1
|
Weerasinghe MASN, Nwoko T, Konkolewicz D. Polymers and light: a love-hate relationship. Chem Sci 2025; 16:5326-5352. [PMID: 40103712 PMCID: PMC11912025 DOI: 10.1039/d5sc00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
The study of the interaction between polymers and light has significantly bloomed over the past few years in various fundamental research and applications. The relationship between polymers and light can be beneficial (we refer to this as "love") or be destructive (we refer to this as "hate"). It is important to understand the nature of both these love and hate relationships between polymers and light to apply these concepts in various future systems, to surpass performance of existing materials, or to mitigate some problems associated with polymers. Therefore, this perspective highlights both the photophilic (e.g., photopolymerization, rate modulation, temporal/spatial control, drug delivery, waste management, photo functionalization, and photo-enhanced depolymerization) and photophobic (e.g., photodegradation, discoloration, optical density, and loss of functionality) nature of polymers.
Collapse
Affiliation(s)
| | - Tochukwu Nwoko
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| |
Collapse
|
2
|
Alarcon RT, Bergoglio M, Cavalheiro ÉTG, Sangermano M. Thiol-Ene Photopolymerization and 3D Printing of Non-Modified Castor Oil Containing Bio-Based Cellulosic Fillers. Polymers (Basel) 2025; 17:587. [PMID: 40076080 PMCID: PMC11902828 DOI: 10.3390/polym17050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The photopolymerization process in 3D printing is considered greener once it involves a fast reaction and low energy consumption. Various reactions for photopolymerization can be used nowadays, but a special one is the thiol-ene "click" reaction that occurs in equimolar concentrations of thiol and alkene groups. In this sense, solvent-free photopolymerizable formulations were prepared to contain non-modified castor oil, Trimethylolpropane tris(3-mercapto propionate), and cellulosic fillers from hemp, tagua, and walnut. All formulations presented conversions higher than 70% and fast polymerization rates. Moreover, the filled formulations presented excellent curing depths in fewer seconds of light exposition, an important factor for their applicability in 3D printing. Furthermore, the hemp filler formulation presented the highest crosslinking density as determined by the DMTA, and was selected for printing two complex structures (pyramid and honeycomb shape). The rheology analysis showed that the formulations had adequate viscosities for the printer. Lastly, all polymers presented at least 97% bio-based contents, with gel contents superior to 96%.
Collapse
Affiliation(s)
- Rafael Turra Alarcon
- Instituto de Química de São Carlos, Universidade de São Paulo-USP, São Carlos 13566-590, SP, Brazil; (R.T.A.); (É.T.G.C.)
| | - Matteo Bergoglio
- Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Éder Tadeu Gomes Cavalheiro
- Instituto de Química de São Carlos, Universidade de São Paulo-USP, São Carlos 13566-590, SP, Brazil; (R.T.A.); (É.T.G.C.)
| | - Marco Sangermano
- Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|
3
|
Alrefai M, Maric M. Photo-crosslinked Diels-Alder and thiol-ene polymer networks. RSC Adv 2025; 15:312-322. [PMID: 39758926 PMCID: PMC11697258 DOI: 10.1039/d4ra08072f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025] Open
Abstract
Compositions of ethylene glycol dicyclopentenyl ether methacrylate (EGDEMA), a vegetable oil based alkyl methacrylate (C13MA), and furfuryl methacrylate (FMA) were terpolymerized for dual-crosslinked networks with tailored mechanical and thermal properties. Specifically, initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization (ATRP) afforded materials with tailored glass transition temperature (T g) and incorporation of furan and norbornene functionalities within a single chain. The terpolymer with high furan and norbornene functionality (Ter2: F FMA = 0.42, F EGDEMA = 0.46, F C13MA = 0.12) is crosslinked to form single-crosslinked reversible networks with 1,1'-(methylenedi-4,1-phenylene)bismaleimide (BM) via Diels-Alder (DA) chemistry and dual-crosslinked networks incorporating additional non-reversible thiol-ene crosslinks. The reactions were photo-initiated using 254 nm UV light with BM : FMA molar ratios of 0.1 and 0.2 for both systems. FTIR analyses for crosslinked Ter2 samples confirmed the successful formation of DA and thiol-ene adducts, while DSC confirmed the reversibility of the DA reaction. A terpolymer with higher C13MA composition (Ter3: F C13MA = 0.75, F FMA = 0.17, F EGDEMA = 0.08) was similarly crosslinked in single and dual crosslinked networks with BM : FMA of 0.1 and 0.2. Crosslinking efficiency was evaluated for both single and dual crosslinked networks with a BM : FMA = 0.1 by comparing thermal and UV curing methods, with UV curing proving more effective for dual-crosslinked systems, leading to increased gel content (71% with UV compared to 61% thermally) and improved material properties. FTIR and DSC results confirmed the formation of the DA adducts and the reversibility of the DA reaction. The terpolymers were further analyzed for adhesive applications through rheological testing. These studies demonstrated that the incorporation of thiol-ene crosslinking alongside Diels-Alder crosslinking offers a balanced combination of reversible and permanent bonds, resulting in materials with enhanced mechanical strength, thermal stability, and functional versatility that are suitable for applications such as recyclable adhesives.
Collapse
Affiliation(s)
- Masa Alrefai
- Dept. of Chemical Engineering, McGill University 3610 Rue Universite Montreal QC H3A 0C5 Canada
| | - Milan Maric
- Dept. of Chemical Engineering, McGill University 3610 Rue Universite Montreal QC H3A 0C5 Canada
| |
Collapse
|
4
|
Mandal A, Ahmed I, Kilbinger AFM. Catalytic Syntheses of Thiol-End-Functionalized ROMP Polymers. ACS Macro Lett 2024; 13:1627-1633. [PMID: 39535171 DOI: 10.1021/acsmacrolett.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Thiol-functionalized polymers have become a crucial class of materials due to their distinct chemical properties and versatile reactivity, leading to a broad spectrum of applications. Herein, we report the straightforward syntheses of a wide range of thiol-end-functionalized ring-opening metathesis polymerization (ROMP) polymers exploiting our previously reported catalytic ROMP mechanisms using suitable chain transfer agents. All the synthesized polymers were characterized via SEC, 1H NMR spectroscopy and MALDI-ToF mass spectrometry techniques. Furthermore, the existence of thiol groups on the polymer chains was verified through the well-established thiol coating reaction on gold nanoparticle surfaces. We believe this method of synthesizing thiol-end-functionalized ROMP polymers (using a reduced amount of ruthenium metal compared to conventional living ROMP) will be of great importance to materials science and biochemical research.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Ijaj Ahmed
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
5
|
Tran TA, Vu VT, Huang CJ. Development of Functional Biointerface Using Mixed Zwitterionic Silatranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24516-24527. [PMID: 39523765 PMCID: PMC11580372 DOI: 10.1021/acs.langmuir.4c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Strategies to design multifunctional interfaces for biosensors have been extensively investigated to acquire optimal sensitivity, specificity, and accuracy. However, heterogeneous ingredients in clinical samples inevitably generate background signals, exposing challenges in biosensor performance. Polymer coating has been recognized as a crucial method to functionalize biointerfaces by providing tailored properties that are essential for interacting with biological systems. Herein, we introduce for the first time two oligomeric silatranes, MPS-MPCn and MPS-PEGMACOOHm, which were copolymerized from mercaptopropylsilatrane (MPS) with either zwitterionic monomer 2-methacryloyloxyethyl phosphorylcholine (MPC) or carboxylated poly(ethylene glycol) methacrylate (PEGMACOOH) through thiol-ene polymerization. These oligomeric silatranes were prepared individually and in combinations in acidic and nonacid solvents for deposition on silicon wafers. Afterward, coating properties, including wettability, thickness, and elemental composition, were characterized by contact angle meter, ellipsometer, and X-ray photoelectron spectroscopy (XPS), respectively. Importantly, MPS-MPCn polymers were found to form thin films with high hydrophilicity and superior fouling repulsion to bacteria and protein, while mixed coating involving 70% MPS-PEGMACOOH2.5 and 30% MPS-MPC2.5 exhibited thinnest coating with best wettability among COOH-terminated coatings. Furthermore, the functional COOH group in the coated surfaces was exploited for postmodification with biological molecules via intermediated N-hydroxysuccinimide (NHS) ester group by amine coupling chemistry. Once again, the combination of 70% MPS-PEGMACOOH2.5 and 30% MPS-MPC2.5 provided an ultimate reduction in nonspecific adsorption (NSA) and established a finest signal discrimination through enzyme-linked immunosorbent assay. Consequently, these novel mixed oligomeric silatranes offer a promising approach for the construction of biosensor interfaces with dual functions in both nonspecific binding prevention and conjugation of biomolecules.
