1
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Guo H, Guan J, Wu X, Wei Y, Zhao J, Zhou Y, Li F, Pang HB. Peptide-guided delivery improves the therapeutic efficacy and safety of glucocorticoid drugs for treating acute lung injury. Mol Ther 2023; 31:875-889. [PMID: 36609145 PMCID: PMC10014283 DOI: 10.1016/j.ymthe.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions with excessive inflammation in the lung. Glucocorticoids had been widely used for ALI/ARDS, but their clinical benefit remains unclear. Here, we tackled the problem by conjugating prednisolone (PSL) with a targeting peptide termed CRV. Systemically administered CRV selectively homes to the inflamed lung of a murine ALI model, but not healthy organs or the lung of healthy mice. The expression of the CRV receptor, retinoid X receptor β, was elevated in the lung of ALI mice and patients with interstitial lung diseases, which may be the basis of CRV targeting. We then covalently conjugated PSL and CRV with a reactive oxygen species (ROS)-responsive linker in the middle. While being intact in blood, the ROS linker was cleaved intracellularly to release PSL for action. In vitro, CRV-PSL showed an anti-inflammatory effect similar to that of PSL. In vivo, CRV conjugation increased the amount of PSL in the inflamed lung but reduced its accumulation in healthy organs. Accordingly, CRV-PSL significantly reduced lung injury and immune-related side effects elsewhere. Taken together, our peptide-based strategy for targeted delivery of glucocorticoids for ALI may have great potential for clinical translation.
Collapse
Affiliation(s)
- Hong Guo
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jibin Guan
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xian Wu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yushuang Wei
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiaqi Zhao
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yan Zhou
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hong-Bo Pang
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
4
|
Cao XT, Vu-Quang H, Doan VD, Nguyen VC. One-step approach of dual-responsive prodrug nanogels via Diels-Alder reaction for drug delivery. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04789-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Thankappan H, Semsarilar M, Li S, Chang Y, Bouyer D, Quemener D. Synthesis of Block Copolymer Brush by RAFT and Click Chemistry and Its Self-Assembly as a Thin Film. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25204774. [PMID: 33080832 PMCID: PMC7587578 DOI: 10.3390/molecules25204774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
A well-defined block copolymer brush poly(glycidyl methacrylate)-graft-(poly(methyl methacrylate)-block- poly(oligo(ethylene glycol) methyl ether methacrylate)) (PGMA-g-(PMMA-b-POEGMA)) is synthesized via grafting from an approach based on a combination of click chemistry and reversible addition-fragmentation chain transfer (RAFT) polymerization. The resulting block copolymer brushes were characterized by 1H-NMR and size exclusion chromatography (SEC). The self-assembly of the block copolymer brush was then investigated under selective solvent conditions in three systems: THF/water, THF/CH3OH, and DMSO/CHCl3. PGMA-g-(PMMA-b-POEGMA) was found to self-assemble into spherical micelle structures as analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The average size of the particles was much smaller in THF/CH3OH and DMSO/CHCl3 as compared with the THF/water system. Thin film of block copolymer brushes with tunable surface properties was then prepared by the spin-coating technique. The thickness of the thin film was confirmed by scanning electron microscopy (SEM). Atom force microscopy (AFM) analysis revealed a spherical morphology when the block copolymer brush was treated with poor solvents for the backbone and hydrophobic side chains. The contact angle measurements were used to confirm the surface rearrangements of the block copolymer brushes.
Collapse
Affiliation(s)
- Hajeeth Thankappan
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, ENSCM, CNRS, 34095 Montpellier, France; (H.T.); (M.S.); (S.L.); (D.B.)
| | - Mona Semsarilar
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, ENSCM, CNRS, 34095 Montpellier, France; (H.T.); (M.S.); (S.L.); (D.B.)
| | - Suming Li
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, ENSCM, CNRS, 34095 Montpellier, France; (H.T.); (M.S.); (S.L.); (D.B.)
