1
|
ElBakry HA, Ammar MM, Moussa TA. Effect of nanodiamonds surface deposition on hydrophilicity, bulk degradation and in-vitrocell adhesion of 3D-printed polycaprolactone scaffolds for bone tissue engineering. Biomed Mater 2024; 19:055016. [PMID: 38917826 DOI: 10.1088/1748-605x/ad5bac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
This study was designed to deposit nanodiamonds (NDs) on 3D-printed poly-ϵ-caprolactone (PCL) scaffolds and evaluate their effect on the surface topography, hydrophilicity, degradation, andin-vitrocell adhesion compared to untreated PCL scaffolds. The PCL scaffold specimens were 3D-printed by fused deposition modeling (FDM) technique with specific porosity parameters. The 3D-printed specimens' surfaces were modified by NDs deposition followed by oxygen plasma post-treatment using a plasma focus device and a non-thermal atmospheric plasma jet, respectively. Specimens were evaluated through morphological characterization by field emission scanning electron microscope (FESEM), microstructure characterization by Raman spectroscopy, chemical characterization by Fourier transform infrared (FTIR) spectroscopy, hydrophilicity degree by contact angle and water uptake measurements, andin-vitrodegradation measurements (n= 6). In addition,in-vitrobone marrow mesenchymal stem cells adhesion was evaluated quantitatively by confocal microscopy and qualitatively by FESEM at different time intervals after cell seeding (n= 6). The statistical significance level was set atp⩽ 0.05. The FESEM micrographs, the Raman, and FTIR spectra confirmed the successful surface deposition of NDs on scaffold specimens. The NDs treated specimens showed nano-scale features distributed homogeneously across the surface compared to the untreated ones. Also, the NDs treated specimens revealed a statistically significant smaller contact angle (17.45 ± 1.34 degrees), higher water uptake percentage after 24 h immersion in phosphate buffer saline (PBS) (21.56% ± 1.73), and higher degradation rate after six months of immersion in PBS (43.92 ± 0.77%). Moreover, enhanced cell adhesion at all different time intervals was observed in NDs treated specimens with higher nuclei area fraction percentage (69.87 ± 3.97%) compared to the untreated specimens (11.46 ± 1.34%). Surface deposition of NDs with oxygen-containing functional groups on 3D-printed PCL scaffolds increased their hydrophilicity and degradation rate with significant enhancement of thein-vitrocell adhesion compared to untreated PCL scaffolds.
Collapse
Affiliation(s)
- Hadiah A ElBakry
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Biomaterials Department, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed M Ammar
- Biomaterials Department, Faculty of oral and dental medicine, Future University in Egypt, Cairo, Egypt
| | - Taheya A Moussa
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Bhattacharjee P, Madden PW, Patriarca E, Ahearne M. Optimization and evaluation of oxygen-plasma-modified, aligned, poly (Є-caprolactone) and silk fibroin nanofibrous scaffold for corneal stromal regeneration. BIOMATERIALS AND BIOSYSTEMS 2023; 12:100083. [PMID: 37731910 PMCID: PMC10507194 DOI: 10.1016/j.bbiosy.2023.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
The shortage of human donor corneas for transplantation necessitates the exploration of tissue engineering approaches to develop corneal substitutes. However, these substitutes must possess the necessary strength, transparency, and ability to regulate cell behaviour before they can be used in patients. In this study, we investigated the effectiveness of an oxygen plasma surface-modified poly-ε-caprolactone (PCL) combined with silk fibroin (SF) nanofibrous scaffold for corneal stromal regeneration. To fabricate the electrospun scaffolds, PCL and SF blends were used on a rotating mandrel. The optimization of the blend aimed to replicate the structural and functional properties of the human cornea, focusing on nanofibre alignment, mechanical characteristics, and in vitro cytocompatibility with human corneal stromal keratocytes. Surface modification of the scaffold resulted in improved transparency and enhanced cell interaction. Based on the evaluation, a composite nanofibrous scaffold with a 1:1 blend of PCL and SF was selected for a more comprehensive analysis. The biological response of keratocytes to the scaffold was assessed through cellular adhesion, proliferation, cytoskeletal organization, gene expression, and immunocytochemical staining. The scaffold facilitated the adhesion of corneal stromal cells, supporting cell proliferation, maintaining normal cytoskeletal organization, and promoting increased expression of genes associated with healthy corneal stromal keratocytes. These findings highlight the potential of a surface-modified PCL/SF blend (1:1) as a promising scaffolding material for corneal stromal regeneration. The developed scaffold not only demonstrated favourable biological interactions with corneal stromal cells but also exhibited characteristics aligned with the requirements for successful corneal tissue engineering. Further research and refinement of these constructs could lead to significant advancements in addressing the shortage of corneas for transplantation, ultimately improving the treatment outcomes for patients in need.
Collapse
Affiliation(s)
- Promita Bhattacharjee
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Peter W. Madden
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Enzo Patriarca
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Mejía Suaza ML, Leos Rivera JC, Rodríguez Padilla MC, Moncada Acevedo ME, Ossa Orozco CP, Zarate Triviño DG. Poly(vinyl alcohol)/Silk Fibroin/Ag-NPs Composite Nanofibers as a Substrate for MG-63 Cells' Growth. Polymers (Basel) 2023; 15:polym15081838. [PMID: 37111985 PMCID: PMC10144439 DOI: 10.3390/polym15081838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
Nanofiber scaffolds of polyvinyl alcohol, silk fibroin from Bombyx mori cocoons, and silver nanoparticles were developed as a substrate for MG-63 growth. The fiber morphology, mechanical properties, thermal degradation, chemical composition, and water contact angle were investigated. In vitro tests were performed by the cell viability MTS test of MG-63 cells on electrospun PVA scaffolds, mineralization was analyzed by alizarin red, and the alkaline phosphatase (ALP) assay was evaluated. At higher PVA concentrations, Young's modulus (E) increased. The addition of fibroin and silver nanoparticles improved the thermal stability of PVA scaffolds. FTIR spectra indicated characteristic absorption peaks related to the chemical structures of PVA, fibroin, and Ag-NPs, demonstrating good interactions between them. The contact angle of the PVA scaffolds decreased with the incorporation of fibroin and showed hydrophilic characteristics. In all concentrations, MG-63 cells on PVA/fibroin/Ag-NPs scaffolds had higher cell viability than PVA pristine. On day ten of culture, PVA18/SF/Ag-NPs showed the highest mineralization, observed by the alizarin red test. PVA10/SF/Ag-NPs presented the highest alkaline phosphatase activity after an incubation time of 37 h. The achievements indicate the potential of the nanofibers of PVA18/SF/Ag-NPs as a possible substitute for bone tissue engineering (BTE).