Collapse
Affiliation(s)
- Thi Anh
Hong Tran
- Department
of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Van Truc Vu
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Chun-Jen Huang
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- School
of
Materials Science and Engineering, The University
of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Stanfield MK, Weerts CA, Timilsina MP, Smith J, Thickett SC. Bioderived Thiol-Ene Emulsion Polymerization for Hybrid Latex Particles. Biomacromolecules 2024; 25:6580-6590. [PMID: 39303012 DOI: 10.1021/acs.biomac.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The thiol-ene emulsion polymerization of three dienes synthesized from bioderived compounds, and subsequent preparation of core-shell polymer latexes, is reported. Levoglucosan (LGA), levogucosenone (LGO) and isosorbide were first modified with 4-pentenoic acid to install polymerizable groups. These monomers were used along with a dithiol to prepare poly(thioether) particles via ab initio emulsion polymerization using potassium persulfate as initiator and sodium dodecyl sulfate as surfactant. The structure of the diene significantly influenced the size of the resulting polymer latex particles. Given their low glass transition temperature, the LGA-derived poly(thioether) particles were used as a seed for the seeded emulsion polymerization of either styrene or methyl methacrylate. Core-shell latex particles with a high Tg core and a low Tg bioderived shell were formed, as verified by electron microscopy and in agreement with theoretical predictions of the equilibrium particle morphology based on the interfacial tensions of each particle phase.
Collapse
Affiliation(s)
- Melissa K Stanfield
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Claudia A Weerts
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Mahesh Prasad Timilsina
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jason Smith
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Stuart C Thickett
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
7
|
Huang H, Liao S, Zhang D, Liang W, Xu K, Zhang Y, Lang M. A macromolecular cross-linked alginate aerogel with excellent concentrating effect for rapid hemostasis. Carbohydr Polym 2024; 338:122148. [PMID: 38763731 DOI: 10.1016/j.carbpol.2024.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.
Collapse
Affiliation(s)
- Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shiyang Liao
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China
| | - Dong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wencheng Liang
- College of chemical and material engineering, Quzhou University, 78 North Jiuhua Road, Zhejiang 324000, PR China
| | - Keqing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China.
| | - Yadong Zhang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510515, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
8
|
Aubrecht P, Smejkal J, Panuška P, Španbauerová K, Neubertová V, Kaule P, Matoušek J, Vinopal S, Liegertová M, Štofik M, Malý J. Performance and biocompatibility of OSTEMER 322 in cell-based microfluidic applications. RSC Adv 2024; 14:3617-3635. [PMID: 38268545 PMCID: PMC10804231 DOI: 10.1039/d3ra05789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
The Off-Stoichiometry Thiol-ene and Epoxy (OSTE+) polymer technology has been increasingly utilised in the field of microfluidics and lab-on-a-chip applications. However, the impact of OSTEMER polymers, specifically the OSTEMER 322 formulation, on cell viability has remained limited. In this work, we thoroughly explored the biocompatibility of this commercial OSTEMER formulation, along with various surface modifications, through a broad range of cell types, from fibroblasts to epithelial cells. We employed cell viability and confluence assays to evaluate the performance of the material and its modified variants in cell culturing. The properties of the pristine and modified OSTEMER were also investigated using surface characterization methods including contact angle, zeta potential, and X-ray photoelectron spectroscopy. Mass spectrometry analysis confirmed the absence of leaching constituents from OSTEMER, indicating its safety for cell-based applications. Our findings demonstrated that cell viability on OSTEMER surfaces is sufficient for typical cell culture experiments, suggesting OSTEMER 322 is a suitable material for a variety of cell-based assays in microfluidic devices.
Collapse
Affiliation(s)
- Petr Aubrecht
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jiří Smejkal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Petr Panuška
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Klára Španbauerová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Viktorie Neubertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Pavel Kaule
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
- Department of Chemistry, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jindřich Matoušek
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Stanislav Vinopal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Michaela Liegertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Marcel Štofik
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jan Malý
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| |
Collapse
|
9
|
Lipilin DL, Zubkov MO, Kosobokov MD, Dilman AD. Direct conversion of carboxylic acids to free thiols via radical relay acridine photocatalysis enabled by N-O bond cleavage. Chem Sci 2024; 15:644-650. [PMID: 38179514 PMCID: PMC10762721 DOI: 10.1039/d3sc05513b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Carboxylic acids and thiols are basic chemical compounds with diverse utility and widespread reactivity. However, the direct conversion of unprotected acids to thiols is hampered due to a fundamental problem - free thiols are incompatible with the alkyl radicals formed on decarboxylation of carboxylic acids. Herein, we describe a concept for the direct photocatalytic thiolation of unprotected acids allowing unprotected thiols and their derivatives to be obtained. The method is based on the application of a thionocarbonate reagent featuring the N-O bond. The reagent serves both for the rapid trapping of alkyl radicals and for the facile regeneration of the acridine-type photocatalyst.
Collapse
Affiliation(s)
- Dmitry L Lipilin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail D Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
10
|
Catori DM, da Silva LCE, de Oliveira MF, Nguyen GH, Moses JC, Brisbois EJ, Handa H, de Oliveira MG. In Situ Photo-crosslinkable Hyaluronic Acid/Gelatin Hydrogel for Local Nitric Oxide Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48930-48944. [PMID: 37827196 PMCID: PMC11537030 DOI: 10.1021/acsami.3c10030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
An increasing number of studies have shown that the local release of nitric oxide (NO) from hydrogels stimulates tissue regeneration by modulating cell proliferation, angiogenesis, and inflammation. The potential biomedical uses of NO-releasing hydrogels can be expanded by enabling their application in a fluid state, followed by controlled gelation triggered by an external factor. In this study, we engineered a hydrogel composed of methacrylated hyaluronic acid (HAGMA) and thiolated gelatin (GELSH) with the capacity for in situ photo-cross-linking, coupled with localized NO release. To ensure a gradual and sustained NO release, we charged the hydrogels with poly(l-lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with S-nitrosoglutathione (GSNO), safeguarding SNO group integrity during photo-cross-linking. The formation of thiol-ene bonds via the reaction between GELSH's thiol groups and HAGMA's vinyl groups substantially accelerated gelation (by a factor of 6) and increased the elastic modulus of hydrated hydrogels (by 1.9-2.4 times). HAGMA/GELSH hydrogels consistently released NO over a 14 day duration, with the release of NO depending on the hydrogels' equilibrium swelling degree, determined by the GELSH-to-HAGMA ratio. Biocompatibility assessments confirmed the suitability of these hydrogels for biological applications as they display low cytotoxicity and stimulated fibroblast adhesion and proliferation. In conclusion, in situ photo-cross-linkable HAGMA/GELSH hydrogels, loaded with PLGA-GSNO nanoparticles, present a promising avenue for achieving localized and sustained NO delivery in tissue regeneration applications.
