1
|
Obeidat WM, Lahlouh IK. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025; 26:108. [PMID: 40244367 DOI: 10.1208/s12249-025-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The integration of nanotechnology into drug delivery systems holds great promise for enhancing pharmaceutical effectiveness. This approach enables precise targeting, controlled release, improved patient compliance, reduced side effects, and increased bioavailability. Nanoparticles are vital for transporting biomolecules-such as proteins, enzymes, genes, and vaccines-through various administration routes, including oral, intranasal, vaginal, buccal, and pulmonary. Among biodegradable polymers, chitosan, a linear polysaccharide derived from chitin, stands out due to its biocompatibility, safety, biodegradability, mucoadhesive properties, and ability to enhance permeation. Its cationic nature supports strong molecular interactions and provides antimicrobial, anti-inflammatory, and hemostatic benefits. However, its solubility, influenced by pH and ionic sensitivity, poses challenges requiring effective solutions. This review explores chitosan, its modified derivatives and chitosan nanoparticles mainly, focusing on nanoparticles physicochemical properties, drug release mechanisms, preparation methods, and factors affecting their mean hydrodynamic diameter (particle size). It highlights their application in drug delivery systems and disease treatments across various routes. Key considerations include drug loading capacity, zeta potential, and stability, alongside the impact of molecular weight, degree of deacetylation, and drug solubility on nanoparticle properties. Recent advancements and studies underscore chitosan's potential, emphasizing its modified derivatives'versatility in improving therapeutic outcomes.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan.
| | - Ishraq K Lahlouh
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Shahid N, Erum A, Hanif S, Malik NS, Tulain UR, Syed MA. Nanocomposite Hydrogels-A Promising Approach towards Enhanced Bioavailability and Controlled Drug Delivery. Curr Pharm Des 2024; 30:48-62. [PMID: 38155469 DOI: 10.2174/0113816128283466231219071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
Nanotechnology has emerged as the eminent focus of today's research to overcome challenges related to conventional drug delivery systems. A wide spectrum of novel delivery systems has been investigated to improve the therapeutic outcomes of drugs. The polymer-based nanocomposite hydrogels (NCHs) that have evolved as efficient carriers for controlled drug delivery are of particular interest in this regard. Nanocomposites amalgamate the properties of both nanoparticles (NPs) as well as hydrogels, exhibiting superior functionalities over conventional hydrogels. This multiple functionality is based upon advanced mechanical, electrical, optical as well as magnetic properties. Here is a brief overview of the various types of nanocomposites, such as NCHs based on Carbon-bearing nanomaterials, polymeric nanoparticles, inorganic nanoparticles, and metal and metal-oxide NPs. Accordingly, this article will review numerous ways of preparing these NCHs with particular emphasis on the vast biomedical applications displayed by them in numerous fields such as tissue engineering, drug delivery, wound healing, bioprinting, biosensing, imaging and gene silencing, cancer therapy, antibacterial therapy, etc. Moreover, various features can be tuned, based on the final application, by controlling the chemical composition of hydrogel network, which may also influence the released conduct. Subsequently, the recent work and future prospects of this newly emerging class of drug delivery system have been enlisted.
Collapse
Affiliation(s)
- Nariman Shahid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Sana Hanif
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Muhammad Ali Syed
- Department of Pharmaceutical Sciences, Faculty of Chemistry & Life Sciences, GC University Lahore, Lahore, Pakistan
| |
Collapse
|
3
|
Akhlaghi N, Najafpour-Darzi G. Thermosensitive injectable dual drug-loaded chitosan-based hybrid hydrogel for treatment of orthopedic implant infections. Carbohydr Polym 2023; 320:121138. [PMID: 37659783 DOI: 10.1016/j.carbpol.2023.121138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/04/2023]
Abstract
A myriad of therapeutic agents and drug delivery systems are available to the surgeons for treating orthopedic implant-associated infections (OIAI), but only very few have demonstrated their effectiveness in preventing bacteria colonization and biofilm formation due to challenges in the local and sustainable therapeutic release. To address this issue, in this work, a thermosensitive injectable hydrogel based on chitosan (CH)-integrated hydroxyapatite nanoparticles (HAP NPs) containing vancomycin (Van) and quercetin (QC)-loaded in F127 micelles (CH-HAP-FQ-Van hydrogel) was fabricated with potential application in the treatment of OIAI. This dual drug delivery system demonstrated a pH-sensitive drug release pattern. In addition, 100 % growth inhibition of Staphylococcus aureus for a duration of 14 days was observed. Apart from the strong antioxidant activities owing to the co-administration of QC even after 432 h, this composite hydrogel revealed 95.88 ± 2.8 % S. aureus biofilm eradication. By consideration of degradation stability (53.52 ± 4.24 %) during 60 days along with smart gelation within 10 min at 37 °C and easy injectability, CH-HAP-FQ-Van hydrogel could be used as a promising ideal local drug delivery system for implant-related infections.
