1
|
Kazmi SAR, Husnain SM, Khan AR, Qureshi TM, Lemaoui T, AlNashef IM, Arafat HA, Shahzad F. Removal of nickel ions from industrial wastewater using tms-EDTA-functionalized Ti 3C 2T x: Experimental and statistical physics modeling. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137667. [PMID: 40022919 DOI: 10.1016/j.jhazmat.2025.137667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
This study investigates the surface modification of Ti3C2Tx MXene using tms-EDTA (EDTA@MXene) to develop an efficient adsorbent for divalent heavy metal cations, such as Cd²⁺, Cu²⁺, Ni²⁺, Pb²⁺, and Zn²⁺, from contaminated water. EDTA@MXene showed significantly enhanced adsorption capacities for these ions compared to pristine MXene. Using nickel ion (Ni²⁺) as a model adsorbate, EDTA@MXene demonstrated remarkable removal efficiency, reaching a maximum adsorption capacity of 249.5 mg/g as compared to the 61.4 mg/g of pristine MXene with fast kinetics and attaining equilibrium within 30 min. The results indicated that Ni²⁺ adsorption followed a pseudo-second-order kinetic model, with equilibrium data fitting both Langmuir and Freundlich isotherm models. As the classical adsorption models remained inconclusive on the underlying adsorption mechanisms, advanced statistical physics models were subsequently applied for deeper investigation. The findings revealed that Ni²⁺ ions adsorbed onto the surface in a non-parallel orientation. The adsorption process was reversible, endothermic, and driven mainly by physical interactions, with higher temperatures favoring greater adsorption capacity. EDTA@MXene demonstrated excellent reusability, maintaining high (>80 %) regeneration efficiency after five regeneration cycles. It also exhibited a high adsorption capacity for Ni²⁺ ions from nickel electroplating wastewater, highlighting its potential for real application in the treatment of metal-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Syed Asad Raza Kazmi
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650, Pakistan
| | - Syed Muhammad Husnain
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Abdul Rehman Khan
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650, Pakistan
| | - Tariq M Qureshi
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Tarek Lemaoui
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Inas M AlNashef
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Hassan A Arafat
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Shahzad
- Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Ayiotis A, Georgiou E, Ioannou PS, Pashalidis I, Krasia-Christoforou T. 3D Composite U(VI) Adsorbents Based on Alginate Hydrogels and Oxidized Biochar Obtained from Luffa cylindrica. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6577. [PMID: 37834714 PMCID: PMC10574392 DOI: 10.3390/ma16196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
3D naturally derived composites consisting of calcium alginate hydrogels (CA) and oxidized biochar obtained from Luffa cylindrica (ox-LC) were synthesized and further evaluated as adsorbents for the removal of U(VI) from aqueous media. Batch-type experiments were conducted to investigate the effect of various physicochemical parameters on the adsorption performance of materials. The maximum adsorption capacity (qmax) was 1.7 mol kg-1 (404.6 mg·g-1) at pH 3.0 for the CA/ox-LC with a 10% wt. ox-LC content. FTIR spectroscopy indicated the formation of inner-sphere complexes between U(VI) and the surface-active moieties existing on both CA and ox-LC, while thermodynamic data revealed that the adsorption process was endothermic and entropy-driven. The experimental data obtained from the adsorption experiments were well-fitted by the Langmuir and Freundlich models. Overall, the produced composites exhibited enhanced adsorption efficiency against U(VI), demonstrating their potential use as effective adsorbents for the recovery of uranium ions from industrial effluents and seawater.