Collapse
Affiliation(s)
- Daniele M Catori
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil
| | - Laura C E da Silva
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil
| | - Matheus F de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil
| | - Grace H Nguyen
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Joseph C Moses
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens 30602, Georgia, United States
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens 30602, Georgia, United States
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil
| |
Collapse
|
11
|
Kaur A, Gautrot JE, Akutagawa K, Watson D, Bickley A, Busfield JJC. Thiyl radical induced cis/ trans isomerism in double bond containing elastomers. RSC Adv 2023; 13:23967-23975. [PMID: 37577099 PMCID: PMC10413178 DOI: 10.1039/d3ra04157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
This report presents an evaluation of thiyl radical-induced cis/trans isomerism in double bond-containing elastomers, such as natural, polychloroprene, and polybutadiene rubbers. The study aims to extensively investigate structural changes in polymers after functionalisation using thiol-ene chemistry, a useful click reaction for modifying polymers and developing materials with new functionalities. The paper reports on the use of different thiols, and cis/trans isomerism was detected through 1H NMR analysis, even at very low alkene/thiol mole ratios. The study finds that the configurational arrangements between non-functionalised elastomer units and thiolated units followed a trans-functionalised-cis units arrangement up to an alkene/thiol mole feed ratio of 0.3, while from 0.4 onward, a combination of trans-functionalised-cis and cis-functionalised-trans configurations are found. Additionally, it is observed that by increasing the level of functionalisation, the glass transition temperature of the resulting modified elastomer also increases. Overall, this study provides valuable insights into the effects of thiol-ene chemistry on the structure and properties of elastomers and could have important implications for the development of new materials with enhanced functionality.
Collapse
|
12
|
Freire N, Barbosa RDM, García-Villén F, Viseras C, Perioli L, Fialho R, Albuquerque E. Environmentally Friendly Strategies for Formulating Vegetable Oil-Based Nanoparticles for Anticancer Medicine. Pharmaceutics 2023; 15:1908. [PMID: 37514094 PMCID: PMC10386571 DOI: 10.3390/pharmaceutics15071908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The development of green synthesized polymeric nanoparticles with anticancer studies has been an emerging field in academia and the pharmaceutical and chemical industries. Vegetable oils are potential substitutes for petroleum derivatives, as they present a clean and environmentally friendly alternative and are available in abundance at relatively low prices. Biomass-derived chemicals can be converted into monomers with a unique structure, generating materials with new properties for the synthesis of sustainable monomers and polymers. The production of bio-based polymeric nanoparticles is a promising application of green chemistry for biomedical uses. There is an increasing demand for biocompatible and biodegradable materials for specific applications in the biomedical area, such as cancer therapy. This is encouraging scientists to work on research toward designing polymers with enhanced properties and clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability, reduce problems of volatility and degradation, reduce side effects, and increase treatment efficiency. This review discusses the use of green chemistry for bio-based nanoparticle production and its application in anticancer medicine. The use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.
Collapse
Affiliation(s)
- Nathália Freire
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - Rosana Fialho
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Elaine Albuquerque
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| |
Collapse
|
13
|
Misra S, Banerjee U, Mitra SK. Liquid-Liquid Encapsulation: Penetration vs. Trapping at a Liquid Interfacial Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23938-23950. [PMID: 37145417 DOI: 10.1021/acsami.3c02177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Encapsulation protects vulnerable cores in an aggressive environment and imparts desirable functionalities to the overall encapsulated cargo, including control of mechanical properties, release kinetics, and targeted delivery. Liquid-liquid encapsulation to create such capsules, where a liquid layer (shell) is used to wrap another liquid (core), is an attractive value proposition for ultrafast encapsulation (∼100 ms). Here, we demonstrate a robust framework for stable liquid-liquid encapsulation. Wrapping is achieved by simple impingement of a target core (in liquid form) on top of an interfacial layer of another shell-forming liquid floating on a host liquid bath. Poly(dimethylsiloxane) (PDMS) is chosen as the shell-forming liquid due to its biocompatibility, physicochemical stability, heat curability, and acceptability as both a drug excipient and food additive. Depending on the kinetic energy of the impinging core droplet, encapsulation is accomplished by either of the two pathways─necking-driven complete interfacial penetration and subsequent generation of encapsulated droplets inside the host bath or trapping inside the interfacial layer. Combining thermodynamic argument with experimental demonstration, we show that the interfacially trapped state, which results in a low kinetic energy of impact, is also an encapsulated state where the core droplet is wholly enclosed inside the floating interfacial layer. Therefore, despite being impact-driven, our method remains kinetic energy independent and minimally restrictive. We describe the underlying interfacial evolution behind encapsulation and experimentally identify a nondimensional regime of occurrence for the two pathways mentioned above. Successful encapsulation by either path offers efficient long-term protection of the encased cores in aggressive surroundings (e.g., protection of honey/maple syrup inside a water bath despite their miscibility). We enable the generation of multifunctional compound droplets via interfacial trapping, where multiple core droplets with different compositions are encapsulated within the same wrapping shell. Further, we demonstrate the practical utility of the interfacially trapped state by showing successful heat-curing of the shell and subsequent extraction of the capsule. The cured capsules are sufficiently robust and remain stable under normal handling.
Collapse
Affiliation(s)
- Sirshendu Misra
- Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Utsab Banerjee
- Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K Mitra
- Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
14
|
De Grave L, Di Meo C, Gréant C, Van Durme B, Gérard M, La Gatta A, Schiraldi C, Thorrez L, Bernaerts KV, Van Vlierberghe S. Photo-crosslinkable Poly(aspartic acid) for Light-based additive Manufacturing: Chain-growth versus Step-growth crosslinking. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Aguirre M, Ballard N, Gonzalez E, Hamzehlou S, Sardon H, Calderon M, Paulis M, Tomovska R, Dupin D, Bean RH, Long TE, Leiza JR, Asua JM. Polymer Colloids: Current Challenges, Emerging Applications, and New Developments. Macromolecules 2023; 56:2579-2607. [PMID: 37066026 PMCID: PMC10101531 DOI: 10.1021/acs.macromol.3c00108] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Indexed: 04/18/2023]
Abstract
Polymer colloids are complex materials that have the potential to be used in a vast array of applications. One of the main reasons for their continued growth in commercial use is the water-based emulsion polymerization process through which they are generally synthesized. This technique is not only highly efficient from an industrial point of view but also extremely versatile and permits the large-scale production of colloidal particles with controllable properties. In this perspective, we seek to highlight the central challenges in the synthesis and use of polymer colloids, with respect to both existing and emerging applications. We first address the challenges in the current production and application of polymer colloids, with a particular focus on the transition toward sustainable feedstocks and reduced environmental impact in their primary commercial applications. Later, we highlight the features that allow novel polymer colloids to be designed and applied in emerging application areas. Finally, we present recent approaches that have used the unique colloidal nature in unconventional processing techniques.