Collapse
Affiliation(s)
- Neda Akhlaghi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran
| | - Ghasem Najafpour-Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran.
| |
Collapse
|
4
|
Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers (Basel) 2022; 14:4755. [PMID: 36365747 PMCID: PMC9656617 DOI: 10.3390/polym14214755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| | | | | | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| |
Collapse
|
5
|
Wu J, Wang X, Li H, Qu M, Sun W, Yan X, Zhao Z, Li B. A hollow chitosan-coated PLGA microsphere to enhance drug delivery and anticancer efficiency. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mohamed Haneef INH, Mohd Shaffiar N, Buys YF, Syed Shaharuddin SI, Abdul Hamid AM, Widiyati K. Recent advancement in polymer/halloysite nanotube nanocomposites for biomedical applications. J Biomed Mater Res B Appl Biomater 2022; 110:2574-2588. [PMID: 35661579 DOI: 10.1002/jbm.b.35105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
Halloysite nanotubes (HNTs) have recently been the subject of extensive research as a reinforcing filler. HNT is a natural nanoclay, non-toxic and biocompatible, hence, applicable in biomedical fields. This review focuses on the mechanical, thermal, and functional properties of polymer nanocomposites with HNT as a reinforcing agent from an experimental and theoretical perspective. In addition, this review also highlights the recent applications of polymer/HNT nanocomposites in the biomedical fields.
Collapse
Affiliation(s)
| | - Norhashimah Mohd Shaffiar
- Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Yose Fachmi Buys
- Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia
| | | | - Abdul Malek Abdul Hamid
- Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Khusnun Widiyati
- Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia
| |
Collapse
|
7
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
8
|
Comparative Evaluation of the Effectiveness of a Combination of Absorbable Gelatin Sponge and Calendula officinalis with Absorbable Gelatin Sponge Used Alone as a Hemostatic Agent—An In-Vitro Study. Dent J (Basel) 2022; 10:dj10050076. [PMID: 35621529 PMCID: PMC9140170 DOI: 10.3390/dj10050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Excessive bleeding can complicate surgical intervention; this could be managed using an effective hemostatic agent that provides immediate and early bleeding control. Gelatin sponge and Calendula officinalis have been proven to have good hemostatic properties. The present In-vitro study analyzed the cytotoxicity and hemostatic properties of gelatin sponge and Calendula officinalis. The cytotoxic concentration/effective concentration of Calendula officinalis was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The drug release was determined using a vertical Franz diffusion cell apparatus; solid-state characterization was assessed using Fourier-transform infrared spectroscopy (FTIR) and a differential scanning calorimeter (DSC). The MTT assay showed 7% Calendula officinalis to be cytocompatible, and there was an increase in cell proliferation. When the 7% Calendula officinalis was loaded into the sponge, it was compatible, and the drug content was found to be 56.28 ± 13.84%. The time taken for the blood clot formation was measured using the Lee–White method. The gelatin sponge’s time for clot formation was 161.70 ± 3.11 s, and the Calendula officinalis loaded gelatin sponge’s time for clot formation was 158.75 ± 4.60 s. Hence, it could be concluded that when Calendula officinalis is incorporated into a gelatin sponge, it shows material compatibility and cytocompatibility, reduces the time for clot formation, and could be used as an alternative to other hemostatic agents.
Collapse
|
9
|
Maghraby YR, Farag MA, G Kontominas M, Shakour ZT, Ramadan AR. Nanoencapsulated Extract of a Red Seaweed (Rhodophyta) Species as a Promising Source of Natural Antioxidants. ACS OMEGA 2022; 7:6539-6548. [PMID: 35252650 PMCID: PMC8892674 DOI: 10.1021/acsomega.1c05517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Marine seaweed species represent an important source of bioactive compounds possessing antioxidant activity. This study aimed at evaluating the antioxidant capacity of the Jania rubens algal extract by means of two antioxidant assays, i.e., 2,2-diphenyl-1-picrylhydrazyl and ferric-reducing antioxidant power. The seaweeds' total phenolic and flavonoid contents were also assayed as markers of antioxidant activity. To identify active agents responsible for the antioxidant activity, gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry were used for comprehensive metabolites characterization. To enhance the Jania rubens efficacy, the extract was nanoencapsulated using an ionic gelation method by means of high-pressure homogenization. The optimum nanoformulation had a particle size of 161 nm, a ζ potential of 31.2 mV, a polydispersity index of 0.211, and entrapment efficiency of 99.7%. The in vitro phytochemicals' release profiles of Jania rubens chitosan nanoparticles in comparison to the concentration of the raw algal extract were studied by the dialysis bag diffusion method revealing that the extract was released in a controlled pattern. The results indicated the potential advantages of the encapsulated Jania rubens extract, with its potent antioxidant activity, for use in different applications where sustained release is useful.
