1
|
Li Y, Liu J, Qu R, Suo H, Sun M, Qin Y. Organic-Inorganic Hybrid Materials: Tailoring Carbon Dioxide-Based Polycarbonate with POSS-SH Crosslinking. Polymers (Basel) 2024; 16:983. [PMID: 38611241 PMCID: PMC11013663 DOI: 10.3390/polym16070983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
A novel functional polycarbonate (PAGC), characterized by the presence of double bonds within its side chain, was successfully synthesized through a ternary copolymerization of propylene oxide (PO), allyl glycidyl ether (AGE), and carbon dioxide (CO2). Polyhedral oligomeric silsesquioxanes octamercaptopropyl (POSS-SH) was employed as a crosslinking agent, contributing to the formation of organic-inorganic hybrid materials. This incorporation was facilitated through thiol-ene click reactions, enabling effective interactions between the POSS molecules and the double bonds in the side chains of the polycarbonate. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) confirmed a homogeneous distribution of silicon (Si) and sulfur (S) in the polycarbonate matrix. The thiol-ene click reaction between POSS-SH and the polycarbonate led to a micro-crosslinked structure. This enhancement significantly increased the tensile strength of the polycarbonate to 42 MPa, a notable improvement over traditional poly (propylene carbonate) (PPC). Moreover, the cross-linked structure exhibited enhanced solvent resistance, expanding the potential applications of these polycarbonates in various plastic materials.
Collapse
Affiliation(s)
- Yue Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Y.L.); (J.L.)
| | - Jianyu Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Y.L.); (J.L.)
- Institute of Materials, Yantai University, Yantai 264005, China
| | - Rui Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Y.L.); (J.L.)
- Institute of Materials, Yantai University, Yantai 264005, China
| | - Hongyi Suo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Y.L.); (J.L.)
- Institute of Materials, Yantai University, Yantai 264005, China
| | - Miao Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Y.L.); (J.L.)
- Institute of Materials, Yantai University, Yantai 264005, China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Y.L.); (J.L.)
- Institute of Materials, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Metal-free multicomponent polymerization of activated diyne, electrophilic styrene and isocyanide towards highly substituted and functional poly(cyclopentadiene). Sci China Chem 2023. [DOI: 10.1007/s11426-022-1467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Wang Y, Kou X, Zhao J, Deng J. A strategy to improve the compatibility of carboxyl methyl cellulose with silica fume‐based geopolymer inorganic siliceous coatings for flame‐retarding plywood. J Appl Polym Sci 2022. [DOI: 10.1002/app.53090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- YaChao Wang
- Engineering Research Center of Building Energy Efficiency Control and Evaluation Ministry of Education Hefei China
- School of Resources Engineering Xi'an University of Architecture & Technology Xi'an China
- School of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Xiaofei Kou
- School of Resources Engineering Xi'an University of Architecture & Technology Xi'an China
| | - JiangPing Zhao
- School of Resources Engineering Xi'an University of Architecture & Technology Xi'an China
| | - Jun Deng
- School of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| |
Collapse
|
4
|
Cangul K, Cakmakci E, Daglar O, Gunay US, Hizal G, Tunca U, Durmaz H. Metal-Free Click Modification of Triple Bond-Containing Polyester with Azide-Functionalized Vegetable Oil: Plasticization and Tunable Solvent Adsorption. ACS OMEGA 2022; 7:23332-23341. [PMID: 35847292 PMCID: PMC9281323 DOI: 10.1021/acsomega.2c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pressure from environmental nongovernmental organizations and the public has accelerated research on the development of innovative and renewable polymers and additives. Recently, biobased "green" plasticizers that can be covalently attached to replace toxic and migratory phthalate-based plasticizers have gained a lot of attention from researchers. In this work, we prepared an azide-functionalized soybean oil derivative (AzSBO) and investigated whether it can be used as a plasticizer. We covalently attached AzSBO to an electron-deficient triple-bond-containing polyester via a metal-free azide-alkyne click reaction. The thermal, mechanical, and solvent absorption behaviors of different amounts of azidated oil-containing polyesters were determined. Moreover, the plasticization efficiency of AzSBO was compared with the commercial plasticizers bis(2-ethylhexyl) phthalate and epoxidized soybean oil. At relatively lower AzSBO ratios, the degree of cross-linking was higher and thus the plasticization was less pronounced but the solvent resistance was significantly improved. As the ratio of AzSBO was increased, the glass transition temperature of the pristine polymer decreased up to 31 °C from 57 °C. Furthermore, the incorporation of AzSBO also improved the thermal properties and 20% AzSBO addition led to a 60 °C increase in the maximum weight loss temperature.