Collapse
Affiliation(s)
- Andreas Ayiotis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| | - Efthalia Georgiou
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (E.G.); (I.P.)
| | - Panagiotis S. Ioannou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (E.G.); (I.P.)
| | - Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| |
Collapse
|
3
|
Ioannidis I, Pashalidis I, Arkas M. Actinide Ion (Americium-241 and Uranium-232) Interaction with Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. Gels 2023; 9:690. [PMID: 37754371 PMCID: PMC10530514 DOI: 10.3390/gels9090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
The binding of actinide ions (Am(III) and U(VI)) in aqueous solutions by hybrid silica-hyperbranched poly(ethylene imine) nanoparticles (NPs) and xerogels (XGs) has been studied by means of batch experiments at different pH values (4, 7, and 9) under ambient atmospheric conditions. Both materials present relatively high removal efficiency at pH 4 and pH 7 (>70%) for Am(III) and U(VI). The lower removal efficiency for the nanoparticles is basically associated with the compact structure of the nanoparticles and the lower permeability and access to active amine groups compared to xerogels, and the negative charge of the radionuclide species is formed under alkaline conditions (e.g., UO2(CO3)34- and Am(CO3)2-). Generally, the adsorption process is relatively slow due to the very low radionuclide concentrations used in the study and is basically governed by the actinide diffusion from the aqueous phase to the solid surface. On the other hand, adsorption is favored with increasing temperature, assuming that the reaction is endothermic and entropy-driven, which is associated with increasing randomness at the solid-liquid interphase upon actinide adsorption. To the best of our knowledge, this is the first study on hybrid silica-hyperbranched poly(ethylene imine) nanoparticle and xerogel materials used as adsorbents for americium and uranium at ultra-trace levels. Compared to other adsorbent materials used for binding americium and uranium ions, both materials show far higher binding efficiency. Xerogels could remove both actinides even from seawater by almost 90%, whereas nanoparticles could remove uranium by 80% and americium by 70%. The above, along with their simple derivatization to increase the selectivity towards a specific radionuclide and their easy processing to be included in separation technologies, could make these materials attractive candidates for the treatment of radionuclide/actinide-contaminated water.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Nicosia, Cyprus;
| | - Ioannis Pashalidis
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Nicosia, Cyprus;
| | - Michael Arkas
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| |
Collapse
|
4
|
Arkas M, Giannakopoulos K, Favvas EP, Papageorgiou S, Theodorakopoulos GV, Giannoulatou A, Vardavoulias M, Giannakoudakis DA, Triantafyllidis KS, Georgiou E, Pashalidis I. Comparative Study of the U(VI) Adsorption by Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111794. [PMID: 37299697 DOI: 10.3390/nano13111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to the dendritic cavities, and MW of the organic matrix, was investigated to determine the optimum formulation for water purification under these conditions. This was attained with the aid of UV-visible and FTIR spectroscopy, dynamic light scattering (DLS), ζ-potential, liquid nitrogen (LN2) porosimetry, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results highlighted that both adsorbents have extraordinary sorption capacities. Xerogels are cost-effective since they approximate the performance of nanoparticles with much less organic content. Both adsorbents could be used in the form of dispersions. The xerogels, though, are more practicable materials since they may penetrate the pores of a metal or ceramic solid substrate in the form of a precursor gel-forming solution, producing composite purification devices.
