1
|
Fredi G, Santi S, Soccio M, Lotti N, Dorigato A. Electrospun Poly(butylene 2,5-furanoate) and Poly(pentamethylene 2,5-furanoate) Mats: Structure-Property Relationships and Thermo-Mechanical and Biological Characterization. Molecules 2025; 30:841. [PMID: 40005152 PMCID: PMC11858335 DOI: 10.3390/molecules30040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This study explores, for the first time, the application of electrospun biobased poly(butylene 2,5-furanoate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF) mats in biomedical and drug delivery fields, through a careful investigation of their structure-property relationship. PBF mats, with a glass transition temperature (Tg) of 25-30 °C and an as-spun crystallinity of 18.8%, maintained their fibrous structure (fiber diameter ~1.3 µm) and mechanical properties (stiffness ~100 MPa, strength ~4.5 MPa, strain at break ~200%) under treatment in physiological conditions (37 °C, pH 7.5). In contrast, PPeF mats, being amorphous with a Tg of 14 °C, underwent significant densification, with geometrical density increasing from 0.68 g/cm³ to 1.07 g/cm³, which depressed the specific (i.e., normalized by density) mechanical properties. DSC analysis revealed that the treatment promoted crystallization in PBF (reaching 45.9% crystallinity), while PPeF showed limited, but interestingly not negligible, structural reorganization. Both materials promoted good cell adhesion and were biocompatible, with lactate dehydrogenase release not exceeding 20% after 48 h. The potential of PBF mats for drug delivery was evaluated using dexamethasone. The mats exhibited a controlled drug release profile, with ~10% drug release in 4 h and ~50% in 20 h. This study demonstrates the versatility of these biopolyesters in biomedical applications and highlights the impact of polymer structure on material performance.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento Via Sommarive 9, 38123 Trento, Italy;
| | - Sofia Santi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento Via Sommarive 9, 38123 Trento, Italy;
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (M.S.); (N.L.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, Viale del Risorgimento 2, 40136 Bologna, Italy
- Interdepartmental Center for Industrial Research on Buildings and Construction CIRI-EC, Via del Lazzaretto 15/5, 40131 Bologna, Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (M.S.); (N.L.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, Viale del Risorgimento 2, 40136 Bologna, Italy
- Interdepartmental Center for Industrial Agro-Food Research, CIRI-AGRO, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento Via Sommarive 9, 38123 Trento, Italy;
| |
Collapse
|
2
|
Cai X, Zhao X, Mahmud S, Zhang X, Wang X, Wang J, Zhu J. Synthesis of Biobased Poly(butylene Furandicarboxylate) Containing Polysulfone with Excellent Thermal Resistance Properties. Biomacromolecules 2024; 25:1825-1837. [PMID: 38336482 DOI: 10.1021/acs.biomac.3c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A synthetic biopolymer derived from furandicarboxylic acid monomer and hydroxyethyl-terminated poly(ether sulfone) is presented. The synthesis involves 4,4'-dichlorodiphenyl sulfone and 4,4-dihydroxydiphenyl sulfone, resulting in poly(butylene furandicarboxylate)-poly(ether sulfone) copolyesters (PBFES) through melt polycondensation with titanium-catalyzed polymerization. This facile method yields segmented polyesters incorporating polysulfone, creating a versatile group of high-temperature thermoplastics with adjustable thermomechanical properties. The PBFES copolyesters demonstrate an impressive tensile modulus of 2830 MPa and a tensile strength of 84 MPa for PBFES55. Additionally, the poly(ether sulfone) unit imparts a relatively high glass transition temperature (Tg), ranging from 36.6 °C for poly(butylene 2,5-furandicarboxylate) to 112.3 °C for PBFES62. Moreover, the complete amorphous film of PBFES exhibits excellent transparency and solvent resistance, making it suitable for applications, such as food packaging materials.
Collapse
Affiliation(s)
- Xinhong Cai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xuefeng Zhao
- Hangzhou Joyoung Household Electrical Appliances Co., Ltd., Hangzhou 310018, People's Republic of China
| | - Sakil Mahmud
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoxing Wang
- School of Materials Science and Chemical Engineering, Ningbo University, No.818 Fenghua Road, Ningbo 315211, People's Republic of China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
3
|
Ren Y, Cheng L, Cheng Z, Liu Y, Li M, Yuan T, Shen Z. Molecular insight into the enhanced performance of CALB toward PBDF degradation. Int J Biol Macromol 2024; 262:130181. [PMID: 38360240 DOI: 10.1016/j.ijbiomac.2024.130181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Poly(butylene diglycolate-co-furandicarboxylate) (PBDF) is a newly developed biodegradable copolyester. Candida antarctica lipase B (CALB) has been identified as an effective catalyst for PBDF degradation. The mechanism is elucidated using a combination of molecular dynamics simulations and quantum chemistry approaches. The findings unveil a four-step catalytic reaction pathway. Furthermore, bond analysis, charge and interaction analysis are conducted to gain a more comprehensive understanding of the PBDF degradation process. Additionally, through the introduction of single-point mutations to crucial residues in CALB's active sites, two mutants, T138I and D134I, are discovered to exhibit improved catalytic efficiency. These significant findings contribute to the advancement of our comprehension concerning the molecular mechanism of underlying copolyesters degradation, while also presenting a novel approach for expediting the degradation rate by the CALB enzyme modification.
Collapse
Affiliation(s)
- Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Luwei Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China.
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Siracusa C, Quartinello F, Soccio M, Manfroni M, Lotti N, Dorigato A, Guebitz GM, Pellis A. On the Selective Enzymatic Recycling of Poly(pentamethylene 2,5-furanoate)/Poly(lactic acid) Blends and Multiblock Copolymers. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9751-9760. [PMID: 37425282 PMCID: PMC10324456 DOI: 10.1021/acssuschemeng.3c01796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Among novel renewable furanoate-based polyesters, poly(pentamethylene 2,5-furandicarboxylate) (PPeF) shows outstanding gas barrier properties and high flexibility. PPeF blending/copolymerization with another well-known bio-based polymer, poly(lactic acid) (PLA), leads to considerably better mechanical and gas barrier properties of the latter, making it suitable for flexible food packaging applications. In this work, enzymatic depolymerization of PLA/PPeF blends with different compositions (1, 3, 5, 20, 30, and 50 wt % PPeF) and a PLA-PPeF block copolymer (50 wt % PPeF) by cutinase 1 from Thermobifida cellulositilytica (Thc_Cut1) was investigated as a possible recycling strategy. Based on quantification of weight loss and high-performance liquid chromatography (HPLC) analysis of released molecules, faster hydrolysis was seen for PLA/PPeF blends with increasing PPeF content when compared to neat PLA, while the block copolymer (P(LA50PeF50)) was significantly less susceptible to hydrolysis. Surface morphology analysis (via scanning electron microscopy), Fourier transform infrared spectroscopy, and NMR analysis confirmed preferential hydrolysis of the PPeF component. Through crystallization, 2,5-furandicarboxylic acid was selectively recovered from the depolymerized films and used for the resynthesis of the PPeF homopolymer, demonstrating the potential of enzymes for novel recycling concepts. The possibility of selective recovery of 2,5-furandicarboxylic acid from the completely depolymerized films with a 75% yield could bring further evidence of the high value of these materials, both in the form of blends and copolymers, for a sustainable whole packaging life cycle, where PPeF is potentially enzymatically recycled and PLA is mechanically recycled.
