1
|
Zhang R, Yu J, Guo Z, Jiang H, Wang C. Camptothecin-based prodrug nanomedicines for cancer therapy. NANOSCALE 2023; 15:17658-17697. [PMID: 37909755 DOI: 10.1039/d3nr04147f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Camptothecin (CPT) is a cytotoxic alkaloid that attenuates the replication of cancer cells via blocking DNA topoisomerase 1. Despite its encouraging and wide-spectrum antitumour activity, its application is significantly restricted owing to its instability, low solubility, significant toxicity, and acquired tumour cell resistance. This has resulted in the development of many CPT-based therapeutic agents, especially CPT-based nanomedicines, with improved pharmacokinetic and pharmacodynamic profiles. Specifically, smart CPT-based prodrug nanomedicines with stimuli-responsive release capacity have been extensively explored owing to the advantages such as high drug loading, improved stability, and decreased potential toxicity caused by the carrier materials in comparison with normal nanodrugs and traditional delivery systems. In this review, the potential strategies and applications of CPT-based nanoprodrugs for enhanced CPT delivery toward cancer cells are summarized. We appraise in detail the chemical structures and release mechanisms of these nanoprodrugs and guide materials chemists to develop more powerful nanomedicines that have real clinical therapeutic capacities.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Zhu Guo
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
- The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
2
|
Affiliation(s)
- Panpan Li
- National Engineering Research Center for Colloidal Materials School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry Shandong University Ministry of Education Jinan Shandong 250100 P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
- Key Laboratory of Colloid and Interface Chemistry Shandong University Ministry of Education Jinan Shandong 250100 P. R. China
| |
Collapse
|
3
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
4
|
Liu Y, Zhang Y, Yu H, Liu Y. Cucurbituril‐Based Biomacromolecular Assemblies. Angew Chem Int Ed Engl 2020; 60:3870-3880. [DOI: 10.1002/anie.202009797] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
6
|
Brevé TG, Filius M, Araman C, van der Helm MP, Hagedoorn P, Joo C, van Kasteren SI, Eelkema R. Conditional Copper-Catalyzed Azide-Alkyne Cycloaddition by Catalyst Encapsulation. Angew Chem Int Ed Engl 2020; 59:9340-9344. [PMID: 32180306 PMCID: PMC7318279 DOI: 10.1002/anie.202001369] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 11/08/2022]
Abstract
Supramolecular encapsulation is known to alter chemical properties of guest molecules. We have applied this strategy of molecular encapsulation to temporally control the catalytic activity of a stable copper(I)-carbene catalyst. Encapsulation of the copper(I)-carbene catalyst by the supramolecular host cucurbit[7]uril (CB[7]) resulted in the complete inactivation of a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The addition of a chemical signal achieved the near instantaneous activation of the catalyst, by releasing the catalyst from the inhibited CB[7] catalyst complex. To broaden the scope of our on-demand CuAAC reaction, we demonstrated the protein labeling of vinculin with the copper(I)-carbene catalyst, to inhibit its activity by encapsulation with CB[7] and to initiate labeling at any moment by adding a specific signal molecule. Ultimately, this strategy allows for temporal control over copper-catalyzed click chemistry, on small molecules as well as protein targets.