Collapse
Affiliation(s)
- Miren Aguirre
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Nicholas Ballard
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Edurne Gonzalez
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Shaghayegh Hamzehlou
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Haritz Sardon
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderon
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Maria Paulis
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Radmila Tomovska
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Damien Dupin
- CIDETEC,
Parque Científico y Tecnológico de Gipuzkoa, P° Miramón 196, 20014 Donostia-San Sebastian, Spain
| | - Ren H. Bean
- Biodesign
Institute, Center for Sustainable Macromolecular Materials and Manufacturing
(SM3), School of Molecular Sciences, Arizona
State University, Tempe, Arizona 85281, United States
| | - Timothy E. Long
- Biodesign
Institute, Center for Sustainable Macromolecular Materials and Manufacturing
(SM3), School of Molecular Sciences, Arizona
State University, Tempe, Arizona 85281, United States
| | - Jose R. Leiza
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - José M. Asua
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
16
|
de Oliveira MF, da Silva LCE, Catori DM, Lorevice MV, Galvão KEA, Millás ALG, de Oliveira MG. Photocurable Nitric Oxide-Releasing Copolyester for the 3D Printing of Bioresorbable Vascular Stents. Macromol Biosci 2023; 23:e2200448. [PMID: 36519642 DOI: 10.1002/mabi.202200448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Indexed: 12/23/2022]
Abstract
The design of bioresorbable vascular stents (BVS) capable of releasing nitric oxide (NO) at the implant site may enable BVS to mimic the antiplatelet, antiproliferative, and pro-endothelial actions of NO, overcoming complications of BVS such as late thrombosis and restenosis. In this study, the fabrication of BVS composed of methacrylated poly(dodecanediol citrate-co-dodecanediol S-nitroso-mercaptosuccinate) (mP(DC-co-DMSNO)), a novel elastomeric, bioabsorbable, and photocurable copolyester, containing covalently bound S-nitrosothiol groups in the carbon backbone of the polymer, is reported. The mP(DC-co-DMSNO) stents are manufactured via photoinduced 3D printing and allow deployment via a self-expansion process from a balloon catheter. After deployment, hydration of the stents triggers the release of NO, which is maintained during the slow hydrolysis of the polymer. Real-time NO release measurements show that by varying the copolyester composition and the strut geometry of the mP(DC-co-DMSNO) stents, it is possible to modulate their NO release rate in the range of 30-52 pmol min-1 cm-2 . Preliminary biological assays in cell culture show that endothelial cells adhere to the surface of the stents and that NO release favors their endothelization. Thus, mP(DC-co-DMSNO) may emerge as a new platform for the fabrication of advanced BVS.
Collapse
Affiliation(s)
- Matheus F de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, Rua Josué de Castro, s/n, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Laura C E da Silva
- Institute of Chemistry, University of Campinas, UNICAMP, Rua Josué de Castro, s/n, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Daniele M Catori
- Institute of Chemistry, University of Campinas, UNICAMP, Rua Josué de Castro, s/n, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Marcos V Lorevice
- Institute of Chemistry, University of Campinas, UNICAMP, Rua Josué de Castro, s/n, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Karen E A Galvão
- 3D Biotechnology Solutions, 3DBS, Rua da Abolição, 1880, Campinas, SP, 13041-445, Brazil
| | - Ana L G Millás
- 3D Biotechnology Solutions, 3DBS, Rua da Abolição, 1880, Campinas, SP, 13041-445, Brazil
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, Rua Josué de Castro, s/n, CP 6154, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
17
|
Meng Y, Zhai H, Zhou Z, Wang X, Han J, Feng W, Huang Y, Wang Y, Bai Y, Zhou J, Quan D. Three dimensional
printable multi‐arms poly(
CL‐
co
‐TOSUO
) for resilient biodegradable elastomer. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Yue Meng
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Hong Zhai
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Ziting Zhou
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Xiaoying Wang
- School of Biomedical Engineering Jinan University Guangzhou China
| | - Jiandong Han
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - WenJuan Feng
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yuxin Huang
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yuan Wang
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Ying Bai
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Jing Zhou
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Daping Quan
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| |
Collapse
|
18
|
PREPARATION AND CHARACTERIZATION OF FULL-SPECTRUM CANNABIS EXTRACT LOADED POLY(THIOETHER-ESTER) NANOPARTICLES: IN VITRO EVALUATION OF THEIR ANTITUMORAL EFFICACY. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Le CMQ, Chemtob A. Thiol‐ene emulsion step polymerization in a photochemical stirred tank reactor: Molecular weight, cyclization, and fragmentation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cuong Minh Quoc Le
- Université de Haute‐Alsace, CNRS, IS2M UMR7361 Mulhouse France
- Université de Strasbourg France
| | - Abraham Chemtob
- Université de Haute‐Alsace, CNRS, IS2M UMR7361 Mulhouse France
- Université de Strasbourg France
| |
Collapse
|
20
|
Lou Y, Xu J, Xu L, Chen Z, Lin B. Chemically Recyclable CO 2 -Based Solid Polyesters with Facile Property Tunability. Macromol Rapid Commun 2022; 43:e2200341. [PMID: 35611450 DOI: 10.1002/marc.202200341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/12/2022] [Indexed: 11/10/2022]
Abstract
Synthesizing chemically recyclable solid polymeric materials is a significant strategy to potentially achieve carbon neutral production of new polymers and alleviate plastic pollution, especially when the synthesis is based on CO2 and inexpensive co-feedstocks available in large scales. Additionally, polymeric materials should have high enough molecular weight to exhibit distinguished properties from low molar mass polymers to serve for a broader range of application scenarios. However, up to now, strategies for developing solid-state CO2 -based chemically recyclable polyesters with both high molecular weight and facile property tunability are still unprecedented. Herein, a brand-new synthetic route is developed to synthesize chemically recyclable CO2 -based solid polyesters with high molecular weight (Mn up to 587.7 kg mol-1 ) and narrow dispersity (Đ < 1.2), which should further broaden the potential application scenarios of new CO2 -based polyesters. Additionally, complete monomer recovery from poly(δLH2 ) material is also achieved. The preserved terminal alkene groups allow facile property tuning of the polyesters via photo-initiated thiol-ene click reactions, enabling more potential utilities and further functionalizations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongjia Lou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jialin Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Luyan Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhuo Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bo- Lin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
21
|
Suvarli N, Frentzel M, Hubbuch J, Perner-Nochta I, Wörner M. Synthesis of Spherical Nanoparticle Hybrids via Aerosol Thiol-Ene Photopolymerization and Their Bioconjugation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:577. [PMID: 35159922 PMCID: PMC8838805 DOI: 10.3390/nano12030577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022]
Abstract
Hybrid nanomaterials possess the properties of both organic and inorganic components and find applications in various fields of research and technology. In this study, aerosol photopolymerization is used in combination with thiol-ene chemistry to produce silver poly(thio-ether) hybrid nanospheres. In aerosol photopolymerization, a spray solution of monomers is atomized, forming a droplet aerosol, which then polymerizes, producing spherical polymer nanoparticles. To produce silver poly(thio-ether) hybrids, silver nanoparticles were introduced to the spray solution. Diverse methods of stabilization were used to produce stable dispersions of silver nanoparticles to prevent their agglomeration before the photopolymerization process. Successfully stabilized silver nanoparticle dispersion in the spray solution subsequently formed nanocomposites with non-agglomerated silver nanoparticles inside the polymer matrix. Nanocomposite particles were analyzed via scanning and transmission electron microscopy to study the degree of agglomeration of silver nanoparticles and their location inside the polymer spheres. The nanoparticle hybrids were then introduced onto various biofunctionalization reactions. A two-step bioconjugation process was developed involving the hybrid nanoparticles: (1) conjugation of (biotin)-maleimide to thiol-groups on the polymer network of the hybrids, and (2) biotin-streptavidin binding. The biofunctionalization with gold-nanoparticle-conjugates was carried out to confirm the reactivity of -SH groups on each conjugation step. Fluorescence-labeled biomolecules were conjugated to the spherical nanoparticle hybrids (applying the two-step bioconjugation process) verified by Fluorescence Spectroscopy and Fluorescence Microscopy. The presented research offers an effective method of synthesis of smart systems that can further be used in biosensors and various other biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | - Michael Wörner
- Department of Bio- and Chemical Engineering, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (N.S.); (M.F.); (J.H.); (I.P.-N.)
| |
Collapse
|
22
|
Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Thiol-Ene “Click Reactions” as a Promising Approach to Polymer Materials. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Schwartz JJ, Porcincula D, Cook C, Fong EJ, Shusteff M. Volumetric Additive Manufacturing of Shape Memory Polymers. Polym Chem 2022. [DOI: 10.1039/d1py01723c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shape memory polymers (SMPs) are stimuli responsive materials with programmable recovery from a deformed state. SMP behavior is often impacted by manufacturing features like layering that can impart anisotropic responses....
