell differentiation and morphogenesis.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering; The Institute for NanoBioTechnology; Physical-Sciences Oncology Center; Johns Hopkins University; Baltimore MD 21218 USA
| | - Daniel M. Lewis
- Department of Chemical and Biomolecular Engineering; The Institute for NanoBioTechnology; Physical-Sciences Oncology Center; Johns Hopkins University; Baltimore MD 21218 USA
| | - Yu Xu
- Department of Chemical and Biomolecular Engineering; The Institute for NanoBioTechnology; Physical-Sciences Oncology Center; Johns Hopkins University; Baltimore MD 21218 USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering; The Institute for NanoBioTechnology; Physical-Sciences Oncology Center; Johns Hopkins University; Baltimore MD 21218 USA
- Department of Materials Science and Engineering; Johns Hopkins University; Baltimore MD 21218 USA
| |
Collapse
|
14
|
Abstract
Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.
Collapse
Affiliation(s)
- Murat Guvendiren
- New Jersey Center for Biomaterials, Rutgers—The State University of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Joseph Molde
- New Jersey Center for Biomaterials, Rutgers—The State University of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Rosane M.D. Soares
- Laboratório de Biomateriais Poliméricos (Poli-Bio), Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçaves, 9500, 91501-970 Porto Alegre, Brazil
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers—The State University of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Rankin KS, Frankel D. Hyaluronan in cancer - from the naked mole rat to nanoparticle therapy. SOFT MATTER 2016; 12:3841-8. [PMID: 27079782 DOI: 10.1039/c6sm00513f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyaluronan, a glycosaminoglycan, abundant in the tumour microenvironment, is a key player in many processes associated with cancer. Recently the cancer resistance of the naked mole rat has been attributed to the presence of an ultra-high molecular weight form of this molecule. The physical properties of this multifunctional biopolymer have been extensively studied in the context of synovial joints. However, relatively little has been reported with regard to the soft matter properties of hyaluronan in relation to cancer. In this review we examine the role of hyaluronan in cancer, paying particular attention to its mechanical interactions with malignant cells and its soft matter properties. In addition we discuss the use of hyaluronan based gels to study cancer invasion as well as nanoparticle based strategies for disease treatment.
Collapse
Affiliation(s)
- Kenneth S Rankin
- Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
16
|
Bi X, Liang A, Tan Y, Maturavongsadit P, Higginbothem A, Gado T, Gramling A, Bahn H, Wang Q. Thiol-ene crosslinking polyamidoamine dendrimer-hyaluronic acid hydrogel system for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:743-57. [DOI: 10.1080/09205063.2016.1159473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|