Collapse
Affiliation(s)
- Monica L Mejía Suaza
- Advanced Materials and Energy (MATyER) Research Group, Faculty of Engineering, Metropolitan Technological Institute (ITM), Medellin 050012, Colombia
| | - Jennifer C Leos Rivera
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey 64000, Mexico
| | - Maria C Rodríguez Padilla
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey 64000, Mexico
| | - Maria E Moncada Acevedo
- Advanced Materials and Energy (MATyER) Research Group, Faculty of Engineering, Metropolitan Technological Institute (ITM), Medellin 050012, Colombia
| | - Claudia P Ossa Orozco
- Biomaterials Research Group, Faculty of Engineering, University of Antioquia, Medellin 050010, Colombia
| | - Diana G Zarate Triviño
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey 64000, Mexico
| |
Collapse
|
4
|
Scaffaro R, Settanni L, Gulino EF. Release Profiles of Carvacrol or Chlorhexidine of PLA/Graphene Nanoplatelets Membranes Prepared Using Electrospinning and Solution Blow Spinning: A Comparative Study. Molecules 2023; 28:molecules28041967. [PMID: 36838955 PMCID: PMC9962789 DOI: 10.3390/molecules28041967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Nanofibrous membranes are often the core components used to produce devices for a controlled release and are frequently prepared by electrospinning (ES). However, ES requires high production times and costs and is not easy to scale. Recently, solution blow spinning (SBS) has been proposed as an alternative technique for the production of nanofibrous membranes. In this study, a comparison between these two techniques is proposed. Poly (lactic acid)-based nanofibrous membranes were produced by electrospinning (ES) and solution blow spinning (SBS) in order to evaluate the different effect of liquid (carvacrol, CRV) or solid (chlorhexidine, CHX) molecules addition on the morphology, structural properties, and release behavior. The outcomes revealed that both ES and SBS nanofibrous mat allowed for obtaining a controlled release up to 500 h. In detail, the lower wettability of the SBS system allowed for slowing down the CRV release kinetics, compared to the one obtained for ES membranes. On the contrary, with SBS, a faster CHX release can be obtained due to its more hydrophilic behavior. Further, the addition of graphene nanoplatelets (GNP) led to a decrease in wettability and allowed for a slowing down of the release kinetics in the whole of the systems.
Collapse
Affiliation(s)
- Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, PA, Italy
- Correspondence: (R.S.); (E.F.G.)
| | - Luca Settanni
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, PA, Italy
| | - Emmanuel Fortunato Gulino
- Department of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, PA, Italy
- Correspondence: (R.S.); (E.F.G.)
| |
Collapse
|
5
|
Gu Z, Fan S, Kundu SC, Yao X, Zhang Y. Fiber diameters and parallel patterns: proliferation and osteogenesis of stem cells. Regen Biomater 2023; 10:rbad001. [PMID: 36726609 PMCID: PMC9887345 DOI: 10.1093/rb/rbad001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Due to the innate extracellular matrix mimicking features, fibrous materials exhibited great application potential in biomedicine. In developing excellent fibrous biomaterial, it is essential to reveal the corresponding inherent fiber features' effects on cell behaviors. Due to the inevitable 'interference' cell adhesions to the background or between adjacent fibers, it is difficult to precisely reveal the inherent fiber diameter effect on cell behaviors by using a traditional fiber mat. A single-layer and parallel-arranged polycaprolactone fiber pattern platform with an excellent non-fouling background is designed and constructed herein. In this unique material platform, the 'interference' cell adhesions through interspace between fibers to the environment could be effectively ruled out by the non-fouling background. The 'interference' cell adhesions between adjacent fibers could also be excluded from the sparsely arranged (SA) fiber patterns. The influence of fiber diameter on stem cell behaviors is precisely and comprehensively investigated based on eliminating the undesired 'interference' cell adhesions in a controllable way. On the SA fiber patterns, small diameter fiber (SA-D1, D1 means 1 μm in diameter) may seriously restrict cell proliferation and osteogenesis when compared to the middle (SA-D8) and large (SA-D56) ones and SA-D8 shows the optimal osteogenesis enhancement effect. At the same time, the cells present similar proliferation ability and even the highest osteogenic ability on the densely arranged (DA) fiber patterns with small diameter fiber (DA-D1) when compared to the middle (DA-D8) and large (DA-D56) ones. The 'interference' cell adhesion between adjacent fibers under dense fiber arrangement may be the main reason for inducing these different cell behavior trends along with fiber diameters. Related results and comparisons have illustrated the effects of fiber diameter on stem cell behaviors more precisely and objectively, thus providing valuable reference and guidance for developing effective fibrous biomaterials.
Collapse
Affiliation(s)
- Zhanghong Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Subhas C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
6
|
Cao Y, Sun L, Liu Z, Shen Z, Jia W, Hou P, Sang S. 3D printed-electrospun PCL/hydroxyapatite/MWCNTs scaffolds for the repair of subchondral bone. Regen Biomater 2022; 10:rbac104. [PMID: 36683741 PMCID: PMC9847519 DOI: 10.1093/rb/rbac104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Osteochondral defect caused by trauma or osteoarthritis exhibits a major challenge in clinical treatment with limited symptomatic effects at present. The regeneration and remodeling of subchondral bone play a positive effect on cartilage regeneration and further promotes the repair of osteochondral defects. Making use of the strengths of each preparation method, the combination of 3D printing and electrospinning is a promising method for designing and constructing multi-scale scaffolds that mimic the complexity and hierarchical structure of subchondral bone at the microscale and nanoscale, respectively. In this study, the 3D printed-electrospun poly(ɛ-caprolactone)/nano-hydroxyapatites/multi-walled carbon nanotubes (PCL/nHA/MWCNTs) scaffolds were successfully constructed by the combination of electrospinning and layer-by-layer 3D printing. The resulting dual-scale scaffold consisted of a dense layer of disordered nanospun fibers and a porous microscale 3D scaffold layer to support and promote the ingrowth of subchondral bone. Herein, the biomimetic PCL/nHA/MWCNTs scaffolds enhanced cell seeding efficiency and allowed for higher cell-cell interactions that supported the adhesion, proliferation, activity, morphology and subsequently improved the osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Together, this study elucidates that the construction of 3D printed-electrospun PCL/nHA/MWCNTs scaffolds provides an alternative strategy for the regeneration of subchondral bone and lays a foundation for subsequent in vivo studies.