Collapse
Affiliation(s)
- Chiara Siracusa
- acib
GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria
| | - Felice Quartinello
- acib
GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria
- Institute
of Environmental Biotechnology, University
of Natural Resources and Life Sciences Vienna Konrad-Lorenz-Strasse
20, 3430 Tulln, Donau, Austria
| | - Michelina Soccio
- Department
of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40138, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40138, Italy
| | - Mattia Manfroni
- Department
of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40138, Italy
| | - Nadia Lotti
- Department
of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40138, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40138, Italy
- Interdepartmental
Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna 40126, Italy
| | - Andrea Dorigato
- Department
of Industrial Engineering and INSTM Research Unit, University of Trento, Trento 38123, Italy
| | - Georg M. Guebitz
- acib
GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria
- Institute
of Environmental Biotechnology, University
of Natural Resources and Life Sciences Vienna Konrad-Lorenz-Strasse
20, 3430 Tulln, Donau, Austria
| | - Alessandro Pellis
- acib
GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria
- Institute
of Environmental Biotechnology, University
of Natural Resources and Life Sciences Vienna Konrad-Lorenz-Strasse
20, 3430 Tulln, Donau, Austria
- Department
of Chemistry and Industrial Chemistry, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
5
|
Zaidi S, Bougarech A, Abid M, Abid S, Silvestre AJD, Sousa AF. Highly Flexible Poly(1,12-dodecylene 5,5'-isopropylidene-bis(ethyl 2-furoate)): A Promising Biobased Polyester Derived from a Renewable Cost-Effective Bisfuranic Precursor and a Long-Chain Aliphatic Spacer. Molecules 2023; 28:molecules28104124. [PMID: 37241868 DOI: 10.3390/molecules28104124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The continuous search for novel biobased polymers with high-performance properties has highlighted the role of monofuranic-based polyesters as some of the most promising for future plastic industry but has neglected the huge potential for the polymers' innovation, relatively low cost, and synthesis easiness of 5,5'-isopropylidene bis-(ethyl 2-furoate) (DEbF), obtained from the platform chemical, worldwide-produced furfural. In this vein, poly(1,12-dodecylene 5,5'-isopropylidene -bis(ethyl 2-furoate)) (PDDbF) was introduced, for the first time, as a biobased bisfuranic long-chain aliphatic polyester with an extreme flexibility function, competing with fossil-based polyethylene. This new polyester in-depth characterization confirmed its expected structure (FTIR, 1H, and 13C NMR) and relevant thermal features (DSC, TGA, and DMTA), notably, an essentially amorphous character with a glass transition temperature of -6 °C and main maximum decomposition temperature of 340 °C. Furthermore, PDDbF displayed an elongation at break as high as 732%, around five times higher than that of the 2,5-furandicarboxylic acid counterpart, stressing the unique features of the bisfuranic class of polymers compared to monofuranic ones. The enhanced ductility combined with the relevant thermal properties makes PDDbF a highly promising material for flexible packaging.
Collapse
Affiliation(s)
- Sami Zaidi
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Faculty des Sciences, Laboratory de Chimie Appliquée HCGP, Université de Sfax, Sfax 3038, Tunisia
| | - Abdelkader Bougarech
- Faculty des Sciences, Laboratory de Chimie Appliquée HCGP, Université de Sfax, Sfax 3038, Tunisia
| | - Majdi Abid
- Chemistry Department, College of Science and Arts in Al-Qurayyat, Jouf University, Al-Qurayyat P.O. Box 756, Al Jouf, Saudi Arabia
| | - Souhir Abid
- Faculty des Sciences, Laboratory de Chimie Appliquée HCGP, Université de Sfax, Sfax 3038, Tunisia
- Chemistry Department, College of Science and Arts in Al-Qurayyat, Jouf University, Al-Qurayyat P.O. Box 756, Al Jouf, Saudi Arabia
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia F Sousa
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
6
|
Guidotti G, Soccio M, Gazzano M, Siracusa V, Lotti N. New Random Aromatic/Aliphatic Copolymers of 2,5-Furandicarboxylic and Camphoric Acids with Tunable Mechanical Properties and Exceptional Gas Barrier Capability for Sustainable Mono-Layered Food Packaging. Molecules 2023; 28:molecules28104056. [PMID: 37241804 DOI: 10.3390/molecules28104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
High molecular weight, fully biobased random copolymers of 2,5-furandicarboxylic acid (2,5-FDCA) containing different amounts of (1R, 3S)-(+)-Camphoric Acid (CA) have been successfully synthesized by two-stage melt polycondensation and compression molding in the form of films. The synthesized copolyesters have been first subjected to molecular characterization by nuclear magnetic resonance spectroscopy and gel-permeation chromatography. Afterward, the samples have been characterized from a thermal and structural point of view by means of differential scanning calorimetry, thermogravimetric analysis, and wide-angle X-ray scattering, respectively. Mechanical and barrier properties to oxygen and carbon dioxide were also tested. The results obtained revealed that chemical modification permitted a modulation of the abovementioned properties depending on the amount of camphoric co-units present in the copolymers. The outstanding functional properties promoted by camphor moieties addition could be associated with improved interchain interactions (π-π ring stacking and hydrogen bonds).
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40138 Bologna, Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, ISOF, CNR, 40129 Bologna, Italy
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, 95125 Catania, Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
7
|
Paszkiewicz S, Irska I, Zubkiewicz A, Walkowiak K, Rozwadowski Z, Dryzek J, Linares A, Nogales A, Ezquerra TA. Supramolecular structure, relaxation behavior and free volume of bio-based poly(butylene 2,5-furandicarboxylate)- block-poly(caprolactone) copolyesters. SOFT MATTER 2023; 19:959-972. [PMID: 36633480 DOI: 10.1039/d2sm01359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the present study, a fully plant-based sustainable copolyester series, namely poly(butylene 2,5-furandicarboxylate)-block-poly(caprolactone)s (PBF-block-PCL)s were successfully synthesized by melt polycondensation combining butylene 2,5-furandicarboxylate with polycaprolactone diol (PCL) at different weight ratios. Differential scanning calorimetry (DSC) showed that only PBF underwent melting, crystallization from the melt, and cold crystallization. Thermogravimetric analysis (TGA) revealed outstanding thermal stability, exceeding 305 °C, with further improvement in thermal and thermo-oxidative stability with increasing PCL content. Broadband dielectric spectroscopy (BDS) revealed that at low temperatures, below the glass transition (Tg) all copolyesters exhibited two relaxation processes (β1 and β2), whereas the homopolymer PBF exhibited a single β-relaxation, which is associated with local dynamics of the different chemical bonds present in the polymer chain. Additionally, it was proved that an increase in PCL content affected the dynamics of the chain making it more flexible, thus providing an increase in the value of the room temperature free volume fractions (fv) and the value of elongation at break. These effects are accompanied by a decrease in hardness, Young's modulus, and tensile strength. The described synthesis enables a facile approach to obtain novel fully multiblock biobased copolyesters based on PBF and PCL polyesters with potential industrial implementation capabilities.