Collapse
Affiliation(s)
- Tobias G. Brevé
- Department of Chemical EngineeringDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Mike Filius
- Department of BioNanoScienceDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Can Araman
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Michelle P. van der Helm
- Department of Chemical EngineeringDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Peter‐Leon Hagedoorn
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Chirlmin Joo
- Department of BioNanoScienceDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Sander I. van Kasteren
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Rienk Eelkema
- Department of Chemical EngineeringDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
7
|
Brevé TG, Filius M, Araman C, Helm MP, Hagedoorn P, Joo C, Kasteren SI, Eelkema R. Conditional Copper‐Catalyzed Azide–Alkyne Cycloaddition by Catalyst Encapsulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tobias G. Brevé
- Department of Chemical EngineeringDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Mike Filius
- Department of BioNanoScienceDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Can Araman
- Leiden Institute of ChemistryLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Michelle P. Helm
- Department of Chemical EngineeringDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Peter‐Leon Hagedoorn
- Department of BiotechnologyDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Chirlmin Joo
- Department of BioNanoScienceDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Sander I. Kasteren
- Leiden Institute of ChemistryLeiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Rienk Eelkema
- Department of Chemical EngineeringDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
8
|
Zhan W, Wei T, Yu Q, Chen H. Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host-Guest Interactions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36585-36601. [PMID: 30285413 DOI: 10.1021/acsami.8b12130] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Supramolecular host-guest interactions provide a facile and versatile basis for the construction of sophisticated structures and functional assemblies through specific molecular recognition of host and guest molecules to form inclusion complexes. In recent years, these interactions have been exploited as a means of attaching bioactive molecules and polymers to solid substrates for the fabrication of bioactive surfaces. Using a common host molecule, β-cyclodextrin (β-CD), and various guest molecules as molecular building blocks, we fabricated several types of bioactive surfaces with multifunctionality and/or function switchability via host-guest interactions. Other groups have also taken this approach, and several intelligent designs have been developed. The results of these investigations indicate that, compared to the more common covalent bonding-based methods for attachment of bioactive ligands, host-guest based methods are simple, more broadly ("universally") applicable, and allow convenient renewal of bioactivity. In this Spotlight on Applications, we review and summarize recent developments in the fabrication of supramolecular bioactive surfaces via β-CD-based host-guest interactions. The main focus is on the work from our laboratory, but highlights on work from other groups are included. Applications of the materials are also emphasized. These surfaces can be categorized into three types based on: (i) self-assembled monolayers, (ii) polymer brushes, and (iii) multilayered films. The host-guest strategy can be extended from material surfaces to living cell surfaces, and work along these lines is also reviewed. Finally, a brief perspective on the developments of supramolecular bioactive surfaces in the future is presented.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
9
|
Hu C, Wu J, Wei T, Zhan W, Qu Y, Pan Y, Yu Q, Chen H. A supramolecular approach for versatile biofunctionalization of magnetic nanoparticles. J Mater Chem B 2018; 6:2198-2203. [DOI: 10.1039/c8tb00490k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient and versatile approach for biofunctionalization of magnetic nanoparticles was developed based on supramolecular host–guest interaction.
Collapse
Affiliation(s)
- Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
- Guangzhou
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
10
|
Maglione MS, Casado-Montenegro J, Fritz EC, Crivillers N, Ravoo BJ, Rovira C, Mas-Torrent M. Electrochemically driven host–guest interactions on patterned donor/acceptor self-assembled monolayers. Chem Commun (Camb) 2018. [DOI: 10.1039/c8cc00494c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Patterned ferrocene/anthraquinone self-assembled monolayers are selectively oxidised or reduced to locally control the formation of host–guest complexes on the surface.
Collapse
Affiliation(s)
- Maria Serena Maglione
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| | - Javier Casado-Montenegro
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| | - Eva-Corinna Fritz
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| |
Collapse
|
11
|
Wiemann M, Jonkheijm P. Stimuli-Responsive Cucurbit[n]uril-Mediated Host-Guest Complexes on Surfaces. Isr J Chem 2017. [DOI: 10.1002/ijch.201700109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maike Wiemann
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute of Biomedical Technology and Technical Medicine and the Molecular Nanofabrication Group of the MESA Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute of Biomedical Technology and Technical Medicine and the Molecular Nanofabrication Group of the MESA Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
12
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
13
|
Vogt S, Wenderhold-Reeb S, Nöll G. Reversible assembly of protein-DNA nanostructures triggered by mediated electron transfer. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Recent advances and applications of redox active macromolecules: Synthetic polymers and biomacromolecules. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|