Collapse
Affiliation(s)
- Yanyan Cao
- College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China,Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Wendan Jia
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Peiyi Hou
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | | |
Collapse
|
7
|
Dulnik J, Jeznach O, Sajkiewicz P. A Comparative Study of Three Approaches to Fibre's Surface Functionalization. J Funct Biomater 2022; 13:jfb13040272. [PMID: 36547532 PMCID: PMC9782664 DOI: 10.3390/jfb13040272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
Polyester-based scaffolds are of research interest for the regeneration of a wide spectrum of tissues. However, there is a need to improve scaffold wettability and introduce bioactivity. Surface modification is a widely studied approach for improving scaffold performance and maintaining appropriate bulk properties. In this study, three methods to functionalize the surface of the poly(lactide-co-ε-caprolactone) PLCL fibres using gelatin immobilisation were compared. Hydrolysis, oxygen plasma treatment, and aminolysis were chosen as activation methods to introduce carboxyl (-COOH) and amino (-NH2) functional groups on the surface before gelatin immobilisation. To covalently attach the gelatin, carbodiimide coupling was chosen for hydrolysed and plasma-treated materials, and glutaraldehyde crosslinking was used in the case of the aminolysed samples. Materials after physical entrapment of gelatin and immobilisation using carbodiimide coupling without previous activation were prepared as controls. The difference in gelatin amount on the surface, impact on the fibres morphology, molecular weight, and mechanical properties were observed depending on the type of modification and applied parameters of activation. It was shown that hydrolysis influences the surface of the material the most, whereas plasma treatment and aminolysis have an effect on the whole volume of the material. Despite this difference, bulk mechanical properties were affected for all the approaches. All materials were completely hydrophilic after functionalization. Cytotoxicity was not recognized for any of the samples. Gelatin immobilisation resulted in improved L929 cell morphology with the best effect for samples activated with hydrolysis and plasma treatment. Our study indicates that the use of any surface activation method should be limited to the lowest concentration/reaction time that enables subsequent satisfactory functionalization and the decision should be based on a specific function that the final scaffold material has to perform.
Collapse
|
8
|
Croft AS, Spessot E, Bhattacharjee P, Yang Y, Motta A, Wöltje M, Gantenbein B. Biomedical applications of silk and its role for intervertebral disc repair. JOR Spine 2022; 5:e1225. [PMID: 36601376 PMCID: PMC9799090 DOI: 10.1002/jsp2.1225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 12/30/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low back pain. To date, the present therapies mainly focus on treating the symptoms caused by IDD rather than addressing the problem itself. For this reason, researchers have searched for a suitable biomaterial to repair and/or regenerate the IVD. A promising candidate to fill this gap is silk, which has already been used as a biomaterial for many years. Therefore, this review aims first to elaborate on the different origins from which silk is harvested, the individual composition, and the characteristics of each silk type. Another goal is to enlighten why silk is so suitable as a biomaterial, discuss its functionalization, and how it could be used for tissue engineering purposes. The second part of this review aims to provide an overview of preclinical studies using silk-based biomaterials to repair the inner region of the IVD, the nucleus pulposus (NP), and the IVD's outer area, the annulus fibrosus (AF). Since the NP and the AF differ fundamentally in their structure, different therapeutic approaches are required. Consequently, silk-containing hydrogels have been used mainly to repair the NP, and silk-based scaffolds have been used for the AF. Although most preclinical studies have shown promising results in IVD-related repair and regeneration, their clinical transition is yet to come.
Collapse
Affiliation(s)
- Andreas S. Croft
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
| | - Promita Bhattacharjee
- Department of Chemical SciencesSSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of LimerickLimerickIreland
| | - Yuejiao Yang
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material TechnologyDresdenGermany
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
9
|
Agarwal A, Rao GK, Majumder S, Shandilya M, Rawat V, Purwar R, Verma M, Srivastava CM. Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech 2022; 12:92. [PMID: 35342680 PMCID: PMC8921418 DOI: 10.1007/s13205-022-03152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Electrospinning is an electrostatic fiber fabrication technique that operates by the application of a strong electric field on polymer solution or melts. It is used to fabricate fibers whose size lies in the range of few microns to the nanometer range. Historic development of electrospinning has evinced attention due to its outstanding attributes such as small diameter, excellent pore inter-connectivity, high porosity, and high surface-to-volume ratio. This review aims to highlight the theory behind electrospinning and the machine setup with a detailed discussion about the processing parameters. It discusses the latest innovations in natural protein-based electrospun nanofibers for health care applications. Various plant- and animal-based proteins have been discussed with detailed sample preparation and corresponding processing parameters. The usage of these electrospun nanofibers in regenerative medicine and drug delivery has also been discussed. Some technical innovations in electrospinning techniques such as emulsion electrospinning and coaxial electrospinning have been highlighted. Coaxial electrospun core-shell nanofibers have the potential to be utilized as an advanced nano-architecture for sustained release targeted delivery as well as for regenerative medicine. Healthcare applications of nanofibers formed via emulsion and coaxial electrospinning have been discussed briefly. Electrospun nanofibers have still much scope for commercialization on large scale. Some of the available wound-dressing materials have been discussed in brief.
Collapse
Affiliation(s)
- Anushka Agarwal
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Gyaneshwar K. Rao
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Sudip Majumder
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Varun Rawat
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Roli Purwar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, Delhi 110042 India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul, 130743 South Korea
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
- Centre for Polymer Technology, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| |
Collapse
|
10
|
Jeznach O, Kołbuk D, Marzec M, Bernasik A, Sajkiewicz P. Aminolysis as a surface functionalization method of aliphatic polyester nonwovens: impact on material properties and biological response. RSC Adv 2022; 12:11303-11317. [PMID: 35425046 PMCID: PMC8997583 DOI: 10.1039/d2ra00542e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 12/14/2022] Open
Abstract
Aminolysis treatment improves L929 cell–scaffold interaction. It is possible to reach compromise between the concentration of NH2 groups and mechanical properties change.