Collapse
Affiliation(s)
- Yasmin R. Maghraby
- Chemistry
Department, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Mohamed A. Farag
- Chemistry
Department, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | | | - Zeinab T. Shakour
- Pharmacognosy
Department, National Center for Natural
Products Research, Giza 11111, Egypt
| | - Adham R. Ramadan
- Chemistry
Department, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
10
|
Novel antibacterial hydrogels based on gelatin/polyvinyl-alcohol and graphene oxide/silver nanoconjugates: formulation, characterization, and preliminary biocompatibility evaluation. Heliyon 2022; 8:e09145. [PMID: 35846480 PMCID: PMC9280498 DOI: 10.1016/j.heliyon.2022.e09145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
|
11
|
Current trends in chitosan based nanopharmaceuticals for topical vaginal therapies. Int J Biol Macromol 2021; 193:2140-2152. [PMID: 34780894 DOI: 10.1016/j.ijbiomac.2021.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 11/06/2021] [Indexed: 01/21/2023]
Abstract
Large surface area, rich vascularisation, well defined mucous membrane, balanced pH and relatively low enzymatic activity makes vagina a suitable site for drugs associated with women's health issues like Urinary tract infection (UTI) and vaginal infections. Therapeutic performance of intravaginal dosage forms largely depends on the properties of polymers and drugs. Chitosan (CS) because of its unique physical, chemical, pharmaceutical and biopharmaceutical properties have received a great deal of attention as an essential component in vaginal drug delivery systems. Further the presence of free amino and hydroxyl groups on the chitosan skeleton allows easy derivatization under mild conditions to meet specific application requirements. Moreover, CS-based nanopharmaceuticals like nanoparticles, nanofiber, nanogel, nanofilm, liposomes and micelles are widely studied to improve therapeutic performance of vaginal formulations. However, susceptibility of CS to the acidic pH of vagina, poor loading of hydrophobic drugs, rapid mucosal turn over are the key issues need to be addressed for successful outcomes. In this review, we have discussed the application of CS and CS derivatives in vaginal drug delivery and also highlight the recent progress in chitosan based nanocarrier platforms in terms of their limitations and potentials.
Collapse
|
12
|
Mehta CH, Narayan R, Acharya S, Nayak UY. Design and development of surface modified epigallocatechin 3-gallate NanoCubogel for localized delivery to oral submucous fibrosis therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Shahid N, Erum A, Zaman M, Tulain UR, Shoaib QUA, Majeed A, Rasool MF, Imran I, Alshehri S, Noorani B, Alqahtani F. pH-Responsive Nanocomposite Based Hydrogels for the Controlled Delivery of Ticagrelor; In Vitro and In Vivo Approaches. Int J Nanomedicine 2021; 16:6345-6366. [PMID: 34556985 PMCID: PMC8455181 DOI: 10.2147/ijn.s330186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background Ticagrelor (TG), an antiplatelet drug is employed to treat patients with acute coronary syndrome, but its inadequate oral bioavailability due to poor solubility and low permeability restricts its effectiveness. Purpose This contemporary work was aimed to design a novel pH-sensitive nanocomposite hydrogel (NCH) formulation incorporating thiolated chitosan (TCH) based nanoparticles (NPs) of Ticagrelor (TG), to enhance its oral bioavailability for effectively inhibiting platelet aggregation. Methods NCHs were prepared by free radical polymerization technique, using variable concentrations of chitosan (CH) as biodegradable polymer, acrylic acid (AA) as a monomer, N,N-methylene bisacrylamide (MBAA) as cross-linker, and potassium persulphate (KPS) as initiator. Results The optimum hydrogel formulation was selected for fabricating NCHs, considering porosity, sol-gel fraction, swelling studies, drug loading capacity, and TG’s in vitro release as determining factors. Outcomes of the studies have shown that the extent of hydrogel swelling and drug release was comparatively greater at higher pH (7.4). Moreover, an amplifying trend was observed for drug loading and hydrogel swelling by increasing AA content, while it declined by increasing MBAA. The NCHs were evaluated by various physicochemical techniques and the selected formulation was subjected to in vivo bioavailability studies, confirming enhancement of bioavailability as indicated by prolonged half-life and multifold increase in area under the curve (AUC) as compared to pure TG. Conclusion The results suggest that NCHs demonstrated a pH-responsive, controlled behavior along with enhanced bioavailability. Thus NCHs can be effectively utilized as efficient delivery systems for oral delivery of TG to reduce the risk of myocardial infarction.