Collapse
Affiliation(s)
- Michael Arkas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Konstantinos Giannakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Evangelos P Favvas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Sergios Papageorgiou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - George V Theodorakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Artemis Giannoulatou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | | | | | | | - Efthalia Georgiou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
5
|
Georgiou E, Raptopoulos G, Anastopoulos I, Giannakoudakis DA, Arkas M, Paraskevopoulou P, Pashalidis I. Uranium Removal from Aqueous Solutions by Aerogel-Based Adsorbents-A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020363. [PMID: 36678117 PMCID: PMC9866664 DOI: 10.3390/nano13020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/12/2023]
Abstract
Aerogels are a class of lightweight, nanoporous, and nanostructured materials with diverse chemical compositions and a huge potential for applications in a broad spectrum of fields. This has led the IUPAC to include them in the top ten emerging technologies in chemistry for 2022. This review provides an overview of aerogel-based adsorbents that have been used for the removal and recovery of uranium from aqueous environments, as well as an insight into the physicochemical parameters affecting the adsorption efficiency and mechanism. Uranium removal is of particular interest regarding uranium analysis and recovery, to cover the present and future uranium needs for nuclear power energy production. Among the methods used, such as ion exchange, precipitation, and solvent extraction, adsorption-based technologies are very attractive due to their easy and low-cost implementation, as well as the wide spectrum of adsorbents available. Aerogel-based adsorbents present an extraordinary sorption capacity for hexavalent uranium that can be as high as 8.8 mol kg−1 (2088 g kg−1). The adsorption data generally follow the Langmuir isotherm model, and the kinetic data are in most cases better described by the pseudo-second-order kinetic model. An evaluation of the thermodynamic data reveals that the adsorption is generally an endothermic, entropy-driven process (ΔH0, ΔS0 > 0). Spectroscopic studies (e.g., FTIR and XPS) indicate that the adsorption is based on the formation of inner-sphere complexes between surface active moieties and the uranyl cation. Regeneration and uranium recovery by acidification and complexation using carbonate or chelating ligands (e.g., EDTA) have been found to be successful. The application of aerogel-based adsorbents to uranium removal from industrial processes and uranium-contaminated waste waters was also successful, assuming that these materials could be very attractive as adsorbents in water treatment and uranium recovery technologies. However, the selectivity of the studied materials towards hexavalent uranium is limited, suggesting further developments of aerogel materials that could be modified by surface derivatization with chelating agents (e.g., salophen and iminodiacetate) presenting high selectivity for uranyl moieties.
Collapse
Affiliation(s)
- Efthalia Georgiou
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100 Arta, Greece
| | | | - Michael Arkas
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15771 Athens, Greece
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Pashalidis
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| |
Collapse
|
6
|
Xia X, Dong F, Nie X, Pan N, Liu C, Ding C, Wang J, Cheng W, He H, Sun S, Zhang Y. Efficient adsorption of U(VI) using in low-level radioactive wastewater containing organic matter by amino groups modified polyacrylonitrile fibers. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Philippou K, Christou CN, Socoliuc V, Vekas L, Tanasă E, Miclau M, Pashalidis I, Krasia‐Christoforou T. Superparamagnetic polyvinylpyrrolidone/chitosan/
Fe
3
O
4
electrospun nanofibers as effective U(
VI
) adsorbents. J Appl Polym Sci 2020. [DOI: 10.1002/app.50212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Christos N. Christou
- Department of Mechanical and Manufacturing Engineering University of Cyprus Nicosia Cyprus
| | - Vlad Socoliuc
- Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids Romanian Academy – Timisoara Branch Timisoara Romania
| | - Ladislau Vekas
- Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids Romanian Academy – Timisoara Branch Timisoara Romania
- Research Center for Complex Fluids Systems Engineering Politehnica University of Timisoara Timisoara Romania
| | - Eugenia Tanasă
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest Bucharest Romania
| | - Marinela Miclau
- Applied Physics Department National Institute for Research and Development in Electrochemistry and Condensed Matter Timisoara Romania
| | | | | |
Collapse
|
8
|
Karagiorgis S, Tsamis A, Voutouri C, Turcu R, Porav SA, Socoliuc V, Vekas L, Louca M, Stylianopoulos T, Vavourakis V, Krasia-Christoforou T. Engineered magnetoactive collagen hydrogels with tunable and predictable mechanical response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111089. [PMID: 32994019 DOI: 10.1016/j.msec.2020.111089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022]
Abstract
In the present study, the synthesis of superparamagnetic collagen-based nanocomposite hydrogels with tunable swelling, mechanical and magnetic properties is reported. The fabrication strategy involved the preparation of pristine collagen type-I hydrogels followed by their immersion in highly stable aqueous solutions containing pre-formed double-layer oleic acid-coated hydrophilic magnetite nanoparticles (OA.OA.Fe3O4) at different concentrations, to interrogate nanoparticles' deposition within the 3D fibrous collagen matrix. Besides the investigation of the morphology, composition and magnetic properties of the produced materials, their mechanical properties were experimentally evaluated under confined compressive loading conditions while an exponential constitutive equation was employed to describe their mechanical response. Moreover, the deposition of the nanoparticles in the collagenous matrix was modeled mathematically with respect to the swelling of the gel and the effective stiffness of the matrix. The model recapitulated nanoparticle diffusion and deposition as well as hydrogel swelling, in terms of nanoparticles' size and concentration of OA.OA.Fe3O4 aqueous solution.
