1
|
Choo JE, Park TH, Kim SK, Hwang SW. Incorporation of pyromellitic dianhydride for enhanced performance in PBAT/thermoplastic starch blend. Int J Biol Macromol 2025; 305:141260. [PMID: 39986521 DOI: 10.1016/j.ijbiomac.2025.141260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Poly (butylene adipate-co-terephthalate) (PBAT)/thermoplastic starch (TPS) blends were prepared via a melt processing with combined systems of two different plasticizers: TPS with a glycerol and water plasticizer system and sTPS with a glycerol, water, and an epoxidized soybean oil (ESO), plasticizer system. The plasticizing effect on the optimized PBAT/sTPS compositions was evaluated. However, it was difficult to achieve the superior physical properties of hydrophobic PBAT with hydrophilic TPS. The PBAT/sTPS blend exhibited low interfacial energy, maintaining the Young's modulus and elongation at break, but the tensile strength decreased due to the high sTPS content. The addition of PMDA from 0.5 to 2.0 phr confirmed interaction between the anhydride group, the hydroxyl/carboxyl group of PBAT and the hydroxyl group of sTPS through ring-opening reactions. With the addition of 1.0 phr of PMDA, the dispersion of sTPS in the PBAT matrix was improved, leading to effective stress transfer resulting in a 33.77 % increase in tensile strength. Overall, PBAT/sTPS blends with PMDA compatibilizers have proved to have a profound impact on excellent mechanical properties and improved compatibility, suggesting its potential as an attractive alternative to petroleum-based plastics to resolve environmental issues.
Collapse
Affiliation(s)
- Ji Eun Choo
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea
| | - Tae Hyeong Park
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea
| | - Sung Kyu Kim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon, South Korea; Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sung Wook Hwang
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea.
| |
Collapse
|
2
|
Fan M, Choi YJ, Wedamulla NE, Kim SH, Bae SM, Yang D, Kang H, Tang Y, Moon SH, Kim EK. Different particle sizes of Momordica charantia leaf powder modify the rheological and textural properties of corn starch-based 3D food printing ink. Heliyon 2024; 10:e24915. [PMID: 38370168 PMCID: PMC10869779 DOI: 10.1016/j.heliyon.2024.e24915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
The study determined the effect of incorporating Momordica charantia leaf powder (MCLP) into corn-starch 3D food-printing ink as a functional ingredient. The effects of the particle size (75, 131, and 200 μm) and quantity of MCLP on 3D printing performance, structural, textural, and rheological properties of corn starch gel were evaluated with different concentrations (5, 10, and 15 % (w/w)) of corn starch. The viscoelastic properties of food inks were determined considering their behavior during extrusion and self-recovery after printing. Scanning electron microscope was used to characterize the microstructure. Based on the results, a high starch content (15 %) with 5 % MCLP was more favorable for 3D food printing. In addition, 3D printing performance, textural and rheological properties of formulated ink was mainly governed by the particle size of MCLP. The food ink with a 5 % mass fraction of 200 μm MCLP had the highest printing precision and the best masticatory properties.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, 27478, Republic of Korea
| | - Young-Jin Choi
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
- Department of Food Science and Technology, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - Seok-Hee Kim
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Sung Mun Bae
- Gyeongnam Agricultural Research and Extension Services, Jinju, 52733, Republic of Korea
| | - DaEun Yang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, Busan, 49315, Republic of Korea
| | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, Busan, 49315, Republic of Korea
| | - Yujiao Tang
- School of Bio-Science and Food Engineering, Changchun University of Science and Technology, Changchun, 130600, China
| | - Sang-Ho Moon
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, 27478, Republic of Korea
| | - Eun-Kyung Kim
- Nutritional Education Major, Graduate School of Education, Dong-A University, Busan, 49315, Republic of Korea
- Nutrinomics Lab. Co., Ltd., Busan, 49315, Republic of Korea
| |
Collapse
|
3
|
Baniasadi H, Madani Z, Mohan M, Vaara M, Lipponen S, Vapaavuori J, Seppälä JV. Heat-Induced Actuator Fibers: Starch-Containing Biopolyamide Composites for Functional Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48584-48600. [PMID: 37787649 PMCID: PMC10591286 DOI: 10.1021/acsami.3c08774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