Collapse
Affiliation(s)
- Nariman Shahid
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan.,Akhtar Saeed College of Pharmaceutical Sciences, Lahore, 53720, Pakistan
| | - Alia Erum
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54782, Pakistan
| | - Ume Ruqia Tulain
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Abdul Majeed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad F Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
14
|
Ladeira NMB, Donnici CL, de Mesquita JP, Pereira FV. Preparation and characterization of hydrogels obtained from chitosan and carboxymethyl chitosan. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02682-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Ribeiro LS, Sala RL, de Jesus LAO, Cruz SA, Camargo ER. Analyzing the Effects of Silica Nanospheres on the Sol-Gel Transition Profile of Thermosensitive Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7373-7379. [PMID: 34101480 DOI: 10.1021/acs.langmuir.1c00723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The insertion of nanoparticles into smart hydrogels can diversify their functionalities by a synergistic combination of the components properties within the hydrogels. While these hybrid systems are attractive to the biomaterials field, careful design and control of their properties are required since the new interactions between the polymer and the nanoparticles can result in changes or the loss of hydrogels stimuli response. In order to understand the physicochemical aspects of the thermoresponsive systems, nanocomposites of poly(N-vinylcaprolactam) (PNVCL) and silica nanoparticles with different sizes and concentrations were synthesized. The UV-vis and DLS techniques showed that the PNVCL has a sharp phase transition at 34 °C, while the nanocomposites have a diffuse transition. The nanocomposites showed an initial coil-globule transition before the phase transition takes place. This was identified by the evolution of the hydrodynamic diameter of the nanocomposite globules before the cloud point temperature (Tcp), which remained constant for PNVCL. This new transition profile can be described by two stages in which microscopic volume transitions occur first, followed by the macroscopic transition that forms the hydrogel. These results show that the proposed nanocomposites can be designed to have tunable stimuli response to smaller temperature variations with the formation of intermediate globule states.
Collapse
Affiliation(s)
- Lucas S Ribeiro
- Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luis km 235, CP 676, São Carlos, São Paulo 13565-905, Brazil
| | - Renata L Sala
- Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luis km 235, CP 676, São Carlos, São Paulo 13565-905, Brazil
| | - Leticia A O de Jesus
- Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luis km 235, CP 676, São Carlos, São Paulo 13565-905, Brazil
| | - Sandra A Cruz
- Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luis km 235, CP 676, São Carlos, São Paulo 13565-905, Brazil
| | - Emerson R Camargo
- Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luis km 235, CP 676, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
16
|
Del Olmo JA, Pérez-Álvarez L, Pacha-Olivenza MÁ, Ruiz-Rubio L, Gartziandia O, Vilas-Vilela JL, Alonso JM. Antibacterial catechol-based hyaluronic acid, chitosan and poly (N-vinyl pyrrolidone) coatings onto Ti6Al4V surfaces for application as biomedical implant. Int J Biol Macromol 2021; 183:1222-1235. [PMID: 33984386 DOI: 10.1016/j.ijbiomac.2021.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Bacterial contamination in implanted biomedical devices is a critical daily concern. The most used material for permanent implant in biomedical field is Ti6Al4V alloy due to its beneficial mechanical properties and high biocompatibility. Accordingly, in this work different polymeric antibacterial coatings poly(N-vinyl pyrrolidone) (PVP), hyaluronic acid (HA) and chitosan (CHI) were developed and comparatively analysed for Ti6Al4V surface covering. The adhesion of these coatings to Ti6Al4V substrates were carried out after the conjugation of these polymers with the so well-known bioadhesive properties of catechol (CA) anchor group. These surface modifications were characterized by X-ray photoelectronic spectroscopy, contact angle measurements and atomic force microscopy. In addition, the stability of CA-conjugated polymeric coatings was compared with the coatings formed with unconjugated polymers. Finally, the cytocompatibility and antibacterial properties against gram-positive and gram-negative strains on coated Ti6Al4V substrates were assessed confirming the effectiveness of these polymeric coatings against bacterial infections for future applications in protecting biomedical implants.
Collapse
Affiliation(s)
- Jon Andrade Del Olmo
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Leyre Pérez-Álvarez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Miguel Ángel Pacha-Olivenza
- Department of Biomedical Sciences, Faculty of Medicine and University Institute of Biosanitary Research of Extremadura (INUBE), University of Extremadura, Badajoz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain.
| | - Leire Ruiz-Rubio
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Oihane Gartziandia
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - José Maria Alonso
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain
| |
Collapse
|
17
|
Sánchez-Aguinagalde O, Lejardi A, Meaurio E, Hernández R, Mijangos C, Sarasua JR. Novel Hydrogels of Chitosan and Poly(vinyl alcohol) Reinforced with Inorganic Particles of Bioactive Glass. Polymers (Basel) 2021; 13:691. [PMID: 33668909 PMCID: PMC7956335 DOI: 10.3390/polym13050691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Chitosan (CS) and poly(vinyl alcohol) (PVA) hydrogels, a polymeric system that shows a broad potential in biomedical applications, were developed. Despite the advantages they present, their mechanical properties are insufficient to support the loads that appear on the body. Thus, it was proposed to reinforce these gels with inorganic glass particles (BG) in order to improve mechanical properties and bioactivity and to see how this reinforcement affects levofloxacin drug release kinetics. Scanning electron microscopy (SEM), X-ray diffraction (XRD), swelling tests, rheology and drug release studies characterized the resulting hydrogels. The experimental results verified the bioactivity of these gels, showed an improvement of the mechanical properties and proved that the added bioactive glass does affect the release kinetics.