Collapse
Affiliation(s)
- Sandra Paszkiewicz
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Izabela Irska
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Agata Zubkiewicz
- Department of Physics, West Pomeranian University of Technology, Al. Piastow 48, PL-70311 Szczecin, Poland
| | - Konrad Walkowiak
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Zbigniew Rozwadowski
- Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, Al. Piastów 42, PL-71065 Szczecin, Poland
| | - Jerzy Dryzek
- Institute of Nuclear Physics PAS, ul. Radzikowskiego 152, PL-31342 Cracow, Poland
| | - Amelia Linares
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| |
Collapse
|
8
|
Al-Tayyem BH, Sweileh BA. Synthesis and characterization of novel bio-based polyesters and poly(ester amide)s based on isosorbide and symmetrical cyclic anhydrides. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Chen M, Jiang Z, Qiu Z. Synthesis, thermal, and mechanical properties of fully biobased Poly(hexamethylene 2,5-furandicarboxylate-co-diglycolate) copolyesters. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Wang Q, Wang J, Dong Y, Zhang X, Hu H, OYoung L, Hu D, Zhu J. Synthesis of 2,5-furandicarboxylic acid-based biodegradable copolyesters with excellent gas barrier properties composed of various aliphatic diols. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
New biodegradable polyesters synthesized from 2,5-thiophenedicarboxylic acid with excellent gas barrier properties. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Isosorbide and 2,5-Furandicarboxylic Acid Based (Co)Polyesters: Synthesis, Characterization, and Environmental Degradation. Polymers (Basel) 2022; 14:polym14183868. [PMID: 36146011 PMCID: PMC9502350 DOI: 10.3390/polym14183868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 02/05/2023] Open
Abstract
Poly(2,5-furandicarboxylate)s incorporating aliphatic moieties represent a promising family of polyesters, typically entirely based on renewable resources and with tailored properties, notably degradability. This study aims to go beyond by developing poly(isosorbide 2,5-furandicarboxylate-co-dodecanedioate) copolyesters derived from isosorbide (Is), 2,5-furandicarboxylic acid (FDCA), and 1,12-dodecanedioic acid (DDA), and studying their degradation under environmental conditions, often overlooked, namely seawater conditions. These novel polyesters have been characterized in-depth using ATR-FTIR, 1H, and 13C NMR and XRD spectroscopies and thermal analysis (TGA and DSC). They showed enhanced thermal stability (up to 330 °C), and the glass transition temperature increased with the content of FDCA from ca. 9 to 60 °C. Regarding their (bio)degradation, the enzymatic conditions lead to the highest weight loss compared to simulated seawater conditions, with values matching 27% vs. 3% weight loss after 63 days of incubation, respectively. Copolymerization of biobased FDCA, Is, and DDA represents an optimal approach for shaping the thermal/(bio)degradation behaviors of these novel polyesters.
Collapse
|
13
|
Poulopoulou N, Nikolaidis GN, Ioannidis RO, Efstathiadou VL, Terzopoulou Z, Papageorgiou DG, Kapnisti M, Papageorgiou GZ. Aromatic But Sustainable: Poly(butylene 2,5-furandicarboxylate) as a Crystallizing Thermoplastic in the Bioeconomy. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niki Poulopoulou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - George N. Nikolaidis
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Raphael O. Ioannidis
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Vassa L. Efstathiadou
- Department of Chemistry, Laboratory of Chemistry and Technology of Polymers and Dyes, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Department of Chemistry, Laboratory of Chemistry and Technology of Polymers and Dyes, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios G. Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Maria Kapnisti
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece
| | - George Z. Papageorgiou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
14
|
Dong Y, Wang J, Yang Y, Wang Q, Zhang X, Hu H, Zhu J. Bio-based poly(butylene diglycolate-co-furandicarboxylate) copolyesters with balanced mechanical, barrier and biodegradable properties: A prospective substitute for PBAT. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Bio-based poly(butylene furandicarboxylate-co-butylene 2,5-thiophenedicarboxylate): synthesis, thermal properties, crystallization properties and mechanical properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Zhang X, Wang J, Dong Y, Wang Q, Zhu J. Self‐healing and biodegradable copolyesters synthesized from 2,
5‐furandicarboxylic
acid applied as human skin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
| | - Yunxiao Dong
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
- University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Qianfeng Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
| |
Collapse
|
17
|
Wiesfeld JJ, Asakawa M, Aoshima T, Fukuoka A, Hensen EJ, Nakajima K. A Catalytic Strategy for Selective Production of 5‐Formylfuran‐2‐carboxylic Acid and Furan‐2,5‐dicarboxylic Acid. ChemCatChem 2022. [DOI: 10.1002/cctc.202200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan J. Wiesfeld
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis JAPAN
| | - Miyuki Asakawa
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis JAPAN
| | - Takayuki Aoshima
- Mitsubishi Chemical Corporation: Mitsubishi Chemical Kabushiki Kaisha Science & Innovation Center JAPAN
| | - Atsushi Fukuoka
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis JAPAN
| | - Emiel J.M. Hensen
- Eindhoven University of Technology: Technische Universiteit Eindhoven Department of Chemical Engineering and Chemistry NETHERLANDS
| | - Kiyotaka Nakajima
- Hokkaido University Institute for Catalysis Kita 21 Nishi 10, Kita-ku 0010021 Sapporo JAPAN
| |
Collapse
|
18
|
Quattrosoldi S, Guidotti G, Soccio M, Siracusa V, Lotti N. Bio-based and one-day compostable poly(diethylene 2,5-furanoate) for sustainable flexible food packaging: Effect of ether-oxygen atom insertion on the final properties. CHEMOSPHERE 2022; 291:132996. [PMID: 34808204 DOI: 10.1016/j.chemosphere.2021.132996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the effect of ether oxygen atom introduction in a furan ring-containing polymer has been evaluated. Solvent-free polycondensation process permitted the preparation of high molecular weight poly(diethylene 2,5-furandicarboxylate) (PDEF), by reacting the dimethyl ester of 2,5-furandicarboxylic acid with diethylene glycol. After molecular and thermal characterization, PDEF mechanical response and gas barrier properties to O2 and CO2, measured at different temperatures and humidity, were studied and compared with those of poly(butylene 2,5-furandicarboxylate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF) previously determined. Both PDEF and PPeF films were amorphous, differently from PBF one. Glass transition temperature of PDEF (24 °C) is between those of PBF (39 °C) and PPeF (13 °C). As concerns mechanical response, PDEF is more flexible (elastic modulus [E] = 673 MPa) than PBF (E = 1290 MPa) but stiffer than PPeF (E = 9 MPa). Moreover, PDEF is the most thermally stable (temperature of maximum degradation rate being 418 for PDEF, 407 for PBF and 414 °C for PPeF) and hydrophilic (water contact angle being 74° for PDEF, 90° for PBF and 93° for PPeF), with gas barrier performances very similar to those of PPeF (O2 and CO2 transmission rate being 0.0022 and 0.0018 for PDEF and, 0.0016 and 0.0014 cm3 cm/m2 d atm for PPeF). Lab scale composting experiments indicated that PDEF and PPeF were compostable, the former degrading faster, in just one day. The results obtained are explained on the basis of the high electronegativity of ether oxygen atom with respect to the carbon one, and the consequent increase of dipoles along the macromolecule.