Collapse
Affiliation(s)
- Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
| | - Mateusz Marzec
- AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Cracow, Poland
| | - Andrzej Bernasik
- AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Cracow, Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Chen M, Qin J, Lu S, Zhang F, Zuo B. Robust Nanofiber Mats Exfoliated From Tussah Silk for Potential Biomedical Applications. Front Bioeng Biotechnol 2021; 9:746016. [PMID: 34926415 PMCID: PMC8677428 DOI: 10.3389/fbioe.2021.746016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Nanofibers as elements for bioscaffolds are pushing the development of tissue engineering. In this study, tussah silk was mechanically disintegrated into nanofibers dispersed in aqueous solution which was cast to generate tussah silk fibroin (TSF) nanofiber mats. The effect of treatment time on the morphology, structure, and mechanical properties of nanofiber mats was examined. SEM indicated decreasing diameter of the nanofiber with shearing time, and the diameter of the nanofiber was 139.7 nm after 30 min treatment. These nanofiber mats exhibited excellent mechanical properties; the breaking strength increased from 26.31 to 72.68 MPa with the decrease of fiber diameter from 196.5 to 139.7 nm. The particulate debris was observed on protease XIV degraded nanofiber mats, and the weight loss was greater than 10% after 30 days in vitro degradation. The cell compatibility experiment confirmed adhesion and spreading of NIH-3T3 cells and enhanced cell proliferation on TSF nanofiber mats compared to that on Bombyx mori silk nanofiber mats. In conclusion, results indicate that TSF nanofiber mats prepared in this study are mechanically robust, slow biodegradable, and biocompatible materials, and have promising application in regenerative medicine.
Collapse
Affiliation(s)
- Ming Chen
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, China
- College of Textile and Clothing Engineering, Soochow University, National Engineering Laboratory for Modern Silk, Suzhou, China
| | - Jianzhong Qin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- State Key Laboratory of Biotherapy, West China Hospital, West China Medicine School, Sichuan University, Chengdu, China
| | - Shijun Lu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, China
| | - Feng Zhang
- College of Textile and Clothing Engineering, Soochow University, National Engineering Laboratory for Modern Silk, Suzhou, China
| | - Baoqi Zuo
- College of Textile and Clothing Engineering, Soochow University, National Engineering Laboratory for Modern Silk, Suzhou, China
| |
Collapse
|
12
|
Naskar D, Sapru S, Ghosh AK, Reis RL, Dey T, Kundu SC. Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomed Mater 2021; 16. [PMID: 34428758 DOI: 10.1088/1748-605x/ac20a0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 01/27/2023]
Abstract
The emerging field of tissue engineering and regenerative medicines utilising artificial polymers is facing many problems. Despite having mechanical stability, non-toxicity and biodegradability, most of them lack cytocompatibility and biocompatibility. Natural polymers (such as collagen, hyaluronic acid, fibrin, fibroin, and others), including blends, are introduced to the field to solve some of the relevant issues. Another natural biopolymer: silkworm silk gained special attention primarily due to its specific biophysical, biochemical, and material properties, worldwide availability, and cost-effectiveness. Silk proteins, namely fibroin and sericin extracted from domesticated mulberry silkwormBombyx mori, are studied extensively in the last few decades for tissue engineering. Wild nonmulberry silkworm species, originated from India and other parts of the world, also produce silk proteins with variations in their nature and properties. Among the nonmulberry silkworm species,Antheraea mylitta(Indian Tropical Tasar),A. assamensis/A. assama(Indian Muga), andSamia ricini/Philosamia ricini(Indian Eri), along withA. pernyi(Chinese temperate Oak Tasar/Tussah) andA. yamamai(Japanese Oak Tasar) exhibit inherent tripeptide motifs of arginyl glycyl aspartic acid in their fibroin amino acid sequences, which support their candidacy as the potential biomaterials. Similarly, sericin isolated from such wild species delivers unique properties and is used as anti-apoptotic and growth-inducing factors in regenerative medicines. Other characteristics such as biodegradability, biocompatibility, and non-inflammatory nature make it suitable for tissue engineering and regenerative medicine based applications. A diverse range of matrices, including but not limited to nano-micro scale structures, nanofibres, thin films, hydrogels, and porous scaffolds, are prepared from the silk proteins (fibroins and sericins) for biomedical and tissue engineering research. This review aims to represent the progress made in medical and non-medical applications in the last couple of years and depict the present status of the investigations on Indian nonmulberry silk-based matrices as a particular reference due to its remarkable potentiality of regeneration of different types of tissues. It also discusses the future perspective in tissue engineering and regenerative medicines in the context of developing cutting-edge techniques such as 3D printing/bioprinting, microfluidics, organ-on-a-chip, and other electronics, optical and thermal property-based applications.
Collapse
Affiliation(s)
- Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Sunaina Sapru
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, IL, Israel
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| |
Collapse
|
13
|
Saremi J, Khanmohammadi M, Azami M, Ai J, Yousefi-Ahmadipour A, Ebrahimi-Barough S. Tissue-engineered nerve graft using silk-fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles. J Biomed Mater Res A 2021; 109:1588-1599. [PMID: 33634587 DOI: 10.1002/jbm.a.37153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
The main aim of this study was to evaluate the efficacy of cerium oxide nanoparticles (CNPs) encapsulated in fabricated hybrid silk-fibroin (SF)/polycaprolactone (PCL) nanofibers as an artificial neural guidance conduit (NGC) applicable for peripheral nerve regeneration. The NGC was prepared by PCL and SF filled with CNPs. The mechanical properties, contact angle, and cell biocompatibility experiments showed that the optimized concentration of CNPs inside SF and SF/PCL wall of conduits was 1% (wt/wt). The SEM image analysis showed the nanoscale texture of the scaffold in different topologies depend on composition with fiber diameters at about 351 ± 54 nm and 420 ± 73 nm respectively for CNPs + SF and CNPs + SF/PCL fibrous mats. Furthermore, contact angle measurement confirmed the hydrophilic behavior of the membranes, ascribable to the SF content and surface modification through modified methanol treatment. The balance of morphological and biochemical properties of hybrid CNPs 1% (wt/wt) + SF/PCL construct improves cell adhesion and proliferation in comparison with lower concentrations of CNPs in nanofibrous scaffolds. The release of CNPs 1% (wt/wt) from both CNPs + SF and CNPs+ SF/PCL fibrous mats was highly controlled and very slow during the extended time of incubation until 60 days. Fabricated double-layered NGC using CNPs + SF and CNPs + SF/PCL fibers was consistent for application in nervous tissue engineering and regenerative medicine from a structural and biocompatible perspective.