Collapse
Affiliation(s)
- O. Sánchez-Aguinagalde
- Department of Mining-Metallurgy Engineering and Materials Science and POLYMAT, School of Engineering, University of the Basque Country (EHU-UPV), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.M.); (J.-R.S.)
| | - Ainhoa Lejardi
- Department of Mining-Metallurgy Engineering and Materials Science and POLYMAT, School of Engineering, University of the Basque Country (EHU-UPV), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.M.); (J.-R.S.)
| | - Emilio Meaurio
- Department of Mining-Metallurgy Engineering and Materials Science and POLYMAT, School of Engineering, University of the Basque Country (EHU-UPV), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.M.); (J.-R.S.)
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain; (R.H.); (C.M.)
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain; (R.H.); (C.M.)
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science and POLYMAT, School of Engineering, University of the Basque Country (EHU-UPV), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.M.); (J.-R.S.)
| |
Collapse
|
18
|
Inphonlek S, Niamsiri N, Sunintaboon P, Sirisinha C. Chitosan/xanthan gum porous scaffolds incorporated with in-situ-formed poly(lactic acid) particles: Their fabrication and ability to adsorb anionic compounds. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Soe HMSH, Luckanagul JA, Pavasant P, Jansook P. Development of in situ gel containing asiaticoside/cyclodextrin complexes. Evaluation in culture human periodontal ligament cells (HPLDCs). Int J Pharm 2020; 586:119589. [PMID: 32634457 DOI: 10.1016/j.ijpharm.2020.119589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022]
Abstract
Asiaticoside (AS), an active herbal compound isolated from Centella asiatica, has the potential benefit in promoting type I collagen (COL I) synthesis and osteogenic differentiation in human periodontal ligament cells (HPDLCs). However, it has low aqueous solubility which may hamper the bioavailability. Thus, the aim of this study was to develop thermoresponsive in situ gel containing AS/cyclodextrin (CD) complexes. The non-encapsulated formulations consisted of AS/hydroxypropyl β-CD (HPβCD) complexes and encapsulated formulations containing AS loaded sulfobutylether β-CD/chitosan nanoparticles (SBEβCD/CS NPs) were prepared. The appearance, pH and viscosity of all formulations were within the acceptable range. All formulations formed relatively rapid sol-to-gel transition when contacted with simulated salivary fluid at body temperature. Compared to non-encapsulated formulations, in vitro gelation and rheological studies of encapsulated formulations displayed gel formation that remained longer with high mechanical strength. In vitro mucoadhesion and in vitro release studies revealed that nanoencapsulated in situ gel had excellent mucoadhesive property and could release AS in a sustained manner. These formulations exhibited no cytotoxic effects to HPDCLs. The SBEβCD/CS NPs containing low AS content could express the COL I synthesis. Thus, nanoencapsulated platform could serve as a promising carrier to deliver AS for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Hay Man Saung Hnin Soe
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok 10330, Thailand
| | - Jittima Amie Luckanagul
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
20
|
Muzammil KM, Mukherjee D, Azamthulla M, Teja BV, Kaamnoore D, Anbu J, Srinivasan B, Jeevan Kasture G. Castor oil reinforced polymer hybrids for skin tissue augmentation. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- K. Mohammed Muzammil
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Mohammad Azamthulla
- Department of Pharmacology, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Banala Venkatesh Teja
- Pharmaceutics and Pharmacokinetics Devision, Central Drug Research Institute, Lucknow, India
| | - Devanand Kaamnoore
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Jayaraman Anbu
- Department of Pharmacology, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Bharath Srinivasan
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Gargi Jeevan Kasture
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
21
|
Yuan C, Chen J, Jia Y, Yin D. Preparation of polyglycidyl methacrylate microspheres and nanocomposite hydrogels crosslinked by hydrogen bonds. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2034-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
An injectable carboxymethyl chitosan-methylcellulose-pluronic hydrogel for the encapsulation of meloxicam loaded nanoparticles. Int J Biol Macromol 2020; 151:220-229. [PMID: 32027902 DOI: 10.1016/j.ijbiomac.2020.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 11/20/2022]
Abstract
Hydrogel scaffolds have been frequently utilized due to their ability to absorb water and develop similar body cell conditions. Specific drug delivery to the tissues ensures less adverse side effects and more efficiency. In the present study, carboxymethyl chitosan (CMC)-methylcellulose (MC)-pluronic (P) and zinc chloride hydrogels containing meloxicam loaded into nanoparticles were developed and characterized. Nanoparticles were incorporated at 3.5, 4.5 and 5.5% (w/v). Hydrogels containing the same amounts of the meloxicam solution were also prepared. Gelation time, swelling and degradation of the hydrogels were investigated. Hydrogels were characterized by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and rheological analysis. Meloxicam release, chondrocytes attachment and growth on the hydrogels were also studied. Gelation time, swelling and the degradation rate of the hydrogels were found to be decreased by nanoparticles and increased with the addition of the meloxicam solution. SEM images also showed three-dimensional networks. The ATR-FTIR bands were shifted to the lower wave numbers in the hydrogels containing nanoparticles and shifted to the upper ones in the hydrogels containing meloxicam solution. Storage (G') and loss (G″) modulus were increased by the nanoparticles and reduced by the meloxicam solution. 100% of meloxicam was released from the hydrogels containing the meloxicam solution within 20 days, but it was released slowly from the hydrogels containing nanoparticles in 37days. Chondrocytes metabolic activity was increased on the 6th and 10th days for all hydrogels. Hydrogel containing nanoparticles showed good biocompatibility, bioadhesion, cell growth and expansion. The hydrogel could be, therefore, suitable as a new composite biomaterial for the regeneration of articular cartilage and meloxicam delivery to control the pain and inflammation in osteoarthritis.