Collapse
Affiliation(s)
- Silvia Quattrosoldi
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy.
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy; Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Fei X, Wang J, Zhang X, Jia Z, Jiang Y, Liu X. Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers (Basel) 2022; 14:E625. [PMID: 35160613 PMCID: PMC8838965 DOI: 10.3390/polym14030625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The big challenge today is the upgrading of sustainable materials to replace miscellaneous ones from petroleum resources. Thus, a generic bio-based building block lays the foundation of the huge bio-market to green economy. 2,5-Furandicarboxylic acid (FDCA), a rigid diacid derived from lignocellulose or fructose, represents a great potential as a contender to terephthalic acid (TPA). Recently, studies on the synthesis, modification, and functionalization of bio-based polyesters based on FDCA have attracted widespread attention. To apply furanic polyesters on engineering plastics, packaging materials, electronics, etc., researchers have extended the properties of basic FDCA-based homo-polyesters by directional copolymerization and composite preparation. This review covers the synthesis and performance of polyesters and composites based on FDCA with emphasis bedded on the thermomechanical, crystallization, barrier properties, and biodegradability. Finally, a summary of what has been achieved and the issues waiting to be addressed of FDCA-based polyester materials are suggested.
Collapse
Affiliation(s)
- Xuan Fei
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
- University of Chinese Academy of Sciences, No.19 A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Zhen Jia
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Yanhua Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| |
Collapse
|
20
|
Zubkiewicz A, Szymczyk A, Sablong RJ, Soccio M, Guidotti G, Siracusa V, Lotti N. Bio-based aliphatic/aromatic poly(trimethylene furanoate/sebacate) random copolymers: Correlation between mechanical, gas barrier performances and compostability and copolymer composition. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Pandey S, Dumont MJ, Orsat V, Rodrigue D. Biobased 2,5-furandicarboxylic acid (FDCA) and its emerging copolyesters’ properties for packaging applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Bianchi E, Soccio M, Siracusa V, Gazzano M, Thiyagarajan S, Lotti N. Poly(butylene 2,4-furanoate), an Added Member to the Class of Smart Furan-Based Polyesters for Sustainable Packaging: Structural Isomerism as a Key to Tune the Final Properties. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:11937-11949. [PMID: 34513341 PMCID: PMC8424682 DOI: 10.1021/acssuschemeng.1c04104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/07/2021] [Indexed: 05/10/2023]
Abstract
High-molecular-weight poly(butylene 2,4-furanoate) (2,4-PBF), an isomer of well-known poly(butylene 2,5-furanoate) (2,5-PBF), was synthesized through an eco-friendly solvent-free polycondensation process and processed in the form of an amorphous film by compression molding. Molecular characterization was carried out by NMR spectroscopy and GPC analysis, confirming the chemical structure and high polymerization degree. Thermal analyses evidenced a reduction of both glass-to-rubber transition and melting temperatures, as well as a detriment of crystallization capability, for 2,4-PBF with respect to 2,5-PBF. Nevertheless, it was possible to induce crystal phase formation by annealing treatment. Wide-angle X-ray scattering revealed that the crystal lattices developed in the two isomers are distinct from each other. The different isomerism affects also the thermal stability, being 2,4-PBF more thermally inert than 2,5-PBF. Functional properties, such as wettability, mechanical response, and gas barrier capability, were tested on both amorphous and semicrystalline 2,4-PBF films and compared with those of 2,5-PBF. Reduced hydrophilicity was determined for 2,4-isomer, in line with its lower average dipole moment, suggesting better chemical resistance to hydrolysis. Stress-strain tests have evidenced the higher flexibility and toughness of 2,4-PBF with respect to those of 2,5-PBF and the possibility of improving its mechanical resistance by annealing. Finally, the different isomerism deeply affects the gas barrier performance, being the O2- and CO2-transmission rates of 2,4-PBF 50 and 110 times lower, respectively, than those of 2,5-PBF. The gas barrier properties turned out to be outstanding under a dry atmosphere as well as in humid conditions, suggesting the presence of interchain hydrogen bonds. The gas blocking capability decreases after annealing because of the presence of disclination associated with the formation of crystals.
Collapse
Affiliation(s)
- Enrico Bianchi
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40126, Italy
| | - Valentina Siracusa
- Department
of Chemical Science, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Massimo Gazzano
- Institute
of Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | | | - Nadia Lotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40126, Italy
- Interdepartmental
Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
23
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Poly(1,4-butylene -co-1,4-cyclohexanedimethylene 2,5-furandicarboxylate) copolyester: Potential bio-based engineering plastic. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Shen A, Wang J, Ma S, Fei X, Zhang X, Zhu J, Liu X. Completely amorphous high thermal resistant copolyesters from bio‐based 2,
5‐furandicarboxylic
acid. J Appl Polym Sci 2021. [DOI: 10.1002/app.50627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ang Shen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- University of Chinese Academy of Sciences Beijing China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- University of Chinese Academy of Sciences Beijing China
| | - Shugang Ma
- PetroChina Petrochemical Research Institute Beijing China
| | - Xuan Fei
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
26
|
Towards increased sustainability for aromatic polyesters: Poly(butylene 2,5-furandicarboxylate) and its blends with poly(butylene terephthalate). POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Pellis A, Malinconico M, Guarneri A, Gardossi L. Renewable polymers and plastics: Performance beyond the green. N Biotechnol 2020; 60:146-158. [PMID: 33068793 DOI: 10.1016/j.nbt.2020.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
Renewable bio-based polymers are one of the effective answers that the bioeconomy offers to solve the environmental emergency connected to plastics and more specifically fossil-based plastics. Previous studies have shown that more than 70 % of the natural capital cost associated with plastic derives from the extraction and processing of fossil raw materials and that the price of fossil plastic would be on average 44 % higher if such impact was fully paid by businesses. The disclosure of the hidden costs of plastics will contribute to dispelling the myth of the expensiveness of renewable polymers. Nevertheless, the adoption of bio-based plastics in the market must be motivated by their functional properties and not merely by their green credentials. This article highlights some successful examples of synergies between chemistry and biotechnology in achieving a new generation of bio-based monomers and polymers. Their success is justified by the combination of scientific advances with positive environmental and social fallouts.