Collapse
|
24
|
Exploring the advantages of oxygen-tolerant thiol-ene polymerization over conventional acrylate free radical photopolymerization processes for pressure-sensitive adhesives. Polym J 2021. [DOI: 10.1038/s41428-021-00520-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Wenzel F, Hamzehlou S, Gonzalez de San Roman E, Aguirre M, Leiza JR. Modeling the Kinetics and Microstructure of a Thermally Initiated Thiol‐Ene Polymerization. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabian Wenzel
- POLYMAT and Kimika Aplikatua Saila Kimika Fakultatea University of the Basque Country UPV‐EHU Joxe Mari Korta Zentroa Tolosa Hiribidea 72 Donostia‐San Sebastian 20018 Spain
| | - Shaghayegh Hamzehlou
- POLYMAT and Kimika Aplikatua Saila Kimika Fakultatea University of the Basque Country UPV‐EHU Joxe Mari Korta Zentroa Tolosa Hiribidea 72 Donostia‐San Sebastian 20018 Spain
| | - Estibaliz Gonzalez de San Roman
- POLYMAT and Kimika Aplikatua Saila Kimika Fakultatea University of the Basque Country UPV‐EHU Joxe Mari Korta Zentroa Tolosa Hiribidea 72 Donostia‐San Sebastian 20018 Spain
| | - Miren Aguirre
- POLYMAT and Kimika Aplikatua Saila Kimika Fakultatea University of the Basque Country UPV‐EHU Joxe Mari Korta Zentroa Tolosa Hiribidea 72 Donostia‐San Sebastian 20018 Spain
| | - Jose R. Leiza
- POLYMAT and Kimika Aplikatua Saila Kimika Fakultatea University of the Basque Country UPV‐EHU Joxe Mari Korta Zentroa Tolosa Hiribidea 72 Donostia‐San Sebastian 20018 Spain
| |
Collapse
|
26
|
García-Álvarez F, Martínez-García M. Click reaction in the synthesis of dendrimer drug-delivery systems. Curr Med Chem 2021; 29:3445-3470. [PMID: 34711155 DOI: 10.2174/0929867328666211027124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Drug delivery systems are technologies designed for the targeted delivery and controlled release of medicinal agents. Among the materials employed as drug delivery systems, dendrimers have gained increasing interest in recent years because of their properties and structural characteristics. The use of dendrimer-nanocarrier formulations enhances the safety and bioavailability, increases the solubility in water, improves stability and pharmacokinetic profile, and enables efficient delivery of the target drug to a specific site. However, the synthesis of dendritic architectures through convergent or divergent methods has drawbacks and limitations that disrupt aspects related to design and construction and consequently slow down the transfer from academia to industry. In that sense, the implementation of click chemistry has been received increasing attention in the last years, because offers new efficient approaches to obtain dendritic species in good yields and higher monodispersity. This review focuses on recent strategies for building dendrimer drug delivery systems using click reactions from 2015 to early 2021. The dendritic structures showed in this review are based on β-cyclodextrins (β-CD), poly(amidoamine) (PAMAM), dendritic poly (lysine) (PLLD), dimethylolpropionic acid (bis-MPA), phosphoramidate (PAD), and poly(propargyl alcohol-4-mercaptobutyric (PPMA).
Collapse
Affiliation(s)
- Fernando García-Álvarez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F. Mexico
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F. Mexico
| |
Collapse
|
27
|
Ohno R, Sugane K, Shibata M. Thermal and mechanical properties of polymer networks prepared by the thiol-ene reaction of a vanillin/acetone condensate and its related compounds. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Wenzel F, Hamzehlou S, Pardo L, Aguirre M, Leiza JR. Kinetics of Radical Ring Opening Polymerization of the Cyclic Ketene Acetal 2-Methylene-1,3-dioxepane with Vinyl Monomers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabian Wenzel
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Shaghayegh Hamzehlou
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Leticia Pardo
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Miren Aguirre
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Jose R. Leiza
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| |
Collapse
|
29
|
Effects of basic fibroblast growth factor combined with an injectable in situ crosslinked hyaluronic acid hydrogel for a dermal filler. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Khan A, Smith NM, Tullier MP, Roberts BS, Englert D, Pojman JA, Melvin AT. Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26735-26747. [PMID: 34081856 PMCID: PMC8289190 DOI: 10.1021/acsami.1c04771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Microfluidic gradient generators have been used to study cellular migration, growth, and drug response in numerous biological systems. One type of device combines a hydrogel and polydimethylsiloxane (PDMS) to generate "flow-free" gradients; however, their requirements for either negative flow or external clamps to maintain fluid-tight seals between the two layers have restricted their utility among broader applications. In this work, a two-layer, flow-free microfluidic gradient generator was developed using thiol-ene chemistry. Both rigid thiol-acrylate microfluidic resin (TAMR) and diffusive thiol-acrylate hydrogel (H) layers were synthesized from commercially available monomers at room temperature and pressure using a base-catalyzed Michael addition. The device consisted of three parallel microfluidic channels negatively imprinted in TAMR layered on top of the thiol-acrylate hydrogel to facilitate orthogonal diffusion of chemicals to the direction of flow. Upon contact, these two layers formed fluid-tight channels without any external pressure due to a strong adhesive interaction between the two layers. The diffusion of molecules through the TAMR/H system was confirmed both experimentally (using fluorescent microscopy) and computationally (using COMSOL). The performance of the TAMR/H system was compared to a conventional PDMS/agarose device with a similar geometry by studying the chemorepulsive response of a motile strain of GFP-expressing Escherichia coli. Population-based analysis confirmed a similar migratory response of both wild-type and mutant E. coli in both of the microfluidic devices. This confirmed that the TAMR/H hybrid system is a viable alternative to traditional PDMS-based microfluidic gradient generators and can be used for several different applications.
Collapse
Affiliation(s)
- Anowar
H. Khan
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| | - Noah Mulherin Smith
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge 70803, Louisiana, United States
| | - Michael P. Tullier
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| | - B. Seth Roberts
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge 70803, Louisiana, United States
| | - Derek Englert
- Chemical
and Materials Engineering, University of
Kentucky, Paducah 42002, Kentucky, United States
| | - John A. Pojman
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| | - Adam T. Melvin
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge 70803, Louisiana, United States
| |
Collapse
|
31
|
Machado TO, Beckers SJ, Fischer J, Sayer C, de Araújo PHH, Landfester K, Wurm FR. Cellulose nanocarriers via miniemulsion allow Pathogen-Specific agrochemical delivery. J Colloid Interface Sci 2021; 601:678-688. [PMID: 34091315 DOI: 10.1016/j.jcis.2021.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
The current spraying of agrochemicals is unselective and ineffective, consuming a high amount of fungicides, which endangers the environment and human health. Cellulose-based nanocarriers (NCs) are a promising tool in sustainable agriculture and suitable vehicles for stimuli-responsive release of agrochemicals to target cellulase-segregating fungi, which cause severe plant diseases such as Apple Canker. Herein, cellulose was modified with undec-10-enoic acid to a hydrophobic and cross-linkable derivative, from which NCs were prepared via thiol-ene addition in miniemulsion. During the crosslinking reaction, the NCs were loaded in situ with hydrophobic fungicides, Captan and Pyraclostrobin. NCs with average sizes ranging from 200 to 300 nm and an agrochemical-load of 20 wt% were obtained. Cellulose-degrading fungi, e.g. Neonectria. ditissima which is responsible for Apple Canker, lead to the release of fungicides from the aqueous NC dispersions suppressing fungal growth. In contrast, the non-cellulase segregating fungi, e.g. Cylindrocladium buxicola, do not degrade the agrochemical-loaded NCs. This selective action against Apple Canker fungi, N. ditissima, proves the efficacy of NC-mediated drug delivery triggered by degradation in the exclusive presence of cellulolytic fungi. Cellulose NCs represent a sustainable alternative to the current unselective spraying of agrochemicals that treats many crop diseases ineffectively.