Collapse
Affiliation(s)
- Savvas Karagiorgis
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Alkiviadis Tsamis
- University of Leicester, School of Engineering, University Road, LE1 7RH Leicester, UK
| | - Chrysovalantis Voutouri
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Sebastian Alin Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Vlad Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223, Timisoara, Romania
| | - Ladislau Vekas
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223, Timisoara, Romania; Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania
| | - Maria Louca
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Triantafyllos Stylianopoulos
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Vasileios Vavourakis
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS; University College London, Department of Medical Physics and Biomedical Engineering, Gower Street, WC1E 6BT London, UK
| | - Theodora Krasia-Christoforou
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS.
| |
Collapse
|
9
|
Lian Q, Yao L, Uddin Ahmad Z, Gang DD, Konggidinata MI, Gallo AA, Zappi ME. Enhanced Pb(II) adsorption onto functionalized ordered mesoporous carbon (OMC) from aqueous solutions: the important role of surface property and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23616-23630. [PMID: 32291646 DOI: 10.1007/s11356-020-08487-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Functionalized ordered mesoporous carbon (MOMC-NP) was synthesized by chemical modification using HNO3 and H3PO4 to enhance Pb(II) adsorption. The phosphate functional group represented by P-O-C bonding onto the surface of OMC was verified by FT-IR and XPS. Batch adsorption experiments revealed the improvement of adsorption capacity by 39 times over the virgin OMC. Moreover, the Pb(II) adsorption results provided excellent fits to Langmuir model and pseudo-second-order kinetic model. The adsorption mechanism of Pb(II) onto MOMC-NP revealed the formation of metal complexes with carboxyl, hydroxyl, and phosphate groups through ion exchange reactions and hydrogen bondings. The calculated activation energy was 22.09 kJ/mol, suggesting that Pb(II) adsorption was a chemisorption. At pH>pHpzc, the main Pb(II) existing species of Pb(II) and Pb(OH)+ combine with the carboxyl, hydroxyl, and phosphate functional groups via electrostatic interactions and hydrogen bonding. All these findings demonstrated that MOMC-NP could be a useful and potential adsorbent for adsorptive removal of Pb(II). Graphical abstract.
Collapse
Affiliation(s)
- Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Rd, Nanyang, Henan, People's Republic of China
| | - Zaki Uddin Ahmad
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA
- Wastewater Infrastructure Planning, Houston Water, Houston Public Works, 611 Walker Street (18th Floor), Houston, TX, 77002, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA.
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA.