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200, Chung-Bei Rd., Chungli, Taoyuan, 320, Taiwan;
| | - Denis Bouyer
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, ENSCM, CNRS, 34095 Montpellier, France; (H.T.); (M.S.); (S.L.); (D.B.)
| | - Damien Quemener
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, ENSCM, CNRS, 34095 Montpellier, France; (H.T.); (M.S.); (S.L.); (D.B.)
- Correspondence:
| |
Collapse
|
6
|
Zohreh N, Rastegaran Z, Hosseini SH, Akhlaghi M, Istrate C, Busuioc C. pH-triggered intracellular release of doxorubicin by a poly(glycidyl methacrylate)-based double-shell magnetic nanocarrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111498. [PMID: 33255062 DOI: 10.1016/j.msec.2020.111498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Two core-double-shell pH-sensitive nanocarriers were fabricated using Fe3O4 as magnetic core, poly(glycidyl methacrylate-PEG) and salep dialdehyde as the first and the second shell, and doxorubicin as the hydrophobic anticancer drug. Two nanocarriers were different in the drug loading steps. The interaction between the first and the second shell assumed to be pH-sensitive via acetal cross linkages. The structure of nanocarriers, organic shell loading, magnetic responsibility, morphology, size, dispersibility, and drug loading content were investigated by IR, NMR, TG, VSM, XRD, DLS, HRTEM and UV-Vis analyses. The long-term drug release profiles of both nanocarriers showed that the drug loading before cross-linking between the first and second shell led to a more pH-sensitive nanocarrier exhibiting higher control on DOX release. Cellular toxicity assay (MTT) showed that DOX-free nanocarrier is biocompatible having cell viability greater than 80% for HEK-293 and MCF-7 cell lines. Besides, high cytotoxic effect observed for drug-loaded nanocarrier on MCF-7 cancer cells. Cellular uptake analysis showed that the nanocarrier is able to transport DOX into the cytoplasm and perinuclear regions of MCF-7 cells. In vitro hemolysis and coagulation assays demonstrated high blood compatibility of nanocarrier. The results also suggested that low concentration of nanocarrier have a great potential as a contrast agent in magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran.
| | - Zahra Rastegaran
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1414713135, Iran
| | - Cosmin Istrate
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Magurele, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
7
|
Birhan YS, Darge HF, Hanurry EY, Andrgie AT, Mekonnen TW, Chou HY, Lai JY, Tsai HC. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020; 12:E580. [PMID: 32585885 PMCID: PMC7356386 DOI: 10.3390/pharmaceutics12060580] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022] Open
Abstract
Polymeric micelles (PMs) have been used to improve the poor aqueous solubility, slow absorption and non-selective biodistribution of chemotherapeutic agents (CAs), albeit, they suffer from disassembly and premature release of payloads in the bloodstream. To alleviate the thermodynamic instability of PMs, different core crosslinking approaches were employed. Herein, we synthesized the poly(ethylene oxide)-b-poly((2-aminoethyl)diselanyl)ethyl l-aspartamide)-b-polycaprolactone (mPEG-P(LA-DSeDEA)-PCL) copolymer which self-assembled into monodispersed nanoscale, 156.57 ± 4.42 nm, core crosslinked micelles (CCMs) through visible light-induced diselenide metathesis reaction between the pendant selenocystamine moieties. The CCMs demonstrated desirable doxorubicin (DOX)-loading content (7.31%) and encapsulation efficiency (42.73%). Both blank and DOX-loaded CCMs (DOX@CCMs) established appreciable colloidal stability in the presence of bovine serum albumin (BSA). The DOX@CCMs showed redox-responsive drug releasing behavior when treated with 5 and 10 mM reduced glutathione (GSH) and 0.1% H2O2. Unlike the DOX-loaded non-crosslinked micelles (DOX@NCMs) which exhibited initial burst release, DOX@CCMs demonstrated a sustained release profile in vitro where 71.7% of the encapsulated DOX was released within 72 h. In addition, the in vitro fluorescent microscope images and flow cytometry analysis confirmed the efficient cellular internalization of DOX@CCMs. The in vitro cytotoxicity test on HaCaT, MDCK, and HeLa cell lines reiterated the cytocompatibility (≥82% cell viability) of the mPEG-P(LA-DSeDEA)-PCL copolymer and DOX@CCMs selectively inhibit the viabilities of 48.85% of HeLa cells as compared to 15.75% of HaCaT and 7.85% of MDCK cells at a maximum dose of 10 µg/mL. Overall, all these appealing attributes make CCMs desirable as nanocarriers for the delivery and controlled release of DOX in tumor cells.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