Collapse
Affiliation(s)
- Jamileh Saremi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Siddiqui N, Kishori B, Rao S, Anjum M, Hemanth V, Das S, Jabbari E. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Mol Biotechnol 2021; 63:363-388. [PMID: 33689142 DOI: 10.1007/s12033-021-00311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 01/17/2023]
Abstract
Regeneration of bone tissue requires novel load bearing, biocompatible materials that support adhesion, spreading, proliferation, differentiation, mineralization, ECM production and maturation of bone-forming cells. Polycaprolactone (PCL) has many advantages as a biomaterial for scaffold production including tuneable biodegradation, relatively high mechanical toughness at physiological temperature. Electrospinning produces nanofibrous porous matrices that mimic many properties of natural tissue extracellular matrix with regard to surface area, porosity and fibre alignment. The biocompatibility and hydrophilicity of PCL nanofibres can be improved by combining PCL with other biomaterials to form composite scaffolds for bone regeneration. This work reviews the most recent research on synthesis, characterization and cellular response to nanofibrous PCL scaffolds and the composites of PCL with other natural and synthetic materials for bone tissue engineering.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India.
| | - Braja Kishori
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Saranya Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Mohammad Anjum
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Venkata Hemanth
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Swati Das
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
15
|
Jitpibull J, Tangjit N, Dechkunakorn S, Anuwongnukroh N, Srikhirin T, Vongsetskul T, Sritanaudomchai H. Effect of surface chemistry-modified polycaprolactone scaffolds on osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Eur J Oral Sci 2021; 129:e12766. [PMID: 33667016 DOI: 10.1111/eos.12766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the effect of surface modification of a polycaprolactone scaffold on promoting osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Four different polycaprolactone scaffold were evaluated: untreated; coated with hyaluronic acid; coated with gelatin; and coated with hyaluronic acid and then with gelatin. The resulting scaffolds were characterized using scanning electron microscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Human stem cells were cultured on the modified scaffolds placed in osteogenic differentiation medium. During culture, the osteogenic potential of the stem cells was examined by evaluating alkaline phosphatase activity and staining intensity, expression of osteoblastic-specific genes, and matrix mineralization. Scanning electron microscopy and ATR-FTIR confirmed productive biomacromolecular surface treatment of the polycaprolactone scaffold. All scaffolds permitted differentiation of stem cells into osteoblastic cells, but the gelatin-coated polycaprolactone scaffold facilitated osteogenesis of a larger number of stem cells than the untreated and the hyaluronic acid-coated scaffolds. We demonstrate that gelatin is an appropriate macromolecule for modifying the surface of an electrospun polycaprolactone fibre scaffold that is used subsequently in bone tissue engineering applications.
Collapse
Affiliation(s)
- Jirasak Jitpibull
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nathaphon Tangjit
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Surachai Dechkunakorn
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Niwat Anuwongnukroh
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Toemsak Srikhirin
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thammasit Vongsetskul
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
16
|
Niemczyk-Soczynska B, Gradys A, Sajkiewicz P. Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering. Polymers (Basel) 2020; 12:E2636. [PMID: 33182617 PMCID: PMC7697875 DOI: 10.3390/polym12112636] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Electrospun polymer nanofibers have received much attention in tissue engineering due to their valuable properties such as biocompatibility, biodegradation ability, appropriate mechanical properties, and, most importantly, fibrous structure, which resembles the morphology of extracellular matrix (ECM) proteins. However, they are usually hydrophobic and suffer from a lack of bioactive molecules, which provide good cell adhesion to the scaffold surface. Post-electrospinning surface functionalization allows overcoming these limitations through polar groups covalent incorporation to the fibers surface, with subsequent functionalization with biologically active molecules or direct deposition of the biomolecule solution. Hydrophilic surface functionalization methods are classified into chemical approaches, including wet chemical functionalization and covalent grafting, a physiochemical approach with the use of a plasma treatment, and a physical approach that might be divided into physical adsorption and layer-by-layer assembly. This review discusses the state-of-the-art of hydrophilic surface functionalization strategies of electrospun nanofibers for tissue engineering applications. We highlighted the major advantages and drawbacks of each method, at the same time, pointing out future perspectives and solutions in the hydrophilic functionalization strategies.
Collapse
Affiliation(s)
- Beata Niemczyk-Soczynska
- Institute of Fundamental Technological Research, Lab. Polymers & Biomaterials, Polish Academy of Sciences Pawinskiego 5b St., 02-106 Warsaw, Poland; (A.G.); (P.S.)
| | | | | |
Collapse
|
17
|
Vigneswari S, Chai JM, Kamarudin KH, Amirul AAA, Focarete ML, Ramakrishna S. Elucidating the Surface Functionality of Biomimetic RGD Peptides Immobilized on Nano-P(3HB- co-4HB) for H9c2 Myoblast Cell Proliferation. Front Bioeng Biotechnol 2020; 8:567693. [PMID: 33195129 PMCID: PMC7653028 DOI: 10.3389/fbioe.2020.567693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct.
Collapse
Affiliation(s)
- Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jun Meng Chai
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Khadijah Hilmun Kamarudin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, George Town, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Maria Letizia Focarete
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Jang HY, Shin JY, Oh SH, Byun JH, Lee JH. PCL/HA Hybrid Microspheres for Effective Osteogenic Differentiation and Bone Regeneration. ACS Biomater Sci Eng 2020; 6:5172-5180. [PMID: 33455267 DOI: 10.1021/acsbiomaterials.0c00550] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this study is to develop a bioactive bone graft based on polycaprolactone (PCL, synthetic polymer; used in clinical practices as a grafting material for craniofacial bone defects) and hyaluronic acid (HA, bioactive natural polymer; known as a promoting substance for bone regeneration) that would be fabricated by clinically available procedures (mild condition without toxic chemicals) and provide bioactivity for sufficient period, and thus effectively induce bone reconstruction. For this, PCL/HA hybrid microspheres were produced by a spray-precipitation technique using clinically adapted solvents. The HA was stably and evenly entrapped in the PCL/HA hybrid microspheres. It was demonstrated that the PCL/HA hybrid microspheres provide an appropriate environment for proliferation and osteogenic differentiation of human periosteum-derived cells (hPDCs) (in vitro) and allow significantly enhanced bone regeneration (in vivo) compared with PCL microspheres without HA. The PCL/HA hybrid microspheres can be a simple but clinically applicable bioactive bone graft for large-sized bone defects.