Collapse
Affiliation(s)
- Thiago O Machado
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040 900, Brazil
| | - Sebastian J Beckers
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jochen Fischer
- Institute for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040 900, Brazil
| | - Pedro H H de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040 900, Brazil
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
32
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Wang X, Wu D. Reduction‐Responsive Disulfide‐Containing Polymers for Biomedical Applications. SULFUR‐CONTAINING POLYMERS 2021:393-428. [DOI: 10.1002/9783527823819.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Le CMQ, Vidal L, Schmutz M, Chemtob A. Droplet nucleation in miniemulsion thiol–ene step photopolymerization. Polym Chem 2021. [DOI: 10.1039/d1py00139f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reaction parameters, such as droplet size, initiator solubility and monomer solubility, which are important in favouring droplet nucleation in a miniemulsion thiol–ene step polymerization are reviewed.
Collapse
Affiliation(s)
| | - Loïc Vidal
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Marc Schmutz
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- 67000 Strasbourg
- France
| | - Abraham Chemtob
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| |
Collapse
|
35
|
Synthesis of a Divinyl-functionalized Diamantane-Analogue from naturally occurring myo-Inositol and its application to polymer synthesis via the Thiol-ene reaction. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
36
|
Wilson OR, McDaniel RM, Rivera AD, Magenau AJD. Alkylborane-Initiated Thiol-Ene Networks for the Synthesis of Thick and Highly Loaded Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55262-55268. [PMID: 33253524 DOI: 10.1021/acsami.0c16587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thiol-ene nanocomposites were synthesized for the first time using an alkylborane-ligand initiator complex under bulk and ambient conditions without external light or thermal stimuli. Initiation was triggered by the in situ decomplexation of an air-stable trialkylborane-amine complex to liberate trialkylborane, which rapidly autoxidizes with atmospheric oxygen and generates free radicals to drive thiol-ene polymerization. This chemically activated mode of initiation uniquely affords thiol-ene nanocomposites with an unrivaled carbon nanotube (CNT) loading of 1.3 wt % and thicknesses of ∼6.7 mm by circumventing restrictions imposed by long pathlengths and light-impeding fillers during photoinitiation. Alkylborane initiation also exhibited advantageous polymerization rates, equivalent to photoinitiation, resulting in network formation and gelation within minutes. Systematic studies were conducted to evaluate comparable alkylborane- and photo-initiated nanocomposites under progressively higher loadings and larger specimen thicknesses, revealing an enhancement or better retainment of mechanical performance in alkylborane-initiated nanocomposites.
Collapse
Affiliation(s)
- Olivia R Wilson
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Riki M McDaniel
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Arianna D Rivera
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Andrew J D Magenau
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
Wu F, Bao X, Xu H, Kong D, Wang J. Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization and Fire Retardancy in Thiol-Ene Systems. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1852689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fangyi Wu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Xiaohui Bao
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Huan Xu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Delong Kong
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Jiangbo Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| |
Collapse
|
38
|
Bunton CM, Bassampour ZM, Boothby JM, Smith AN, Rose JV, Nguyen DM, Ware TH, Csaky KG, Lippert AR, Tsarevsky NV, Son DY. Degradable Silyl Ether–Containing Networks from Trifunctional Thiols and Acrylates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caleb M. Bunton
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Zahra M. Bassampour
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Jennifer M. Boothby
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Ashanti N. Smith
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Joseph V. Rose
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Daphne M. Nguyen
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Taylor H. Ware
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Karl G. Csaky
- Retina Foundation of the Southwest, Dallas, Texas 75231, United States
| | - Alexander R. Lippert
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Nicolay V. Tsarevsky
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - David Y. Son
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| |
Collapse
|
39
|
Rahman SS, Arshad M, Qureshi A, Ullah A. Fabrication of a Self-Healing, 3D Printable, and Reprocessable Biobased Elastomer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51927-51939. [PMID: 33156602 DOI: 10.1021/acsami.0c14220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel self-healable, fully reprocessable, and inkjet three-dimensional (3D) printable partially biobased elastomer is reported in this work. A long-chain unsaturated diacrylate monomer was first synthesized from canola oil and then cross-linked with a partially oxidized silicon-based copolymer containing free thiol groups and disulfide bonds. The elastomer is fabricated through inkjet 3D printing utilizing the photoinitiated thiol-ene click chemistry and reprocessed by compression molding exploiting the dynamic nature of disulfide bond. Self-healing is enabled by phosphine-catalyzed disulfide metathesis. The elastomer displayed a tensile strength of ∼52 kPa, a breaking strain of ∼24, and ∼86% healing efficiency at 80 °C temperature after 8 h. Moreover, the elastomer showed excellent thermal stability, and the highest thermal degradation temperature was recorded to be ∼524 °C. After reprocessing through compression molding, the elastomer fully recovered its mechanical and thermal properties. These properties of the elastomer yield an ecofriendly alternative of fossil fuel-based elastomers that can find broad applications in soft robotics, flexible wearable devices, strain sensors, health care, and next-generation energy-harvesting and -storage devices.
Collapse
Affiliation(s)
- Saadman Sakib Rahman
- Department of Mechanical Engineering, University of Alberta, 05-293 Donadeo Innovation Centre for Engineering 9211 116 Street NW, Edmonton, AB T6G 1H9, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 360C South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Muhammad Arshad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 360C South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Ahmed Qureshi
- Department of Mechanical Engineering, University of Alberta, 05-293 Donadeo Innovation Centre for Engineering 9211 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 360C South Academic Building, Edmonton, AB T6G 2G7, Canada
| |
Collapse
|
40
|
Freire NF, Feuser PE, da Silva Abel J, Machado-de-Ávila RA, Lopes Fialho R, Cabral Albuquerque E, Sayer C, Hermes de Araújo PH. Zinc phthalocyanine encapsulation via thiol-ene miniemulsion polymerization and in vitro photoxicity studies. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1838517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nathália Freitas Freire
- Program of post-graduation in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador, Brazil
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Paulo Emílio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Jéssica da Silva Abel
- Postgraduate Program in Health Science, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | | | - Rosana Lopes Fialho
- Program of post-graduation in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador, Brazil
| | - Elaine Cabral Albuquerque
- Program of post-graduation in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | | |
Collapse
|
41
|
Cook CC, Fong EJ, Schwartz JJ, Porcincula DH, Kaczmarek AC, Oakdale JS, Moran BD, Champley KM, Rackson CM, Muralidharan A, McLeod RR, Shusteff M. Highly Tunable Thiol-Ene Photoresins for Volumetric Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003376. [PMID: 33002275 DOI: 10.1002/adma.202003376] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/20/2020] [Indexed: 05/17/2023]
Abstract
Volumetric additive manufacturing (VAM) forms complete 3D objects in a single photocuring operation without layering defects, enabling 3D printed polymer parts with mechanical properties similar to their bulk material counterparts. This study presents the first report of VAM-printed thiol-ene resins. With well-ordered molecular networks, thiol-ene chemistry accesses polymer materials with a wide range of mechanical properties, moving VAM beyond the limitations of commonly used acrylate formulations. Since free-radical thiol-ene polymerization is not inhibited by oxygen, the nonlinear threshold response required in VAM is introduced by incorporating 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a radical scavenger. Tuning of the reaction kinetics is accomplished by balancing inhibitor and initiator content. Coupling this with quantitative measurements of the absorbed volumetric optical dose allows control of polymer conversion and gelation during printing. Importantly, this work thereby establishes the first comprehensive framework for spatial-temporal control over volumetric energy distribution, demonstrating structures 3D printed in thiol-ene resin by means of tomographic volumetric VAM. Mechanical characterization of this thiol-ene system, with varied ratios of isocyanurate and triethylene glycol monomers, reveals highly tunable mechanical response far more versatile than identical acrylate-based resins. This broadens the range of materials and properties available for VAM, taking another step toward high-performance printed polymers.