8
|
Synthesis of zwitterionic redox-responsive nanogels by one-pot amine-thiol-ene reaction for anticancer drug release application. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Senchukova AS, Mikhailova ME, Gubarev AS, Lezov AA, Lebedeva EV, Makarov IA, Zorin IM, Tsvetkov NV. Molecular characteristics of polymerized surfactants: influence of introduced crosslinking agent and monomer concentration. POLYM INT 2019. [DOI: 10.1002/pi.5923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anna S Senchukova
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Mariya E Mikhailova
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Alexander S Gubarev
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Alexey A Lezov
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Elena V Lebedeva
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Ivan A Makarov
- Department of Macromolecular Chemistry, Institute of ChemistrySt Petersburg State University St Petersburg Russia
| | - Ivan M Zorin
- Department of Macromolecular Chemistry, Institute of ChemistrySt Petersburg State University St Petersburg Russia
| | - Nikolay V Tsvetkov
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| |
Collapse
|
10
|
Abstract
Introduction: The development of more efficacious vaccines, especially subunit vaccines administered via non-invasive routes, is a priority in vaccinology. Nanogels are materials that can meet the requirements to serve as efficient vaccine delivery vehicles (in terms of thermo-sensitivity, biocompatibility, and pH-responsiveness; among others); thus there is a growing interest in exploring the potential of nanogels for vaccine development. Areas covered: Herein, a critical analysis of nanogel synthesis methodologies is presented and nanogel-based vaccines under development are summarized and placed in perspective. Promising vaccine candidates based on nanogels have been reported for cancer, obesity, and infectious diseases (mainly respiratory diseases). Some of the candidates were administered by mucosal routes which are highly attractive in terms of simple administration and induction of protective responses at both mucosal and systemic levels. Expert opinion: The most advanced models of nanogel-based vaccines comprise candidates against cancer, based on cholesteryl pullulan nanogels evaluated in clinical trials with promising findings; as well as some vaccines against respiratory pathogens tested in mice thus far. Nonetheless, the challenge for this field is advancing in clinical trials and proving the protective potential in test animals for many other candidates. Implementing green synthesis approaches for nanogels is also required.
Collapse
|
11
|
Cegłowski M, Kurczewska J, Ruszkowski P, Schroeder G. Application of paclitaxel-imprinted microparticles obtained using two different cross-linkers for prolonged drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Ma X, Liu J, Lei L, Yang H, Lei Z. Synthesis of light and dual‐redox triple‐stimuli‐responsive core‐crosslinked micelles as nanocarriers for controlled release. J Appl Polym Sci 2019. [DOI: 10.1002/app.47946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Ma
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Jiangtao Liu
- College of PharmacyShaanxi University of Chinese Medicine Xianyang 712046 China
| | - Lei Lei
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Hong Yang
- Basic Experimental Teaching CenterShaanxi Normal University Xi'an 710062 China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
13
|
Xue Y, Tian J, Xu L, Liu Z, Shen Y, Zhang W. Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Dai Y, Chen X, Zhang X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym Chem 2019. [DOI: 10.1039/c8py01174e] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive polymeric micelles via click chemistry are divided into six major sections (temperature, light, ultrasound, pH, enzymes, and redox).