This study introduces the development of a thermally responsive shape-morphing fabric using low-melting-point polyamide shape memory actuators. To facilitate the blending of biomaterials, we report the synthesis and characterization of a biopolyamide with a relatively low melting point. Additionally, we present a straightforward and solvent-free method for the compatibilization of starch particles with the synthesized biopolyamide, aiming to enhance the sustainability of polyamide and customize the actuation temperature. Subsequently, homogeneous dispersion of up to 70 wt % compatibilized starch particles into the matrix is achieved. The resulting composites exhibit excellent mechanical properties comparable to those reported for soft and tough materials, making them well suited for textile integration. Furthermore, cyclic thermomechanical tests were conducted to evaluate the shape memory and shape recovery of both plain polyamide and composites. The results confirmed their remarkable shape recovery properties. To demonstrate the potential application of biocomposites in textiles, a heat-responsive fabric was created using thermoresponsive shape memory polymer actuators composed of a biocomposite containing 50 wt % compatibilized starch. This fabric demonstrates the ability to repeatedly undergo significant heat-induced deformations by opening and closing pores, thereby exposing hidden functionalities through heat stimulation. This innovative approach provides a convenient pathway for designing heat-responsive textiles, adding value to state-of-the-art smart textiles.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Zahra Madani
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Mithila Mohan
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Maija Vaara
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Sami Lipponen
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jaana Vapaavuori
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jukka V. Seppälä
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
4
|
Zhang Q, Huang J, Zhou N. Toughening Enhancement Mechanism and Performance Optimization of Castor-Oil-Based Polyurethane Cross-Linked Modified Polybutylene Adipate/Terephthalate Composites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6256. [PMID: 37763534 PMCID: PMC10532669 DOI: 10.3390/ma16186256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In this study, polyol castor oil (CO) and toluene-2,4-diisocyanate (TDI) were selected to modify PBAT, and castor-oil-based polyurethane (COP) was produced in a PBAT matrix using melt-blending and hot-pressing technology to study the effect of network cross-linking structure on various properties of bio-based polyester PBAT, aiming to introduce CO and TDI to improve the mechanical properties of composite materials. The results showed that when the total addition of CO and TDI was 15%, and the ratio of the hydroxyl group of CO to the isocyanate group of TDI was 1:1, the mechanical properties were the best. The tensile strength of the composite was 86.19% higher than that of pure PBAT, the elongation at break was 70.09% higher than that of PBAT, and the glass transition temperature was 7.82 °C higher than that of pure PBAT. Therefore, the composite modification of PBAT by CO and TDI can effectively improve the heat resistance and mechanical properties of PBAT-based composites.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Na Zhou
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
5
|
Zhai X, Zhang R, Cheng Y, Wang W, Hou H. Effects of co-plasticization of glycerol and small molecular esters on the physicochemical properties of extrusion-blown high-content starch/poly(butylene adipate-co-terephthalate) films. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4966-4974. [PMID: 36960738 DOI: 10.1002/jsfa.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/04/2023] [Accepted: 03/24/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Poor mechanical and water barrier properties of starch-based films severely restrict their applications as packaging materials. In this study, glycerol was combined with various small molecular esters (SMEs) with different molecular structures to plasticize high-content starch/poly(butylene adipate-co-terephthalate) (80/20, w/w) films (SPFs) prepared by extrusion blowing. The effects of co-plasticization on the physicochemical properties and film-forming mechanism of SPFs were investigated. RESULTS The addition of glycerides to SPFs reduced intermolecular interaction, increased molecular chain mobility, and decreased glass transition, melting temperatures, and crystallinity. Mechanical and water barrier properties of SPFs were improved significantly with the co-plasticization of glycerol and SMEs. The incorporation of triacetate glyceride increased tensile strength of SPFs by 54% and the water contact angle by up to 95°. The SPF with diacetate glyceride exhibited the minimum water vapor permeability, which decreased by 39%. CONCLUSION The levels of hydrophilic/hydrophobic groups in SMEs and their molecular weights were essential for the plasticizing effects. Glycerides tended to infiltrate into starch for effective plasticization compared with citrates. The combination of glycerol and glycerides had better plasticizing effects on starch. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaosong Zhai