Collapse
Affiliation(s)
- Hee Yun Jang
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Jun Yung Shin
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| |
Collapse
|
19
|
Batra R, Purwar R. Deduction of a facile method to construct
Antheraea mylitta
silk fibroin/gelatin blend films for prospective biomedical applications. POLYM INT 2020. [DOI: 10.1002/pi.6087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Radhika Batra
- Department of Applied Chemistry Delhi Technological University New Delhi India
| | - Roli Purwar
- Department of Applied Chemistry Delhi Technological University New Delhi India
| |
Collapse
|
20
|
Mahato A, Sandy Z, Bysakh S, Hupa L, Das I, Bhattacharjee P, Kundu B, De G, Nandi SK, Vallittu P, Balla VK, Bhattacharya M. Development of nano-porous hydroxyapatite coated e-glass for potential bone-tissue engineering application: An in vitro approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110764. [PMID: 32279774 DOI: 10.1016/j.msec.2020.110764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/29/2023]
Abstract
To reconstruct the defects caused by craniectomies autologous, bone grafting was usually used, but they failed most commonly due to bone resorption, infections and donor-site morbidity. In the present investigation, an effort has been made for the first time to check the feasibility and advantage of using hydroxyapatite (HAp) coated e-glass as component of bone implants. Sol-gel synthesized coatings were found to be purely hydroxyapatite from XRD with graded and interconnected pores all over the surface observable in TEM. The interconnected porous nature of ceramics are found to increase bioactivity by acting to up-regulate the process of osseointegration through enhanced nutrient transfer and induction of angiogenesis. From TEM studies and nano indentation studies, we have shown that pores were considered to be appropriate for nutrient supply without compromising the strength of sample while in contact with physiological fluid. After SBF immersion test, porous surface was found to be useful for nucleation of apatite crystals, hence increasing the feasibility and bioactivity of sample. However, our quasi-dynamic study showed less crystallization but had significant formation of apatite layer. Overall, the in vitro analyses show that HAp coated e-glass leads to significant improvement of implant properties in terms of biocompatibility, cell viability and proliferation, osteoinductivity and osteoconductivity. HAp coating of e-glass can potentially be utilized in fabricating durable and strong bioactive non-metallic implants and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Arnab Mahato
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | - Zhang Sandy
- Process Chemistry Centre, ÅboAkademi University, Finland
| | - Sandip Bysakh
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | - Leena Hupa
- Process Chemistry Centre, ÅboAkademi University, Finland
| | - Indranee Das
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | | | - Biswanath Kundu
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India.
| | - Goutam De
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences (WBUAFS), Kolkata, India
| | - Pekka Vallittu
- Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland
| | - Vamsi K Balla
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | | |
Collapse
|
21
|
Potential for combined delivery of riboflavin and all-trans retinoic acid, from silk fibroin for corneal bioengineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110093. [DOI: 10.1016/j.msec.2019.110093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
|
22
|
Jeznach O, Kolbuk D, Sajkiewicz P. Aminolysis of Various Aliphatic Polyesters in a Form of Nanofibers and Films. Polymers (Basel) 2019; 11:E1669. [PMID: 31614975 PMCID: PMC6835534 DOI: 10.3390/polym11101669] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Surface functionalization of polymer scaffolds is a method used to improve interactions of materials with cells. A frequently used method for polyesters is aminolysis reaction, which introduces free amine groups on the surface. In this study, nanofibrous scaffolds and films of three different polyesters-polycaprolactone (PCL), poly(lactide-co-caprolactone) (PLCL), and poly(l-lactide) (PLLA) were subjected to this type of surface modification under the same conditions. Efficiency of aminolysis was evaluated on the basis of ninhydrin tests and ATR-FTIR spectroscopy. Also, impact of this treatment on the mechanical properties, crystallinity, and wettability of polyesters was compared and discussed from the perspective of aminolysis efficiency. It was shown that aminolysis is less efficient in the case of nanofibers, particularly for PCL nanofibers. Our hypothesis based on the fundamentals of classical high speed spinning process is that the lower efficiency of aminolysis in the case of nanofibers is associated with the radial distribution of crystallinity of electrospun fiber with more crystalline skin, strongly inhibiting the reaction. Moreover, the water contact angle results demonstrate that the effect of free amino groups on wettability is very different depending on the type and the form of polymer. The results of this study can help to understand fundamentals of aminolysis-based surface modification.
Collapse
Affiliation(s)
- Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| |
Collapse
|
23
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1102-1124. [DOI: 10.1016/j.msec.2018.10.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/19/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
|
25
|
Abdal-ha A, Hamlet S, Ivanovski S. Fabrication of a thick three-dimensional scaffold with an open cellular-like structure using airbrushing and thermal cross-linking of molded short nanofibers. Biofabrication 2018; 11:015006. [DOI: 10.1088/1758-5090/aae421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:49-78. [DOI: 10.1007/978-981-13-0950-2_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Roy T, Maity PP, Rameshbabu AP, Das B, John A, Dutta A, Ghorai SK, Chattopadhyay S, Dhara S. Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications. Bioengineering (Basel) 2018; 5:E68. [PMID: 30134543 PMCID: PMC6164798 DOI: 10.3390/bioengineering5030068] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and 'nature's wonder' biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions' stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer.