Collapse
|
23
|
Tarashi S, Nazockdast H, Sodeifian G. A comparative study on microstructure, physical-mechanical properties, and self-healing performance of two differently synthesized nanocomposite double network hydrogels based on κ-car/PAm/GO. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Li X, Wang Y, Li A, Ye Y, Peng S, Deng M, Jiang B. A Novel pH- and Salt-Responsive N-Succinyl-Chitosan Hydrogel via a One-Step Hydrothermal Process. Molecules 2019; 24:E4211. [PMID: 31756996 PMCID: PMC6930667 DOI: 10.3390/molecules24234211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, we synthesized a series of pH-sensitive and salt-sensitive N-succinyl-chitosan hydrogels with N-succinyl-chitosan (NSCS) and the crosslinker glycidoxypropyltrimethoxysilane (GPTMS) via a one-step hydrothermal process. The structure and morphology analysis of the NSCS and glycidoxypropyltrimethoxysilane-N-succinyl chitosan hydrogel (GNCH) revealed the close relation between the swelling behavior of hydrogels and the content of crosslinker GPTMS. The high GPTMS content could weaken the swelling capacity of hydrogels and improve their mechanical properties. The hydrogels show high pH sensitivity and reversibility in the range of pH 1.0 to 9.0, and exhibit on-off switching behavior between acidic and alkaline environments. In addition, the hydrogels perform smart swelling behaviors in NaCl, CaCl2, and FeCl3 solutions. These hydrogels may have great potential in medical applications.
Collapse
Affiliation(s)
- Xingliang Li
- College of Chemistry, Sichuan University; Chengdu 610064, China
| | - Yihan Wang
- College of Chemistry, Sichuan University; Chengdu 610064, China
| | - Aoqi Li
- College of Chemistry, Sichuan University; Chengdu 610064, China
| | - Yingqing Ye
- Jingkun Oilfield Chemistry Company; Kunshan, Jiangsu 215300, China
| | - Shuhua Peng
- Jingkun Oilfield Chemistry Company; Kunshan, Jiangsu 215300, China
| | - Mingyu Deng
- Jingkun Oilfield Chemistry Company; Kunshan, Jiangsu 215300, China
| | - Bo Jiang
- College of Chemistry, Sichuan University; Chengdu 610064, China
| |
Collapse
|
25
|
Rizeq BR, Younes NN, Rasool K, Nasrallah GK. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int J Mol Sci 2019; 20:5776. [PMID: 31744157 PMCID: PMC6888098 DOI: 10.3390/ijms20225776] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/06/2023] Open
Abstract
The development of advanced nanomaterials and technologies is essential in biomedical engineering to improve the quality of life. Chitosan-based nanomaterials are on the forefront and attract wide interest due to their versatile physicochemical characteristics such as biodegradability, biocompatibility, and non-toxicity, which play a promising role in biological applications. Chitosan and its derivatives are employed in several applications including pharmaceuticals and biomedical engineering. This article presents a comprehensive overview of recent advances in chitosan derivatives and nanoparticle synthesis, as well as emerging applications in medicine, tissue engineering, drug delivery, gene therapy, and cancer therapy. In addition to the applications, we critically review the main concerns and mitigation strategies related to chitosan bactericidal properties, toxicity/safety using tissue cultures and animal models, and also their potential environmental impact. At the end of this review, we also provide some of future directions and conclusions that are important for expanding the field of biomedical applications of the chitosan nanoparticles.