Collapse
Affiliation(s)
- Alessandro Pellis
- University of Natural Resources and Life Sciences Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
| | - Mario Malinconico
- Institute for Polymers, Composites and Biomaterials, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Alice Guarneri
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lucia Gardossi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
28
|
Robles-Hernández B, Soccio M, Castrillo I, Guidotti G, Lotti N, Alegría Á, Martínez-Tong DE. Poly(alkylene 2,5-furanoate)s thin films: Morphology, crystallinity and nanomechanical properties. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Guidotti G, Soccio M, García-Gutiérrez MC, Ezquerra T, Siracusa V, Gutiérrez-Fernández E, Munari A, Lotti N. Fully Biobased Superpolymers of 2,5-Furandicarboxylic Acid with Different Functional Properties: From Rigid to Flexible, High Performant Packaging Materials. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:9558-9568. [PMID: 33796416 PMCID: PMC8007128 DOI: 10.1021/acssuschemeng.0c02840] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Indexed: 05/10/2023]
Abstract
In the present paper, four fully biobased homopolyesters of 2,5-furandicarboxylic acid (2,5-FDCA) with a high molecular weight have been successfully synthesized by two-stage melt polycondensation, starting from the dimethyl ester of 2,5-FDCA and glycols of different lengths (the number of methylene groups ranged from 3 to 6). The synthesized polyesters have been first subjected to an accurate molecular characterization by NMR and gel-permeation chromatography. Afterward, the samples have been successfully processed into free-standing thin films (thickness comprised between 150 to 180 μm) by compression molding. Such films have been characterized from the structural (by wide-angle X-ray scattering and small-angle X-ray scattering), thermal (by differential scanning calorimetry and thermogravimetric analysis), mechanical (by tensile test), and gas barrier (by permeability measurements) point of view. The glycol subunit length was revealed to be the key parameter in determining the kind and fraction of ordered phases developed by the sample during compression molding and subsequent cooling. After storage at room temperature for one month, only the homopolymers containing the glycol subunit with an even number of -CH2- groups (poly(butylene 2,5-furanoate) (PBF) and poly(hexamethylene 2,5-furanoate) (PHF)) were able to develop a three-dimensional ordered crystalline phase in addition to the amorphous one, the other two appearing completely amorphous (poly(propylene 2,5-furanoate (PPF) and poly(pentamethylene 2,5-furanoate) (PPeF)). From X-ray scattering experiments using synchrotron radiation, it was possible to evidence a third phase characterized by a lower degree of order (one- or two-dimensional), called a mesophase, in all the samples under study, its fraction being strictly related to the glycol subunit length: PPeF was found to be the sample with the highest fraction of mesophase followed by PHF. Such a mesophase, together with the amorphous and the eventually present crystalline phase, significantly impacted the mechanical and barrier properties, these last being particularly outstanding for PPeF, the polyester with the highest fraction of mesophase among those synthesized in the present work.
Collapse
Affiliation(s)
- Giulia Guidotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Mari Cruz García-Gutiérrez
- Instituto
de Estructura de la Materia IEM-CSIC, Consejo Superior de Investigaciones
Científicas, Calle Serrano 121, 28006 Madrid, Spain
| | - Tiberio Ezquerra
- Instituto
de Estructura de la Materia IEM-CSIC, Consejo Superior de Investigaciones
Científicas, Calle Serrano 121, 28006 Madrid, Spain
| | - Valentina Siracusa
- Dipartimento
di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Edgar Gutiérrez-Fernández
- Instituto
de Estructura de la Materia IEM-CSIC, Consejo Superior de Investigaciones
Científicas, Calle Serrano 121, 28006 Madrid, Spain
| | - Andrea Munari
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
30
|
Soccio M, Martínez-Tong DE, Guidotti G, Robles-Hernández B, Munari A, Lotti N, Alegria A. Broadband Dielectric Spectroscopy Study of Biobased Poly(alkylene 2,5-furanoate)s' Molecular Dynamics. Polymers (Basel) 2020; 12:E1355. [PMID: 32560215 PMCID: PMC7361705 DOI: 10.3390/polym12061355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Poly(2,5-alkylene furanoate)s are bio-based, smart, and innovative polymers that are considered the most promising materials to replace oil-based plastics. These polymers can be synthesized using ecofriendly approaches, starting from renewable sources, and result into final products with properties comparable and even better than those presented by their terephthalic counterparts. In this work, we present the molecular dynamics of four 100% bio-based poly(alkylene 2,5-furanoate)s, using broadband dielectric spectroscopy measurements that covered a wide temperature and frequency range. We unveiled complex local relaxations, characterized by the simultaneous presence of two components, which were dependent on thermal treatment. The segmental relaxation showed relaxation times and strengths depending on the glycolic subunit length, which were furthermore confirmed by high-frequency experiments in the molten region of the polymers. Our results allowed determining structure-property relations that are able to provide further understanding about the excellent barrier properties of poly(alkylene 2,5-furanoate)s. In addition, we provide results of high industrial interest during polymer processing for possible industrial applications of poly(alkylene furanoate)s.
Collapse
Affiliation(s)
- Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Daniel E. Martínez-Tong
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Beatriz Robles-Hernández
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| | - Andrea Munari
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Angel Alegria
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| |
Collapse
|
31
|
Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review. Polymers (Basel) 2020; 12:polym12061209. [PMID: 32466455 PMCID: PMC7361963 DOI: 10.3390/polym12061209] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 01/29/2023] Open
Abstract
Polyesters based on 2,5-furandicarboxylic acid (FDCA) are a new class of biobased polymers with enormous interest, both from a scientific and industrial perspective. The commercialization of these polymers is imminent as the pressure for a sustainable economy grows, and extensive worldwide research currently takes place on developing cost-competitive, renewable plastics. The most prevalent method for imparting these polymers with new properties is copolymerization, as many studies have been published over the last few years. This present review aims to summarize the trends in the synthesis of FDCA-based copolymers and to investigate the effectiveness of this approach in transforming them to a more versatile class of materials that could potentially be appropriate for a number of high-end and conventional applications.