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Taian, P.R. China
| | - Rui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Taian, P.R. China
| | - Yue Cheng
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Taian, P.R. China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Taian, P.R. China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Taian, P.R. China
| |
Collapse
|
6
|
Wang J, Zhao D, Jiang G, Wu Y, Shen Y, Wang T. Bioinspired Tannic Acid-Modified Coffee Grounds as Sustainable Fillers: Effect on the Properties of Polybutylene Adipate Terephthalate Composites. Polymers (Basel) 2023; 15:2769. [PMID: 37447415 DOI: 10.3390/polym15132769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Preparing composites from gricultural waste with biodegradable polymers is one of the strategies used to ensure the long-term sustainability of such materials. However, due to the differences in their chemical properties, biomass fillers often exhibit poor interfacial adhesion with polymer matrices. Inspired by mussel foot silk, this work focused on the surface modification of coffee grounds (CGs) using a combination of tannic acid (TA) and alkali treatment. CGs were used as a biomass filler to prepare polybutylene adipate terephthalate (PBAT)/CG composites. The modification of CGs was demonstrated by Fourier transform infrared spectroscopy (FTIR), the water contact angle, and scanning electron microscopy (SEM). The effect of CGs on the rheological, tensile, and thermal properties of the PBAT/CG composites was investigated. The results showed that the addition of CGs increased the complex viscosity, and the surface modification enhanced the matrix-filler adhesion. Compared with unmodified CG composites, the tensile strength and the elongation at break of the composite with TA-modified alkali-treated CGs increased by 47.0% and 53.6%, respectively. Although the addition of CGs slightly decreased the thermal stability of PBAT composites, this did not affect the melting processing of PBAT, which often occurs under 200 °C. This approach could provide a novel method for effectively using biomass waste, such as coffee grounds, as fillers for the preparation of polymer composites.
Collapse
Affiliation(s)
- Jiaxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guodong Jiang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong Wu
- Nanjing Wurui Biodegradable New Material Research Institute Co., Ltd., Nanjing 211816, China
| | - Yucai Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tingwei Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Wang HH, Zhou SJ, Xiong SJ, Liu Q, Tian H, Yu S, Yuan TQ. High-performance thermoplastic starch/poly(butylene adipate-co-terephthalate) blends through synergistic plasticization of epoxidized soybean oil and glycerol. Int J Biol Macromol 2023; 242:124716. [PMID: 37150374 DOI: 10.1016/j.ijbiomac.2023.124716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Utilizing starch, an abundant polysaccharide, as the renewable filler to blend with poly(butylene adipate-co-terephthalate) (PBAT) is a feasible tactic to construct cost-effective and high-performance biodegradable materials. It's worth noting that the thermal processing properties of starch can be manipulated by its plasticized behavior. Herein, epoxidized soybean oil (ESO) and glycerol were used as the plasticizer for native corn starch and the plasticized starch was integrated with PBAT to manufacture starch-based biodegradable blend films. ESO breaks the hydrogen bonds between starch chains through the fatty chains grafting reaction and increases the distance between starch molecular chains due to the large molecular weight of ESO. Meanwhile, glycerol molecules are incorporated into the starch molecular chains, and fatty chains grafted starch chains, effectively reducing the intermolecular forces of molecular chains. On account of the synergistic plasticization of ESO and glycerol which possess good compatibility with PBAT, the PSG20E10 blend film achieved a tensile strength, an elongation at break of 16.11 MPa and 612.09 %, and the balanced water and oxygen permeability properties.