Collapse
Affiliation(s)
- Balsam R. Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar;
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nadin N. Younes
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 5825, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| |
Collapse
|
26
|
Tarashi S, Nazockdast H, Sodeifian G. Reinforcing effect of graphene oxide on mechanical properties, self-healing performance and recoverability of double network hydrogel based on κ-carrageenan and polyacrylamide. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H, Yang L, Lai Y. Recent Progress of Polysaccharide‐Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. ADVANCED MATERIALS INTERFACES 2019; 6. [DOI: 10.1002/admi.201900761] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 01/06/2025]
Abstract
AbstractPolysaccharide is an abundant and reproducible natural material that is biocompatible and biodegradable. Polysaccharide and its derivatives also possess distinctive properties such as hydrophilicity, mechanical stability, as well as tunable functionality. Polysaccharide‐based hydrogels can be constructed via the physical and/or chemical crosslinking of polysaccharide derivatives with different functional molecules, as porous network structures or nanofibrillar structures. This review discusses the biomedical applications of polysaccharide‐based hydrogels containing native polysaccharides, polysaccharide derivatives, and polysaccharide‐composite hydrogels. Recent works on the fabrication, physical properties, advanced engineering, biomedical applications of cellulose‐, chitosan‐, alginate‐, and starch‐based hydrogels are also elaborated. Such porous swelling scaffolds exhibit great advantages at the interface of a negative pressure system such as wound dressing. In addition, the authors also discuss and summarize the exemplary research works of these hydrogels in the applications of drug release, wound dressing, and tissue engineering. Finally, challenges and future perspectives about the development of polysaccharide‐based hydrogels are discussed.
Collapse
Affiliation(s)
- Tianxue Zhu
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
| | - Jiajun Mao
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Yan Cheng
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
| | - Haoran Liu
- Department of Orthopaedics Orthopaedic Institute Soochow University Suzhou 215006 P. R. China
| | - Lu Lv
- Department of Orthopaedics Orthopaedic Institute Soochow University Suzhou 215006 P. R. China
| | - Mingzheng Ge
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
- School of Textile and Clothing Nantong University Nantong 226019 P. R. China
| | - Shuhui Li
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Jianying Huang
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province Wenzhou Institute of Biomaterials and Engineering Wenzhou 325011 P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Huaqiong Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province Wenzhou Institute of Biomaterials and Engineering Wenzhou 325011 P. R. China
| | - Lei Yang
- Center for Health Science and Engineering Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuekun Lai
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province Wenzhou Institute of Biomaterials and Engineering Wenzhou 325011 P. R. China
| |
Collapse
|
28
|
The thiolated chitosan: Synthesis, gelling and antibacterial capability. Int J Biol Macromol 2019; 139:521-530. [PMID: 31377297 DOI: 10.1016/j.ijbiomac.2019.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
Abstract
Chitosan-1-(mercaptomethyl)-cyclopropane acetic acid (CS-MCA) copolymer was synthesized by amino linkage. The obtained copolymer was characterized by FTIR, 1H NMR, XRD, TGA and SEM. Porous and reticulate morphologies were found on the CS-MCA surface. The effects of pH on the rheological properties of CS-MCA were investigated. On the one hand, the apparent viscosity of CS-MCA indicated a shear-thinning behavior. The graft of MCA enhanced the moduli and the maximum elastic properties were observed at pH = 7.00. The addition of dithiothreitol reduced the viscosity and modulus of CS-MCA hydrogel, and the gelation time, temperature and frequency were obtained in dynamic oscillatory tests. The antibacterial effect of CS-MCA against E. coli was investigated for the inhibition zone and bacterial growth curve. These results showed that CS-MCA had better antibacterial ability than chitosan without modification. Therefore, the rheological behavior and functional activities can be applied for the hydrocolloid gels in food and pharmaceutical applications.
Collapse
|
29
|
Vijayakrishna K, Patil S, Shaji LK, Panicker RR. Gentamicin Loaded PLGA based Biodegradable Material for Controlled Drug Delivery. ChemistrySelect 2019. [DOI: 10.1002/slct.201900737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kari Vijayakrishna
- School of Basic SciencesIndian Institute of Technology Bhubaneswar PIN-752050, Odisha India
| | - Shrikant Patil
- Department of ChemistrySchool of Advanced SciencesVellore Institute of Technology Vellore – 632 014, Tamil Nadu India
| | - Leyana K Shaji
- Department of ChemistrySchool of Advanced SciencesVellore Institute of Technology Vellore – 632 014, Tamil Nadu India
| | - Rakesh R Panicker
- Department of ChemistrySchool of Advanced SciencesVellore Institute of Technology Vellore – 632 014, Tamil Nadu India
| |
Collapse
|
30
|
Tran TTD, Tran PHL. Controlled Release Film Forming Systems in Drug Delivery: The Potential for Efficient Drug Delivery. Pharmaceutics 2019; 11:E290. [PMID: 31226748 PMCID: PMC6630634 DOI: 10.3390/pharmaceutics11060290] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Despite many available approaches for transdermal drug delivery, patient compliance and drug targeting at the desired concentration are still concerns for effective therapies. Precise and efficient film-forming systems provide great potential for controlling drug delivery through the skin with the combined advantages of films and hydrogels. The associated disadvantages of both systems (films and hydrogels) will be overcome in film-forming systems. Different strategies have been designed to control drug release through the skin, including changes to film-forming polymers, plasticizers, additives or even model drugs in formulations. In the current review, we aim to discuss the recent advances in film-forming systems to provide the principles and review the methods of these systems as applied to controlled drug release. Advances in the design of film-forming systems open a new generation of these systems.