Collapse
Affiliation(s)
- Trina Roy
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Priti Prasanna Maity
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Bodhisatwa Das
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Athira John
- Centre for Biopolymer Science and Technology (CBPST), CIPET, Kochi, Kerala 683501, India.
| | - Abir Dutta
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Sanjoy Kumar Ghorai
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Santanu Chattopadhyay
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
28
|
Li W, Cicek N, Levin DB, Liu S. Enabling electrospinning of medium-chain length polyhydroxyalkanoates (PHAs) by blending with short-chain length PHAs. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1466136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei Li
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - David B. Levin
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Song Liu
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
29
|
Khosravi A, Ghasemi-Mobarakeh L, Mollahosseini H, Ajalloueian F, Masoudi Rad M, Norouzi MR, Sami Jokandan M, Khoddami A, Chronakis IS. Immobilization of silk fibroin on the surface of PCL nanofibrous scaffolds for tissue engineering applications. J Appl Polym Sci 2018. [DOI: 10.1002/app.46684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alireza Khosravi
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Hossein Mollahosseini
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Fatemeh Ajalloueian
- Nano-BioScience Research Group; DTU-Food, Technical University of Denmark, Kemitorvet B202; 2800 Kgs, Lyngby Denmark
| | - Maryam Masoudi Rad
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Mohammad-Reza Norouzi
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Maryam Sami Jokandan
- Nano-BioScience Research Group; DTU-Food, Technical University of Denmark, Kemitorvet B202; 2800 Kgs, Lyngby Denmark
| | - Akbar Khoddami
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Ioannis S. Chronakis
- Nano-BioScience Research Group; DTU-Food, Technical University of Denmark, Kemitorvet B202; 2800 Kgs, Lyngby Denmark
| |
Collapse
|
30
|
Jafari H, Shahrousvand M, Kaffashi B. Reinforced Poly(ε-caprolactone) Bimodal Foams via Phospho-Calcified Cellulose Nanowhisker for Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Biomater Sci Eng 2018; 4:2484-2493. [DOI: 10.1021/acsbiomaterials.7b01020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hafez Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Enghelab Avenue, Tehran, 1417613131, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran
| | - Babak Kaffashi
- School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Enghelab Avenue, Tehran, 1417613131, Iran
| |
Collapse
|
31
|
Processing, structure, property relationships and release kinetics of electrospun PLA/Carvacrol membranes. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Wang Y, Gao Y, Xu G, Liu H, Xiang Y, Cui W. Accelerated fabrication of antibacterial and osteoinductive electrospun fibrous scaffolds via electrochemical deposition. RSC Adv 2018; 8:9546-9554. [PMID: 35541841 PMCID: PMC9078676 DOI: 10.1039/c8ra01011k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
Electrospun fibrous scaffolds have attracted much research interest due to their many applications in orthopedics and other relevant fields. However, poor surface bioactivity of the polymer scaffold body significantly limits the implementation of many potential applications, and an effective solution remains a great challenge for researchers. Herein, a highly efficient method, namely pulsed electrochemical deposition (ED) with co-electrospinning nano-Ag dopant, to fabricate poly(l-lactic acid) (PLLA)/nano-Ag composite fibers is presented. The resulting product demonstrated excellent antibacterial properties, as well as strong capabilities in facilitating the precipitation of calcium phosphate crystals at fiber surfaces and in promoting osteogenic differentiation. In the process of ED, the conductivity of the fibers was observed to increase due to the nano-Ag dopant. Upon applying pulse signals when charging, water electrolysis occurred in micro-reactive regions of anodic fibers, forming OH-, an alkaline environment that allowed the supersaturation of calcium phosphate. When discharging, the calcium phosphate in the solution diffused rapidly and reduced the concentration polarization, reforming a homogeneous electrolyte. The realization of efficient bioactive coatings at fiber surfaces was achieved in a highly efficient manner by repeating the above charging and discharging processes. Therefore, ED can be adopted to simplify and accelerate the fabrication process of an osteogenetic and antibacterial electrospun fibrous scaffold.
Collapse
Affiliation(s)
- Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University 102 Xinyi Road Urumqi 830054 China (+86) 09914333279 (+86) 09914333279
| | - Ya Gao
- College of Chemical Engineering, Xinjiang Normal University 102 Xinyi Road Urumqi 830054 China (+86) 09914333279 (+86) 09914333279
| | - Guoqiang Xu
- Department of Prosthodontics, The First Affiliated Hospital of Xinjiang Medical University 393 Xinyi Road Urumqi 830054 China
| | - Han Liu
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China +86-21-64370045 +86-21-64370045 ext. 663332
| | - Yi Xiang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China +86-21-64370045 +86-21-64370045 ext. 663332
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China +86-21-64370045 +86-21-64370045 ext. 663332
| |
Collapse
|
33
|
Yang R, Wu P, Wang X, Liu Z, Zhang C, Shi Y, Zhang F, Zuo B. A novel method to prepare tussah/Bombyx mori silk fibroin-based films. RSC Adv 2018; 8:22069-22077. [PMID: 35541712 PMCID: PMC9081156 DOI: 10.1039/c8ra03266a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 11/23/2022] Open
Abstract
The possibility of using silk fibroin in biomaterials for tissue engineering is a subject of broad interest. In this study, Bombyx mori/tussah silk fibroin (BSF/TSF) blend films were prepared by solution casting using CaCl2/formic acid as a co-solvent and water as a rinse solvent. The morphology, crystallinity, thermal resistance, mechanical properties and water contact angle of the blend films as well as the biocompatibility were investigated. The BSF/TSF blend films displayed a smooth surface and specific nanostructure in their cross-section, originating from the nanofibril-preservation during fibroin dissolution. The water rinse process induced the formation of a stable β-sheet structure. The BSF film showed superior mechanical properties to the TSF film, and the blending with TSF led to a significant reduction in the strength and elasticity of blend films. However, adding the TSF component could regulate the hydrophilic properties and enhance cell growth on the blend films. The BSF/TSF blend films with specific nanostructure, stable secondary structure, appropriate mechanical properties, and good biocompatibility, are promising candidates for application in regenerative medicine. A novel method is reported to prepare tussah/Bombyx mori silk fibroin blend films featured transparent, flexible and biocompatible.![]()
Collapse
Affiliation(s)
- Richeng Yang
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Peng Wu
- Department of Orthopedics
- The Second Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Xinhong Wang
- Department of Orthopedics
- The Second Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Zekun Liu
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Cong Zhang
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Yinglu Shi
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Feng Zhang
- Medical College of Soochow University
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology
- Suzhou 215123
- China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