Collapse
|
32
|
Microstructure and Mechanical/Elastic Performance of Biobased Poly (Butylene Furanoate)- Block-Poly (Ethylene Oxide) Copolymers: Effect of the Flexible Segment Length. Polymers (Basel) 2020; 12:polym12020271. [PMID: 32013046 PMCID: PMC7077390 DOI: 10.3390/polym12020271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of this paper is to extend knowledge on biobased poly(butylene furanoate)–block–poly (ethylene oxide) (PBF-b-PEO) copolymers’ performance by studying the effect of the PEO segment’s molecular weight on the microstructure and materials behavior. As crystallization ability of PEO depends on its molecular weight, the idea was to use two PEO segment lengths, expecting that the longer one would be able to crystallize affecting the phase separation in copolymers, thus affecting their mechanical performance, including elasticity. Two series of PBF-block-PEOs with the PEO segments of 1000 and 2000 g/mol and different PBF/PEO segment ratios were synthesized by polycondensation in melt, injection molded to confirm their processability, and subjected to characterization by NMR, FTIR, DSC, DMTA, WAXS, TGA, and mechanical parameters. Indeed, the PEO2000 segment not only supported the crystallization of the PBF segments in copolymers, but at contents at least 50 wt % is getting crystallizable in the low temperature range, which results in the microstructure development and affects the mechanical properties. While the improvement in the phase separation slightly reduces the copolymers’ ability to deformation, it is beneficial for the elastic recovery of the materials. The investigations were performed on the injection molded samples reflecting the macroscopic properties of the bulk materials.
Collapse
|
33
|
Poulopoulou N, Smyrnioti D, Nikolaidis GN, Tsitsimaka I, Christodoulou E, Bikiaris DN, Charitopoulou MA, Achilias DS, Kapnisti M, Papageorgiou GZ. Sustainable Plastics from Biomass: Blends of Polyesters Based on 2,5-Furandicarboxylic Acid. Polymers (Basel) 2020; 12:E225. [PMID: 31963284 PMCID: PMC7023567 DOI: 10.3390/polym12010225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Intending to expand the thermo-physical properties of bio-based polymers, furan-based thermoplastic polyesters were synthesized following the melt polycondensation method. The resulting polymers, namely, poly(ethylene 2,5-furandicarboxylate) (PEF), poly(propylene 2,5-furandicarboxylate) (PPF), poly(butylene 2,5-furandicarboxylate) (PBF) and poly(1,4-cyclohexanedimethylene 2,5-furandicarboxylate) (PCHDMF) are used in blends together with various polymers of industrial importance, including poly(ethylene terephthalate) (PET), poly(ethylene 2,6-naphthalate) (PEN), poly(L-lactic acid) (PLA) and polycarbonate (PC). The blends are studied concerning their miscibility, crystallization and solid-state characteristics by using wide-angle X-ray diffractometry (WAXD), differential scanning calorimetry (DSC) and polarized light microscopy (PLM). PEF blends show in general dual glass transitions in the DSC heating traces for the melt quenched samples. Only PPF-PEF blends show a single glass transition and a single melt phase in PLM. PPF forms immiscible blends except with PEF and PBF. PBF forms miscible blends with PCHDMF and PPF, whereas all other blends show dual glass transitions in DSC and phase separation in PLM. PCHDMF-PEF and PEN-PEF blends show two glass transition temperatures, but they shift to intermediate temperature values depending on the composition, indicating some partial miscibility of the polymer pairs.
Collapse
Affiliation(s)
- Niki Poulopoulou
- Chemistry Department, University of Ioannina, P.O. box 1186, 45110 Ioannina, Greece; (N.P.); (D.S.); (G.N.N.); (I.T.)
| | - Dimitra Smyrnioti
- Chemistry Department, University of Ioannina, P.O. box 1186, 45110 Ioannina, Greece; (N.P.); (D.S.); (G.N.N.); (I.T.)
| | - George N. Nikolaidis
- Chemistry Department, University of Ioannina, P.O. box 1186, 45110 Ioannina, Greece; (N.P.); (D.S.); (G.N.N.); (I.T.)
| | - Ilektra Tsitsimaka
- Chemistry Department, University of Ioannina, P.O. box 1186, 45110 Ioannina, Greece; (N.P.); (D.S.); (G.N.N.); (I.T.)
| | - Evi Christodoulou
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.C.); (D.N.B.); (M.A.C.); (D.S.A.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.C.); (D.N.B.); (M.A.C.); (D.S.A.)
| | - Maria Anna Charitopoulou
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.C.); (D.N.B.); (M.A.C.); (D.S.A.)
| | - Dimitris S. Achilias
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.C.); (D.N.B.); (M.A.C.); (D.S.A.)
| | - Maria Kapnisti
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - George Z. Papageorgiou
- Chemistry Department, University of Ioannina, P.O. box 1186, 45110 Ioannina, Greece; (N.P.); (D.S.); (G.N.N.); (I.T.)
| |
Collapse
|
34
|
Bi T, Qiu Z. Synthesis, thermal and mechanical properties of fully biobased poly(butylene-co-propylene 2,5-furandicarboxylate) copolyesters with low contents of propylene 2,5-furandicarboxylate units. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Kasmi N, Ainali NM, Agapiou E, Papadopoulos L, Papageorgiou GZ, Bikiaris DN. Novel high Tg fully biobased poly(hexamethylene-co-isosorbide-2,5-furan dicarboxylate) copolyesters: Synergistic effect of isosorbide insertion on thermal performance enhancement. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108983] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Guidotti G, Soccio M, Lotti N, Siracusa V, Gazzano M, Munari A. New multi-block copolyester of 2,5-furandicarboxylic acid containing PEG-like sequences to form flexible and degradable films for sustainable packaging. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108963] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Gigli M, Quartinello F, Soccio M, Pellis A, Lotti N, Guebitz GM, Licoccia S, Munari A. Enzymatic hydrolysis of poly(1,4-butylene 2,5-thiophenedicarboxylate) (PBTF) and poly(1,4-butylene 2,5-furandicarboxylate) (PBF) films: A comparison of mechanisms. ENVIRONMENT INTERNATIONAL 2019; 130:104852. [PMID: 31195223 DOI: 10.1016/j.envint.2019.05.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Enzymatic hydrolysis of poly(1,4-butylene 2,5-thiophenedicarboxylate) (PBTF) and poly(1,4-butylene 2,5-furandicarboxylate) (PBF) by Humicola insolens (HiC) and Thermobifida cellulosilytica (Cut) cutinases is investigated. For the first time, the different depolymerization mechanisms of PBTF (endo-wise scission) and PBF (exo-wise cleavage) has been unveiled and correlated to the chemical structure of the two polyesters.