| | - Mas Iwan Konggidinata
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| | - August A Gallo
- Department of Chemistry, University of Louisiana at Lafayette, P. O. Box 43700, Lafayette, LA, 70504, USA
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| |
Collapse
|
10
|
Lian Q, Yao L, Ahmad ZU, Konggidinata MI, Zappi ME, Gang DD. Modeling mass transfer for adsorptive removal of Pb(II) onto phosphate modified ordered mesoporous carbon (OMC). JOURNAL OF CONTAMINANT HYDROLOGY 2020; 228:103562. [PMID: 31672254 DOI: 10.1016/j.jconhyd.2019.103562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/09/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Phosphate modified ordered mesoporous carbon (MOMC-NP) has been synthesized and proven to be an effective adsorbent for Pb(II) removal from aqueous solutions. However, the key application components of the mass transfer operations and diffusion coefficient have not been determined. In this study, a modified Finite Bath Diffusion Control Model was mathematically developed containing a constant related to the radius of the adsorbent particle and the fractional attainment of adsorption. The adsorption experiments were conducted under various initial Pb(II) concentrations ranging from 60 mg L-1 to 100 mg L-1. The results suggested that the modified Finite Bath Diffusion Control Model was more applicable to the experimental data than the original Finite Bath Diffusion Control Model. The average value of the diffusion coefficient (λD¯) obtained from the modified finite bath diffusion control model was 1.63 × 10-2 cm2 s-1 indicating the effective diffusivity in the adsorption of Pb(II) on MOMC-NP. Overall, the modified Finite Bath Diffusion Control Model exhibited the precise description and simulation of the mass transfer kinetics for Pb(II) adsorption onto MOMC-NP. Therefore, the modified Finite Bath Diffusion Control Model could be effectively used to investigate the mass transfer kinetics of the adsorption process.
Collapse
Affiliation(s)
- Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Rd, Nanyang, Henan, PR China.
| | - Zaki Uddin Ahmad
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA
| | - Mas Iwan Konggidinata
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA 70504, USA
| | - Mark E Zappi
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA.
| |
Collapse
|
11
|
Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers. Carbohydr Polym 2019; 219:298-305. [DOI: 10.1016/j.carbpol.2019.05.041] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/25/2019] [Accepted: 05/10/2019] [Indexed: 01/08/2023]
|
12
|
Özdemir İ, Tekin N, Kara A. Magnetic porous polymer microspheres: Synthesis, characterization and adsorption performance for the removal of phenol. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1586445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- İnci Özdemir
- Property Protection and Security Department, Kocaeli University, Izmit Vocational School, Kocaeli, Turkey
| | - Nalan Tekin
- Science and Art Faculty, Department of Chemistry, Kocaeli University, Kocaeli, Turkey
| | - Ali Kara
- Science and Art Faculty, Department of Chemistry, Uludag University, Bursa, Turkey
| |
Collapse
|
13
|
Ramos-Jacques A, Lujan-Montelongo J, Silva-Cuevas C, Cortez-Valadez M, Estevez M, Hernandez-Martínez A. Lead (II) removal by poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate). Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Sun Z, Duan X, Srinivasakannan C, Liang J. Preparation of magnesium silicate/carbon composite for adsorption of rhodamine B. RSC Adv 2018; 8:7873-7882. [PMID: 35539118 PMCID: PMC9078478 DOI: 10.1039/c7ra12848g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/26/2018] [Accepted: 01/31/2018] [Indexed: 11/21/2022] Open
Abstract
A magnesium silicate/carbon composite was prepared by a simple hydrothermal method using sodium silicate, magnesium sulfate, glucose and sodium acetate as raw materials. The composite was characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET to understand the morphological and chemical changes. It was found that the composite was composed of amorphous magnesium silicate and amorphous hydrothermal carbon with a layered porous structure and a specific surface area of 235 m2 g-1. Rhodamine B (RhB) was used as a simulated contaminant in water to assess the adsorption properties of the composite. The equilibrium adsorption capacity of the composite was found to be 244 mg g-1, 27.48% higher than that of magnesium silicate. The adsorption of RhB onto the composite was affected by pH of the solution with the highest adsorption capacity corresponding to a pH of 9. The adsorption kinetics of RhB onto the composite could be better described by a pseudo second-order model. The adsorption process was found to be controlled by intraparticle-diffusion. The adsorption isotherm data matched better with that of the Langmuir model, confirming monolayer adsorption on the homogeneous surface. In view of its good adsorption capacity, the adsorbent prepared in this study has the potential of treating dye wastewater in practical applications.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| | - Xinhui Duan
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| | - C Srinivasakannan
- Chemical Engineering Department, Khalifa University of Science and Technology, The Petroleum Institute Abu Dhabi United Arab Emirates
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| |
Collapse
|