Collapse
Affiliation(s)
- Caitlyn C Cook
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Erika J Fong
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | | | | | | | - James S Oakdale
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Bryan D Moran
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Kyle M Champley
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Charles M Rackson
- Electrical, Computer, and Energy Engineering Department, University of Colorado, Boulder, CO, 80309, USA
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80303, USA
| | - Robert R McLeod
- Electrical, Computer, and Energy Engineering Department, University of Colorado, Boulder, CO, 80309, USA
| | - Maxim Shusteff
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
42
|
Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Guan J, Sun B, Zhu W, Chen S. Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chem Rev 2020; 120:10695-10743. [PMID: 32323975 PMCID: PMC7572843 DOI: 10.1021/acs.chemrev.9b00810] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the advent of additive manufacturing, known commonly as 3D printing, this technology has revolutionized the biofabrication landscape and driven numerous pivotal advancements in tissue engineering and regenerative medicine. Many 3D printing methods were developed in short course after Charles Hull first introduced the power of stereolithography to the world. However, materials development was not met with the same enthusiasm and remained the bottleneck in the field for some time. Only in the past decade has there been deliberate development to expand the materials toolbox for 3D printing applications to meet the true potential of 3D printing technologies. Herein, we review the development of biomaterials suited for light-based 3D printing modalities with an emphasis on bioprinting applications. We discuss the chemical mechanisms that govern photopolymerization and highlight the application of natural, synthetic, and composite biomaterials as 3D printed hydrogels. Because the quality of a 3D printed construct is highly dependent on both the material properties and processing technique, we included a final section on the theoretical and practical aspects behind light-based 3D printing as well as ways to employ that knowledge to troubleshoot and standardize the optimization of printing parameters.
Collapse
Affiliation(s)
- Claire Yu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Pengrui Wang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Kathleen L Miller
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xuanyi Ma
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bingjie Sun
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wei Zhu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Chemical Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
43
|
Santos PCM, Machado TO, Santin JVC, Feuser PE, Córneo ES, Machado‐de‐Ávila RA, Sayer C, Araújo PHH. Superparamagnetic biobased poly(thioether‐ester) via thiol‐ene polymerization in miniemulsion for hyperthermia. J Appl Polym Sci 2020. [DOI: 10.1002/app.49741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Paula C. M. Santos
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Thiago O. Machado
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - João V. C. Santin
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Paulo E. Feuser
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Emily S. Córneo
- Postgraduate Program in Health Science University of Southern Santa Catarina Florianópolis Brazil
| | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Pedro H. H. Araújo
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| |
Collapse
|
44
|
Dobos A, Van Hoorick J, Steiger W, Gruber P, Markovic M, Andriotis OG, Rohatschek A, Dubruel P, Thurner PJ, Van Vlierberghe S, Baudis S, Ovsianikov A. Thiol-Gelatin-Norbornene Bioink for Laser-Based High-Definition Bioprinting. Adv Healthc Mater 2020; 9:e1900752. [PMID: 31347290 DOI: 10.1002/adhm.201900752] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 11/06/2022]
Abstract
Two-photon polymerization (2PP) is a lithography-based 3D printing method allowing the fabrication of 3D structures with sub-micrometer resolution. This work focuses on the characterization of gelatin-norbornene (Gel-NB) bioinks which enables the embedding of cells via 2PP. The high reactivity of the thiol-ene system allows 2PP processing of cell-containing materials at remarkably high scanning speeds (1000 mm s-1 ) placing this technology in the domain of bioprinting. Atomic force microscopy results demonstrate that the indentation moduli of the produced hydrogel constructs can be adjusted in the 0.2-0.7 kPa range by controlling the 2PP processing parameters. Using this approach gradient 3D constructs are produced and the morphology of the embedded cells is observed in the course of 3 weeks. Furthermore, it is possible to tune the enzymatic degradation of the crosslinked bioink by varying the applied laser power. The 3D printed Gel-NB hydrogel constructs show exceptional biocompatibility, supported cell adhesion, and migration. Furthermore, cells maintain their proliferation capacity demonstrated by Ki-67 immunostaining. Moreover, the results demonstrate that direct embedding of cells provides uniform distribution and high cell loading independently of the pore size of the scaffold. The investigated photosensitive bioink enables high-definition bioprinting of well-defined constructs for long-term cell culture studies.
Collapse
Affiliation(s)
- Agnes Dobos
- TU Wien3D Printing and Biofabrication GroupInstitute of Materials Science and Technology Getreidemarkt 9 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration
| | - Jasper Van Hoorick
- Polymer Chemistry and Biomaterials GroupCentre of Macromolecular ChemistryGhent University Krijgslaan 281, S4 9000 Ghent Belgium
- Brussels PhotonicsDepartment of Applied Physics and PhotonicsFlanders Make and Vrije Universiteit Brussel Pleinlaan 2 1000 Brussels Belgium
| | - Wolfgang Steiger
- TU Wien3D Printing and Biofabrication GroupInstitute of Materials Science and Technology Getreidemarkt 9 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration
| | - Peter Gruber
- TU Wien3D Printing and Biofabrication GroupInstitute of Materials Science and Technology Getreidemarkt 9 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration
| | - Marica Markovic
- TU Wien3D Printing and Biofabrication GroupInstitute of Materials Science and Technology Getreidemarkt 9 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration
| | - Orestis G. Andriotis
- Austrian Cluster for Tissue Regeneration
- TU Wien, Institute of Lightweight Design and Structural Biomechanics Getreidemarkt 9 1060 Vienna Austria
| | - Andreas Rohatschek
- Austrian Cluster for Tissue Regeneration
- TU Wien, Institute of Lightweight Design and Structural Biomechanics Getreidemarkt 9 1060 Vienna Austria
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials GroupCentre of Macromolecular ChemistryGhent University Krijgslaan 281, S4 9000 Ghent Belgium
| | - Philipp J. Thurner
- Austrian Cluster for Tissue Regeneration
- TU Wien, Institute of Lightweight Design and Structural Biomechanics Getreidemarkt 9 1060 Vienna Austria
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials GroupCentre of Macromolecular ChemistryGhent University Krijgslaan 281, S4 9000 Ghent Belgium
- Brussels PhotonicsDepartment of Applied Physics and PhotonicsFlanders Make and Vrije Universiteit Brussel Pleinlaan 2 1000 Brussels Belgium
| | - Stefan Baudis
- TU WienInstitute of Applied Synthetic Chemistry Getreidemarkt 9 1060 Vienna Austria
| | - Aleksandr Ovsianikov
- TU Wien3D Printing and Biofabrication GroupInstitute of Materials Science and Technology Getreidemarkt 9 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration
| |
Collapse
|
45
|
Dos Santos PCM, Feuser PE, Cordeiro AP, Scussel R, Abel JDS, Machado-de-Ávila RA, Rocha MEM, Sayer C, Hermes de Araújo PH. Antitumor activity associated with hyperthermia and 4-nitrochalcone loaded in superparamagnetic poly(thioether-ester) nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1895-1911. [PMID: 32552460 DOI: 10.1080/09205063.2020.1782699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The combination of hyperthermia and chemotherapy has a potential synergic effect in antitumor activity. The development of new biocompatible and biodegradable polymers to simultaneously encapsulate magnetic nanoparticles (MNPs) and antitumoral drugs offer new cancer treatment opportunities. Here, biodegradable and biocompatible poly(thioether-ester) (PTEe) was used to encapsulate MNPs and 4-nitrochalcone (4NC) using miniemulsification and solvent evaporation. The resulting hybrid particles (MNPs-4NC-PTEe) had nanometer-scale diameters, spherical morphology, negative surface charge, high encapsulation efficiency, and superparamagnetic properties. Results showed that 4NC release occurred through diffusion. Free 4NC and MNPs + 4NC-PTEe did not have any cytotoxic effect on erythrocytes and mouse embryonic fibroblast (NIH3T3) cells. 4NC antitumor activity was verified on human cervical cancer (HeLa) and melanoma (B16F10) cells. Cellular uptake of MNPs + 4NC-PTEe nanoparticles was higher in HeLa cells compared to B16F10 and NIH3T3 cells. The hyperthermia application (115 kHz-500 Oe) potentiated the 4NC effects on HeLa and B16F10 cells when MNPs + 4NC-PTEe nanoparticles were used, indicating more effective antitumor activity. We concluded that the use of MNPs + 4NC-PTEe nanoparticles associated with hyperthermia is a promising form of treatment for some types of cancers.