Collapse
Affiliation(s)
- Matteo Gigli
- University of Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Felice Quartinello
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Michelina Soccio
- University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering, Via Terracini 28, 40131 Bologna, Italy
| | - Alessandro Pellis
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria; University of York, Department of Chemistry, Green Chemistry Centre of Excellence, YO10 5DD Heslington, York, UK.
| | - Nadia Lotti
- University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering, Via Terracini 28, 40131 Bologna, Italy.
| | - Georg M Guebitz
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria; Austrian Centre of Industrial Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Silvia Licoccia
- University of Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Andrea Munari
- University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
38
|
Poulopoulou N, Pipertzis A, Kasmi N, Bikiaris DN, Papageorgiou DG, Floudas G, Papageorgiou GZ. Green polymeric materials: On the dynamic homogeneity and miscibility of furan-based polyester blends. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Wang X, Wang Q, Liu S, Wang G. Synthesis and characterization of poly(isosorbide-co-butylene 2,5-furandicarboxylate) copolyesters. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Poulopoulou N, Kantoutsis G, Bikiaris DN, Achilias DS, Kapnisti M, Papageorgiou GZ. Biobased Engineering Thermoplastics: Poly(butylene 2,5-furandicarboxylate) Blends. Polymers (Basel) 2019; 11:E937. [PMID: 31146490 PMCID: PMC6632038 DOI: 10.3390/polym11060937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 11/23/2022] Open
Abstract
Poly(butylene 2,5-furandicarboxylate) (PBF) constitutes a new engineering polyester produced from renewable resources, as it is synthesized from 2,5-furandicarboxylic acid (2,5-FDCA) and 1,4-butanediol (1,4-BD), both formed from sugars coming from biomass. In this research, initially high-molecular-weight PBF was synthesized by applying the melt polycondensation method and using the dimethylester of FDCA as the monomer. Furthermore, five different series of PBF blends were prepared, namely poly(l-lactic acid)-poly(butylene 2,5-furandicarboxylate) (PLA-PBF), poly(ethylene terephthalate)-poly(butylene 2,5-furandicarboxylate) (PET-PBF), poly(propylene terephthalate)-poly(butylene 2,5-furandicarboxylate) (PPT-PBF), poly(butylene 2,6-naphthalenedicarboxylate)-poly(butylene 2,5-furandicarboxylate) (PBN-PBF), and polycarbonate-poly(butylene 2,5-furandicarboxylate) (PC-PBF), by dissolving the polyesters in a trifluoroacetic acid/chloroform mixture (1/4 v/v) followed by coprecipitation as a result of adding the solutions into excess of cold methanol. The wide-angle X-ray diffraction (WAXD) patterns of the as-prepared blends showed that mixtures of crystals of the blend components were formed, except for PC which did not crystallize. In general, a lower degree of crystallinity was observed at intermediate compositions. The differential scanning calorimetry (DSC) heating scans for the melt-quenched samples proved homogeneity in the case of PET-PBF blends. In the remaining cases, the blend components showed distinct Tgs. In PPT-PBF blends, there was a shift of the Tgs to intermediate values, showing some partial miscibility. Reactive blending proved to improve compatibility of the PBN-PBF blends.
Collapse
Affiliation(s)
- Niki Poulopoulou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| | - George Kantoutsis
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Macedonia, Greece.
| | - Dimitris S Achilias
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Macedonia, Greece.
| | - Maria Kapnisti
- Department of Food Science and Technology, International Hellenic University, PO Box 141, GR-57400 Thessaloniki, Greece.
| | - George Z Papageorgiou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| |
Collapse
|
41
|
Guidotti G, Genovese L, Soccio M, Gigli M, Munari A, Siracusa V, Lotti N. Block Copolyesters Containing 2,5-Furan and trans-1,4-Cyclohexane Subunits with Outstanding Gas Barrier Properties. Int J Mol Sci 2019; 20:E2187. [PMID: 31052594 PMCID: PMC6539254 DOI: 10.3390/ijms20092187] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
Biopolymers are gaining increasing importance as substitutes for plastics derived from fossil fuels, especially for packaging applications. In particular, furanoate-based polyesters appear as the most credible alternative due to their intriguing physic/mechanical and gas barrier properties. In this study, block copolyesters containing 2,5-furan and trans-1,4-cyclohexane moieties were synthesized by reactive blending, starting from the two parent homopolymers: poly(propylene furanoate) (PPF) and poly(propylene cyclohexanedicarboxylate) (PPCE). The whole range of molecular architectures, from long block to random copolymer with a fixed molar composition (1:1 of the two repeating units) was considered. Molecular, thermal, tensile, and gas barrier properties of the prepared materials were investigated and correlated to the copolymer structure. A strict dependence of the functional properties on the copolymers' block length was found. In particular, short block copolymers, thanks to the introduction of more flexible cyclohexane-containing co-units, displayed high elongation at break and low elastic modulus, thus overcoming PPF's intrinsic rigidity. Furthermore, the exceptionally low gas permeabilities of PPF were further improved due to the concomitant action of the two rings, both capable of acting as mesogenic groups in the presence of flexible aliphatic units, and thus responsible for the formation of 1D/2D ordered domains, which in turn impart outstanding barrier properties.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Laura Genovese
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Matteo Gigli
- Department of Chemical Science and Technologies, University of Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy.
| | - Andrea Munari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
42
|
Poulopoulou N, Kasmi N, Siampani M, Terzopoulou ZN, Bikiaris DN, Achilias DS, Papageorgiou DG, Papageorgiou GZ. Exploring Next-Generation Engineering Bioplastics: Poly(alkylene furanoate)/Poly(alkylene terephthalate) (PAF/PAT) Blends. Polymers (Basel) 2019; 11:E556. [PMID: 30960540 PMCID: PMC6473530 DOI: 10.3390/polym11030556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/20/2022] Open
Abstract
Polymers from renewable resources and especially strong engineering partially aromatic biobased polyesters are of special importance for the evolution of bioeconomy. The fabrication of polymer blends is a creative method for the production of tailor-made materials for advanced applications that are able to combine functionalities from both components. In this study, poly(alkylene furanoate)/poly(alkylene terephthalate) blends with different compositions were prepared by solution blending in a mixture of trifluoroacetic acid and chloroform. Three different types of blends were initially prepared, namely, poly(ethylene furanoate)/poly(ethylene terephthalate) (PEF/PET), poly(propylene furanoate)/poly(propylene terephthalate) (PPF/PPT), and poly(1,4-cyclohenedimethylene furanoate)/poly(1,4-cycloxehane terephthalate) (PCHDMF/PCHDMT). These blends' miscibility characteristics were evaluated by examining the glass transition temperature of each blend. Moreover, reactive blending was utilized for the enhancement of miscibility and dynamic homogeneity and the formation of copolymers through transesterification reactions at high temperatures. PEF⁻PET and PPF⁻PPT blends formed a copolymer at relatively low reactive blending times. Finally, poly(ethylene terephthalate-co-ethylene furanoate) (PETF) random copolymers were successfully introduced as compatibilizers for the PEF/PET immiscible blends, which resulted in enhanced miscibility.
Collapse
Affiliation(s)
- Niki Poulopoulou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| | - Nejib Kasmi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece.
| | - Maria Siampani
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| | - Zoi N Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece.
| | - Dimitris S Achilias
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece.
| | - Dimitrios G Papageorgiou
- School of Materials and National Graphene Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - George Z Papageorgiou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| |
Collapse
|
43
|
Kasmi N, Wahbi M, Papadopoulos L, Terzopoulou Z, Guigo N, Sbirrazzuoli N, Papageorgiou GZ, Bikiaris DN. Synthesis and characterization of two new biobased poly(pentylene 2,5-furandicarboxylate-co-caprolactone) and poly(hexamethylene 2,5-furandicarboxylate-co-caprolactone) copolyesters with enhanced enzymatic hydrolysis properties. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Ouyang Q, Liu J, Li C, Zheng L, Xiao Y, Wu S, Zhang B. A facile method to synthesize bio-based and biodegradable copolymers from furandicarboxylic acid and isosorbide with high molecular weights and excellent thermal and mechanical properties. Polym Chem 2019. [DOI: 10.1039/c9py01314h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biobased, biodegradable copolymers containing isosorbide and 2,5-furandicarboxylic acid with high performance are successfully synthesized through a non-solvent and economical pathway.