Collapse
Affiliation(s)
- Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Xin Chen
- School of Chemical Engineering and Technology
- Shanxi Key Laboratory of Energy Chemical Process Intensification
- Xi'an Jiao Tong University
- Xi'an 710049
- China
| | - Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|
15
|
Liu Y, Chen F, Zhang K, Wang Q, Chen Y, Luo X. pH-Responsive reversibly cross-linked micelles by phenol–yne click via curcumin as a drug delivery system in cancer chemotherapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00305c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-sensitive reversibly cross-linked micelles by phenol–yne click via curcumin (Cur) using mPEG-b-PHEMA-5HA are developed by combining drug loading and cross-linking as a drug delivery system.
Collapse
Affiliation(s)
- Yuancheng Liu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Fan Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Kui Zhang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Quan Wang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yuanwei Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Xianglin Luo
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
16
|
Orrillo AG, Escalante AM, Martinez-Amezaga M, Cabezudo I, Furlan RLE. Molecular Networks in Dynamic Multilevel Systems. Chemistry 2018; 25:1118-1127. [DOI: 10.1002/chem.201804143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Indexed: 11/07/2022]
Affiliation(s)
- A. Gastón Orrillo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Andrea M. Escalante
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Maitena Martinez-Amezaga
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ricardo L. E. Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| |
Collapse
|
17
|
Salma SA, Patil MP, Kim DW, Le CMQ, Ahn BH, Kim GD, Lim KT. Near-infrared light-responsive, diselenide containing core-cross-linked micelles prepared by the Diels–Alder click reaction for photocontrollable drug release application. Polym Chem 2018. [DOI: 10.1039/c8py00961a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a facile and efficient preparation of a NIR-triggered micelle system for a drug vehicle.
Collapse
Affiliation(s)
- Sabrina Aufar Salma
- Department of Display Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Maheshkumar Prakash Patil
- Department of Microbiology
- College of Natural Sciences
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Dong Woo Kim
- Department of Display Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Cuong Minh Quoc Le
- Department of Display Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Byung-Hyun Ahn
- Department of Materials Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology
- College of Natural Sciences
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Kwon Taek Lim
- Department of Display Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| |
Collapse
|
18
|
Morphology evolution of poly(glycidyl methacrylate) colloids in the 1,1-diphenylethene controlled soap-free emulsion polymerization. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Huo J, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y, Wen Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Adv 2017. [DOI: 10.1039/c6ra27012c] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most recent advances of the synthesis of poly-1,2,3-triazole-based functional materials.
Collapse
Affiliation(s)
- Jingpei Huo
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Huawen Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Zhang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Xiaohong Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
- Department of Chemistry
- University of Oslo
| | - Dongchu Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Jinwen Liu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Guifeng Xiao
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Yang Wang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Zhongliu Wen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| |
Collapse
|
20
|
Le CMQ, Thi HHP, Cao XT, Kim GD, Oh CW, Lim KT. Redox-responsive core cross-linked micelles of poly(ethylene oxide)-b
-poly(furfuryl methacrylate) by Diels-Alder reaction for doxorubicin release. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28271] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cuong M. Q. Le
- Department of Display Engineering; Pukyong National University; Busan South Korea
| | - Hai Ha Pham Thi
- Department of Microbiology; College of Natural Sciences, Pukyong National University; Busan South Korea
| | - Xuan Thang Cao
- Department of Display Engineering; Pukyong National University; Busan South Korea
| | - Gun-Do Kim
- Department of Microbiology; College of Natural Sciences, Pukyong National University; Busan South Korea
| | - Chul-Woong Oh
- Department of Marine Biology; Pukyong National University; Busan South Korea
| | - Kwon Taek Lim
- Department of Display Engineering; Pukyong National University; Busan South Korea
| |
Collapse
|