Collapse
Affiliation(s)
| | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rahisa Scussel
- Postgraduate Program in Health Science, University of Southern Santa Catarina, Criciúma, Brazil
| | - Jessica da Silva Abel
- Postgraduate Program in Health Science, University of Southern Santa Catarina, Criciúma, Brazil
| | | | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | | |
Collapse
|
46
|
Sticker D, Geczy R, Häfeli UO, Kutter JP. Thiol-Ene Based Polymers as Versatile Materials for Microfluidic Devices for Life Sciences Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10080-10095. [PMID: 32048822 DOI: 10.1021/acsami.9b22050] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While there is a steady growth in the number of microfluidics applications, the search for an optimal material that delivers the diverse characteristics needed for the numerous tasks is still nowhere close to being settled. Often overlooked and still underrepresented, the thiol-ene family of polymer materials has an enormous potential for applications in organs-on-a-chip, droplet productions, microanalytics, and point of care testing. In this review, the main characteristics of the thiol-ene materials are given, and advantages and drawbacks with respect to their potential in microfluidic chip fabrication are critically assessed. Select applications, which exploit the versatility of the thiol-ene polymers, are presented and discussed. It is concluded that, in particular, the rapid prototyping possibility combined with the material's resulting mechanical strength, solvent resistance, and biocompatibility, as well as the inherently easy surface functionalization, are strong factors to make thiol-ene polymers strong contenders for promising future materials for many biological, clinical, and technical lab-on-a-chip applications.
Collapse
Affiliation(s)
- Drago Sticker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Reka Geczy
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Urs O Häfeli
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jörg P Kutter
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
47
|
Wang X, Zhao C, Li Y, Lin Z, Xu H. A Facile and Highly Efficient Route to Amphiphilic Star‐Like Rod‐Coil Block Copolymer via a Combination of Atom Transfer Radical Polymerization with Thiol–Ene Click Chemistry. Macromol Rapid Commun 2020; 41:e1900540. [DOI: 10.1002/marc.201900540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/02/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xinglong Wang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 China
| | - Chunyan Zhao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 China
| | - Yuanyuan Li
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 China
| | - Zhiqun Lin
- School of Materials Science and EngineeringGeorgia Institute of Technology Atlanta GA 30332 USA
| | - Hui Xu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 China
| |
Collapse
|
48
|
Alves J, Wiedbrauk S, Gräfe D, Walden SL, Blinco JP, Barner-Kowollik C. It's a Trap: Thiol-Michael Chemistry on a DASA Photoswitch. Chemistry 2020; 26:809-813. [PMID: 31797435 DOI: 10.1002/chem.201904770] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Donor-acceptor Stenhouse adducts (DASA) are popular photoswitches capable of toggling between two isomers depending on the light and temperature of the system. The cyclized polar form is accessed by visible-light irradiation, whereas the linear nonpolar form is recovered in the dark. Upon the formation of the cyclized form, the DASA contains a double bond featuring a β-carbon prone to nucleophilic attack. Here, an isomer selective thiol-Michael reaction between the cyclized DASA and a base-activated thiol is introduced. The thiol-Michael addition was carried out with an alkyl (1-butanethiol) and an aromatic thiol (p-bromothiophenol) as reaction partners, both in the presence of a base. Under optimized conditions, the reaction proceeds preferentially in the presence of light and base. The current study demonstrates that DASAs can be selectively trapped in their cyclized state.
Collapse
Affiliation(s)
- Jessica Alves
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Sandra Wiedbrauk
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - David Gräfe
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Sarah L Walden
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - James P Blinco
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
49
|
Toncheva-Moncheva N, Dangalov M, Vassilev NG, Novakov CP. Thiol–ene coupling reaction achievement and monitoring by “ in situ” UV irradiation NMR spectroscopy. RSC Adv 2020; 10:25214-25222. [PMID: 35517473 PMCID: PMC9055274 DOI: 10.1039/d0ra03902k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, the possibilities of a new “in situ” LED UV illumination NMR spectroscopic technique for performing an initiator-free thiol–ene “click” coupling reaction of an allyl-functionalized poly(allyl glycidyl ether) (PAGE) prepolymer with a number of mono- and di-oligo polyethylene glycol (PEG) thiols is demonstrated. The state-of-the-art setup constructed with LEDs as UV light sources that illuminate through optical fibers directly into an NMR testing tube at a fixed wavelength of 365 nm is appropriate for various polymeric materials and biologically active substances. The selected experimental protocol uses a series of periods of irradiation and dark periods, thus providing opportunities to conduct an effective thiol–ene “click” reaction and simultaneously study the kinetics of the photochemical reaction with the exposure time, as well as macromolecular association directly in a solution applying the whole types of NMR methods: from conventional 1H or 13C NMR to diffusion NMR spectroscopy (DOSY). In addition, the molecular mass characteristics of the prepared copolymers were studied by gel-permeation chromatography (GPC). The observed differences in the reaction rates as well as in the size of species formed (the corresponding hydrodynamic radiuses Rh of aggregates) as a result of the coupling process of parent PAGE prepolymers and model PEG thiols were thoroughly discussed and the reaction pathway proposed. An “In situ” LED UV illumination NMR setup for achievement of initiator-free coupling reactions of allyl-functionalized poly(allyl glycidyl ether) with polyethylene glycols thiols.![]()
Collapse
Affiliation(s)
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Center of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | - Nikolay G. Vassilev
- Institute of Organic Chemistry with Center of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | |
Collapse
|
50
|
Turcan-Trofin GO, Zaltariov MF, Iacob M, Tiron V, Branza F, Racles C, Cazacu M. Copper(II) complexes with spherical morphology generated in one step by amphiphilic ligands: in situ view of the self-assembling, characterization, catalytic activity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|