34
|
Preparation, characterization and hydrolytic degradation of PLA/PCL co-mingled nanofibrous mats prepared via dual-jet electrospinning. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Bhattacharjee P, Maiti TK, Bhattacharya D, Nandi SK. Effect of different mineralization processes on in vitro and in vivo bone regeneration and osteoblast-macrophage cross-talk in co-culture system using dual growth factor mediated non-mulberry silk fibroin grafted poly (Є-caprolactone) nanofibrous scaffold. Colloids Surf B Biointerfaces 2017; 156:270-281. [DOI: 10.1016/j.colsurfb.2017.05.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/11/2017] [Accepted: 05/14/2017] [Indexed: 01/07/2023]
|
36
|
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:805-824. [DOI: 10.1080/09205063.2017.1354671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elbay Malikmammadov
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Tugba Endogan Tanir
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Aysel Kiziltay
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Vasif Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Nesrin Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
37
|
Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. Int J Pharm 2017; 527:115-125. [DOI: 10.1016/j.ijpharm.2017.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/04/2023]
|
38
|
KARAHALİLOĞLU Z. Cell-compatible PHB/silk fibroin composite nanofibermat for tissue engineering applications. Turk J Biol 2017. [DOI: 10.3906/biy-1610-46] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
39
|
Chung TW, Lo HY, Chou TH, Chen JH, Wang SS. Promoting Cardiomyogenesis of hBMSC with a Forming Self-Assembly hBMSC Microtissues/HA-GRGD/SF-PCL Cardiac Patch Is Mediated by the Synergistic Functions of HA-GRGD. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/18/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Tze-Wen Chung
- Department of Biomedical Engineering; National Yang-Ming University; Taipei 11221 Taiwan
| | - Hsin-Yu Lo
- Department of Biomedical Engineering; National Yang-Ming University; Taipei 11221 Taiwan
| | - Tzung-Han Chou
- Department of Chemical Engineering; National Yunlin University of Science and Technology; Yunlin 64402 Taiwan
| | - Jan-Hou Chen
- Department of Chemical Engineering; National Yunlin University of Science and Technology; Yunlin 64402 Taiwan
| | - Shoei-Shen Wang
- Department of SurgeryNational Taiwan University Hospital; National Taiwan University College of Medicine; Taipei 110 Taiwan
| |
Collapse
|
40
|
Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Das P, Nandi SK, Kundu SC. Potential of non-mulberry silk protein fibroin blended and grafted poly(Є-caprolactone) nanofibrous matrices for in vivo bone regeneration. Colloids Surf B Biointerfaces 2016; 143:431-439. [PMID: 27037780 DOI: 10.1016/j.colsurfb.2016.03.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Abstract
An in vivo investigation is conducted to evaluate effectiveness of poly(Є-caprolactone) (PCL) nanofibrous matrices, with non-mulberry silk fibroin (NSF) (from Antheraea mylitta) inclusion, for bone tissue engineering. Inclusion is achieved by either blending NSF with PCL prior to electrospinning substrates or by grafting NSF onto electrospun PCL substrates. Proceeding from our previous in vitro results, showing that NSF grafted matrices have an edge when it comes to aiding cellular adhesion and proliferation, animal trials using rabbits are planned. As this is first in vivo trial of nanofibrous scaffolds with silk fibroin from A. mylitta, aim is to both evaluate the grafted and blended scaffolds independently and compare the method of silk fibroin introduction into the nanofibrous structures. The scaffolds are implanted at bone defect site in distal metaphysis region of the rabbits' femur. Host tissue immuno-compatibility of implants is assessed from measurements of IL-2, IL-6 and TNF-α level through 4 weeks after implantation. Barring an initial inflammatory response, IL-2, IL-6 and TNF-α levels fall back at baseline values in 2 or 4 weeks, thus confirming long term compatibility. Substantial interfacial bonding strength between grafts and host bone is evidenced from mechanical push-out test. Formation of bone tissue for both implant varieties is confirmed using histological and radiological examinations along with fluorochrome labelling and scanning electron microscopy. Significantly better bone formation is observed for NSF grafted matrices. The cumulative results from in vivo tests indicate suitability of NSF grafted PCL nanofibrous matrix as an ECM for bone repair and regrowth.
Collapse
Affiliation(s)
- Promita Bhattacharjee
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Debasis Bhattacharya
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Piyali Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea
| |
Collapse
|
41
|
Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Kundu SC. Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration. J Colloid Interface Sci 2016; 472:16-33. [PMID: 26998786 DOI: 10.1016/j.jcis.2016.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS This study aims at developing biodegradable, mineralized, nanofibrous scaffolds for use in bone regeneration. Scaffolds are loaded with combinations of bone morphogenic protein-2 (rhBMP-2) and transforming growth factor beta (TGF-β) and evaluated in vitro for enhancement in osteoinductivity. EXPERIMENTS Poly(Є-caprolactone) (PCL) doped with different portions of nano-hydroxyapatite is electrospun into nanofibrous scaffolds. Non-mulberry silk fibroin (NSF) obtained from Antheraea mylitta is grafted by aminolysis onto them. Scaffolds prepared have three concentrations of nano-hydroxyapatite: 0% (NSF-PCL), 25% (NSF-PCL/n25), and 50% (NSF-PCL/n50). Growth factor loading is carried out in three different combinations, solely rhBMP-2 (BN25), solely TGF-β (TN25) and rhBMP-2+TGF-β (T/B N25) via carbodiimide coupling. FINDINGS NSF-PCL/n25 showed the best results in examination of mechanical properties, bioactivity, and cell viability. Hence only NSF-PCL/n25 is selected for loading growth factors and subsequent detailed in vitro experiments using MG-63 cell-line. Both growth factors show sustain release kinetics from the matrix. The T/B N25 scaffolds support cellular activity, proliferation, and triggering of bone-associated genes' expression better and promote earlier cell differentiation. Dual growth factor loaded NSF grafted electrospun PCL/nHAp scaffolds show promise for further development into a suitable scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Promita Bhattacharjee
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Debasis Bhattacharya
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
42
|
Jayaraman P, Gandhimathi C, Venugopal JR, Ramakrishna S, Srinivasan DK. Minocycline Hydrochloride Entrapped Biomimetic Nanofibrous Substitutes for Adipose-Derived Stem Cells Differentiation into Osteogenesis. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2016. [DOI: 10.1007/s40883-016-0010-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Kundu SC. Non-mulberry silk fibroin grafted poly(ε-caprolactone) nanofibrous scaffolds mineralized by electrodeposition: an optimal delivery system for growth factors to enhance bone regeneration. RSC Adv 2016. [DOI: 10.1039/c6ra01790h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nanofibrous PCL matrix with non-mulberry silk fibroin grafting and electrodeposited nHAp was used successfully as dual growth factor delivery medium for in vitro osteogenesis.
Collapse
Affiliation(s)
| | - Deboki Naskar
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | - Tapas K. Maiti
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | | | - Subhas C. Kundu
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| |
Collapse
|