Collapse
Affiliation(s)
- Karen Cangul
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Emrah Cakmakci
- Department
of Chemistry, Marmara University, Istanbul 34722, Turkey
| | - Ozgun Daglar
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ufuk Saim Gunay
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Gurkan Hizal
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Umit Tunca
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Hakan Durmaz
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
5
|
Pektas B, Sagdic G, Daglar O, Luleburgaz S, Gunay US, Hizal G, Tunca U, Durmaz H. Ultrafast synthesis of dialkyne-functionalized polythioether and post-polymerization modification via click chemistry. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Altinkok C, Acik G, Daglar O, Durmaz H, Tunc I, Agel E. A facile approach for the fabrication of antibacterial nanocomposites: A case study for AgNWs/Poly(1,4-Cyclohexanedimethylene Acetylene Dicarboxylate) composite networks by aza-Michael addition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Daglar O, Alkan B, Gunay US, Hizal G, Tunca U, Durmaz H. Ultrafast synthesis of phosphorus-containing polythioethers in the presence of TBD. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Ovejero JG, Garcia MA, Herrasti P. Self-Assembly of Au-Fe 3O 4 Hybrid Nanoparticles Using a Sol-Gel Pechini Method. Molecules 2021; 26:molecules26226943. [PMID: 34834032 PMCID: PMC8624103 DOI: 10.3390/molecules26226943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022] Open
Abstract
The Pechini method has been used as a synthetic route for obtaining self-assembling magnetic and plasmonic nanoparticles in hybrid silica nanostructures. This manuscript evaluates the influence of shaking conditions, reaction time, and pH on the size and morphology of the nanostructures produced. The characterization of the nanomaterials was carried out by transmission electron microscopy (TEM) to evaluate the coating and size of the nanomaterials, Fourier-transform infrared spectroscopy (FT-IR) transmission spectra to evaluate the presence of the different coatings, and thermogravimetric analysis (TGA) curves to determine the amount of coating. The results obtained show that the best conditions to obtain core–satellite nanostructures with homogeneous silica shells and controlled sizes (<200 nm) include the use of slightly alkaline media, the ultrasound activation of silica condensation, and reaction times of around 2 h. These findings represent an important framework to establish a new general approach for the click chemistry assembling of inorganic nanostructures.
Collapse
Affiliation(s)
- Jesus G. Ovejero
- Instituto de Magnetismo Aplicado, ‘Salvador Velayos’, UCM-CSIC-ADIF, Las Rozas, P.O. Box 155, 28230 Madrid, Spain;
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: (J.G.O.); (P.H.)
| | - Miguel A. Garcia
- Instituto de Magnetismo Aplicado, ‘Salvador Velayos’, UCM-CSIC-ADIF, Las Rozas, P.O. Box 155, 28230 Madrid, Spain;
- Instituto de Cerámica y Vidrio, ICV-CSIC, C/Kelsen 5, Cantoblanco, 28049 Madrid, Spain
| | - Pilar Herrasti
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
- Correspondence: (J.G.O.); (P.H.)
| |
Collapse
|
9
|
Sagdic G, Daglar O, Gunay US, Cakmakci E, Hizal G, Tunca U, Durmaz H. Practical phosphorylation of polymers: an easy access to fully alcohol soluble synthetically and industrially important polymers. Polym Chem 2021. [DOI: 10.1039/d1py00726b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple method for the phosphorylation of synthetically and industrially important polymers is introduced to the polymer community.
Collapse
Affiliation(s)
- Gokhan Sagdic
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Ozgun Daglar
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Emrah Cakmakci
- Department of Chemistry
- Marmara University
- 34722 Istanbul
- Turkey
| | - Gurkan Hizal
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Umit Tunca
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Hakan Durmaz
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| |
Collapse
|