Collapse
Affiliation(s)
- Hao-Hui Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Si-Jie Zhou
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Jun Xiong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qin Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Huafeng Tian
- School of Chemical and Material Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shixin Yu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Long Z, Wang W, Zhou Y, Yu L, Shen L, Dong Y. Effect of polybutylene adipate terephthalate on the properties of starch/polybutylene adipate terephthalate shape memory composites. Int J Biol Macromol 2023; 240:124452. [PMID: 37068541 DOI: 10.1016/j.ijbiomac.2023.124452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In this work, the starch/polybutylene adipate terephthalate (PBAT) composite films with high starch content were prepared by hot-pressing and ultraviolet cross-linking methods using cassava starch, benzophenone (BP), degradable PBAT and citric acid as film-forming substrate, photosensitizer, toughening material and solvent, respectively. The results showed that starch and PBAT had excellent performance, resulting in the composites films exhibit robust tensile strength (9.90 MPa), decent elongation at break (500.05 %) and excellent shape memory property. Under 30 % pre-tensile strain, the shape memory fixity and recovery ratios reached 96.58 % and 93.94 %, respectively. In addition, the starch-based films were successfully rendered hydrophobic by PBAT hydrophobic characteristics. PBAT not only secures the biodegradability of the starch/PBAT composites films, but also improves the mechanical properties of them, and meets the requirements of the thermal shrinkage films when subjected to large strain.
Collapse
Affiliation(s)
- Zhaomeng Long
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Wenjun Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yue Zhou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Laiming Yu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Luting Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yubing Dong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
9
|
Xiao Z, Hou X, Hwang S, Li H. The biocomposites properties of compounded poly(lactic acid) with untreated and treated spent coffee grounds. J Appl Polym Sci 2022. [DOI: 10.1002/app.53092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi‐Hua Xiao
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Xu‐Qin Hou
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Shyh‐Shin Hwang
- Department of Mechanical Engineering Chien Hsin University of Science and Technology Taoyuan Taiwan
| | - Hai‐Mei Li
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
10
|
Ma YM, Gao FX, Zhang SL. Crystalline, Rheological and Mechanical Enhancement in PBAT/PPC/Silica Nanocomposites with Double Percolation Network. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Continuous Blown Film Preparation of High Starch Content Composite Films with High Ultraviolet Aging Resistance and Excellent Mechanical Properties. Polymers (Basel) 2021; 13:polym13213813. [PMID: 34771370 PMCID: PMC8588195 DOI: 10.3390/polym13213813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Starch/PBAT blown films with high ultraviolet aging resistance and excellent mechanical properties were prepared by introducing lignin with polyurethane prepolymer (PUP) as a starch modifier and physical compatibilizer and 4,4'-methylene diphenyl diisocyanate (MDI) as a crosslinker. Starch was modified by reacting the NCO groups of the PUP with the OH groups of the starch to form a carbamate bond. The mechanical properties, hydrophobic properties, ultraviolet barrier, ultraviolet aging properties and microscopic morphology of starch/PBAT films with different contents of lignin were investigated. The results showed that the starch/PBAT films were blown continuously. The addition of lignin did not decrease the mechanical properties. On the contrary, the film with 1% lignin possessed the excellent mechanical properties with longitudinal tensile strength of 15.87 MPa and the elongation at a break of 602.21%. In addition, the higher the lignin content, the better the UV blocking effect. The introduction of lignin did not affect the crystalline properties but improved the hydrophilic properties and sealing strength of the high starch content composite films.
Collapse
|