Collapse
Affiliation(s)
- Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | | |
Collapse
|
31
|
Effect of segment structures on the hydrolytic degradation behaviors of totally degradable poly(L‐lactic acid)‐based copolymers. J Appl Polym Sci 2019. [DOI: 10.1002/app.47887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Wang W, Wei Z, Sang L, Wang Y, Zhang J, Bian Y, Li Y. Development of X-ray opaque poly(lactic acid) end-capped by triiodobenzoic acid towards non-invasive micro-CT imaging biodegradable embolic microspheres. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Geng X, Zhang M, Lai X, Tan L, Liu J, Yu M, Deng X, Hu J, Li A. Small-Sized Cationic miRi-PCNPs Selectively Target the Kidneys for High-Efficiency Antifibrosis Treatment. Adv Healthc Mater 2018; 7:e1800558. [PMID: 30277665 DOI: 10.1002/adhm.201800558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/14/2018] [Indexed: 01/16/2023]
Abstract
Small-sized cationic miRi (microRNA-21 inhibitor)-PCNPs (low molecular weight chitosan (LMWC)-modified polylactide-co-glycoside (PLGA) nanoparticles (PLNPs)) with special kidney-targeting and high-efficiency antifibrosis treatment are fabricated through coupling miRi, PLGA, and LMWC. In the miRi-PCNPs, easily degraded miRi is encapsulated in PCNPs and thus prevented from degradation by nuclease. Cytotoxicity, immunotoxicity, and systemic toxicity assays and in vitro and ex vivo fluorescence imaging suggest that PCNPs possess excellent biocompatibility, higher cellular uptake efficiency, and selective kidney-targeting capacity. Western blotting, pathological staining, and real-time polymerase chain reaction analyses show that the therapeutic effect of miRi-PCNPs on kidney fibrosis is much higher than that of miRi, which is mainly through suppressing transforming growth factor beta-1/drosophila mothers against decapentaplegic protein 3 (TGF-β1/Smad3) and extracellular signal-regulated kinases/mitogen-activated protein kinase signaling pathway by inhibiting the expression of microRNA-21. For example, the tubule damage index and tubulointerstitial fibrosis area in the miRi-PCNPs group are ≈2.5-fold lower than those in the saline and bare miRi groups. The miRi-PCNPs with special kidney-targeting and high-efficiency antifibrosis treatment may represent a promising strategy for designing and developing a therapeutic treatment for kidney fibrosis.
Collapse
Affiliation(s)
- Xinran Geng
- Key Laboratory of Fuel Cell Technology of Guangdong Province; Nanobiological medicine Center; Department of Chemistry; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
- State Key Laboratory of Organ Failure Research; Nanfang Hospital; Southern Medical University; Guangzhou 510515 China
| | - Mengbi Zhang
- State Key Laboratory of Organ Failure Research; Nanfang Hospital; Southern Medical University; Guangzhou 510515 China
| | - Xuandi Lai
- Key Laboratory of Fuel Cell Technology of Guangdong Province; Nanobiological medicine Center; Department of Chemistry; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lishan Tan
- State Key Laboratory of Organ Failure Research; Nanfang Hospital; Southern Medical University; Guangzhou 510515 China
| | - Jianyu Liu
- Key Laboratory of Fuel Cell Technology of Guangdong Province; Nanobiological medicine Center; Department of Chemistry; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Meng Yu
- Key Laboratory of Fuel Cell Technology of Guangdong Province; Nanobiological medicine Center; Department of Chemistry; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xiulong Deng
- Key Laboratory of Fuel Cell Technology of Guangdong Province; Nanobiological medicine Center; Department of Chemistry; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Jianqiang Hu
- Key Laboratory of Fuel Cell Technology of Guangdong Province; Nanobiological medicine Center; Department of Chemistry; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research; Nanfang Hospital; Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
34
|
Ma Y, Zhou H, Hu F, Pei Z, Xu Y, Shuai Q. Multifunctional nanogel engineering with redox-responsive and AIEgen features for the targeted delivery of doxorubicin hydrochloride with enhanced antitumor efficiency and real-time intracellular imaging. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S900-S910. [DOI: 10.1080/21691401.2018.1518910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yuwei Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | - Huiyi Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | - Fan Hu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | - Qi Shuai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province, PR China
| |
Collapse
|
35
|
Oleyaei SA, Razavi SMA, Mikkonen KS. Physicochemical and rheo-mechanical properties of titanium dioxide reinforced sage seed gum nanohybrid hydrogel. Int J Biol Macromol 2018; 118:661-670. [DOI: 10.1016/j.ijbiomac.2018.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/27/2018] [Accepted: 06/10/2018] [Indexed: 01/15/2023]
|
36
|
Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int J Pharm 2018; 547:593-601. [DOI: 10.1016/j.ijpharm.2018.05.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/19/2023]
|
37
|
Totally biodegradable poly(trimethylene carbonate/glycolide-block-L-lactide/glycolide) copolymers: synthesis, characterization and enzyme-catalyzed degradation behavior. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|