Collapse
Affiliation(s)
- Qing Ouyang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Joint Laboratory of Polymer Science and Materials
- Centre for Molecular Science
- Institute of Chemistry Chinese Academy of Sciences (ICCAS)
| | - Jiajian Liu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Joint Laboratory of Polymer Science and Materials
- Centre for Molecular Science
- Institute of Chemistry Chinese Academy of Sciences (ICCAS)
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Joint Laboratory of Polymer Science and Materials
- Centre for Molecular Science
- Institute of Chemistry Chinese Academy of Sciences (ICCAS)
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Joint Laboratory of Polymer Science and Materials
- Centre for Molecular Science
- Institute of Chemistry Chinese Academy of Sciences (ICCAS)
| | - Yaonan Xiao
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Joint Laboratory of Polymer Science and Materials
- Centre for Molecular Science
- Institute of Chemistry Chinese Academy of Sciences (ICCAS)
| | - Shaohua Wu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Joint Laboratory of Polymer Science and Materials
- Centre for Molecular Science
- Institute of Chemistry Chinese Academy of Sciences (ICCAS)
| | - Bo Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Joint Laboratory of Polymer Science and Materials
- Centre for Molecular Science
- Institute of Chemistry Chinese Academy of Sciences (ICCAS)
| |
Collapse
|
45
|
Hu H, Zhang R, Ying WB, Shi L, Yao C, Kong Z, Wang K, Wang J, Zhu J. Sustainable and rapidly degradable poly(butylene carbonate-co-cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties. Polym Chem 2019. [DOI: 10.1039/c9py00083f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sustainable and fast biodegradable PBCCEs copolyesters have potential applications in green packaging and tissue engineering.
Collapse
Affiliation(s)
- Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- People's Republic of China
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- People's Republic of China
| | - Wu Bin Ying
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- People's Republic of China
| | - Lei Shi
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- People's Republic of China
| | - Chenkai Yao
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- People's Republic of China
| | - Zhengyang Kong
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- People's Republic of China
| | - Kai Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- People's Republic of China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- People's Republic of China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- People's Republic of China
| |
Collapse
|
46
|
Ordered structures of poly(butylene 2,5-thiophenedicarboxylate) and their impact on material functional properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Biobased copolyesters: Synthesis, structure, thermal and mechanical properties of poly(ethylene 2,5-furandicarboxylate-co-ethylene 1,4-cyclohexanedicarboxylate). Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Matos M, F Sousa A, H C S Silva N, S R Freire C, Andrade M, Mendes A, J D Silvestre A. Furanoate-Based Nanocomposites: A Case Study Using Poly(Butylene 2,5-Furanoate) and Poly(Butylene 2,5-Furanoate)- co-(Butylene Diglycolate) and Bacterial Cellulose. Polymers (Basel) 2018; 10:polym10080810. [PMID: 30960735 PMCID: PMC6403708 DOI: 10.3390/polym10080810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/22/2018] [Indexed: 11/28/2022] Open
Abstract
Polyesters made from 2,5-furandicarboxylic acid (FDCA) have been in the spotlight due to their renewable origins, together with the promising thermal, mechanical, and/or barrier properties. Following the same trend, (nano)composite materials based on FDCA could also generate similar interest, especially because novel materials with enhanced or refined properties could be obtained. This paper presents a case study on the use of furanoate-based polyesters and bacterial cellulose to prepare nanocomposites, namely acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate) and acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate)-co-(butylene diglycolate)s. The balance between flexibility, prompted by the furanoate-diglycolate polymeric matrix; and the high strength prompted by the bacterial cellulose fibres, enabled the preparation of a wide range of new nanocomposite materials. The new nanocomposites had a glass transition between −25–46 °C and a melting temperature of 61–174 °C; and they were thermally stable up to 239–324 °C. Furthermore, these materials were highly reinforced materials with an enhanced Young’s modulus (up to 1239 MPa) compared to their neat copolyester counterparts. This was associated with both the reinforcing action of the cellulose fibres and the degree of crystallinity of the nanocomposites. In terms of elongation at break, the nanocomposites prepared from copolyesters with higher amounts of diglycolate moieties displayed higher elongations due to the soft nature of these segments.
Collapse
Affiliation(s)
- Marina Matos
- CICECO-Aveiro Institute of Materials, Departmento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Andreia F Sousa
- CICECO-Aveiro Institute of Materials, Departmento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Nuno H C S Silva
- CICECO-Aveiro Institute of Materials, Departmento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Departmento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Márcia Andrade
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Adélio Mendes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Departmento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
49
|
Hu H, Zhang R, Shi L, Ying WB, Wang J, Zhu J. Modification of Poly(butylene 2,5-furandicarboxylate) with Lactic Acid for Biodegradable Copolyesters with Good Mechanical and Barrier Properties. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Lei Shi
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Wu Bin Ying
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| |
Collapse
|
50
|
Guidotti G, Soccio M, Lotti N, Gazzano M, Siracusa V, Munari A. Poly(propylene 2,5-thiophenedicarboxylate) vs. Poly(propylene 2,5-furandicarboxylate): Two Examples of High Gas Barrier Bio-Based Polyesters. Polymers (Basel) 2018; 10:E785. [PMID: 30960710 PMCID: PMC6403766 DOI: 10.3390/polym10070785] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022] Open
Abstract
Both academia and industry are currently devoting many efforts to develop high gas barrier bioplastics as substitutes of traditional fossil-based polymers. In this view, this contribution presents a new biobased aromatic polyester, i.e., poly(propylene 2,5-thiophenedicarboxylate) (PPTF), which has been compared with the furan-based counterpart (PPF). Both biopolyesters have been characterized from the molecular, thermo-mechanical and structural points of view. Gas permeability behavior has been evaluated with respect to 100% oxygen, carbon dioxide and nitrogen at 23 °C. In case of CO₂ gas test, gas transmission rate has been also measured at different temperatures. The permeability behavior at different relative humidity has been investigated for both biopolyesters, the thiophen-containing sample demonstrating to be better than the furan-containing counterpart. PPF's permeability behavior became worse than PPTF's with increasing RH, due to the more polar nature of the furan ring. Both biopolyesters under study are characterized by superior gas barrier performances with respect to PEF and PET. With the simple synthetic strategy adopted, the exceptional barrier properties render these new biobased polyesters interesting alternatives in the world of green and sustainable packaging materials. The different polarity and stability of heterocyclic rings was revealed to be an efficient tool to tailor the ability of crystallization, which in turn affects mechanical and barrier performances.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Andrea Munari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|