1
|
Liu Y, Qi H. Cellulose nanocomposites with unique briar-like structure assembled with multiple modules in water. Int J Biol Macromol 2025; 307:142329. [PMID: 40120891 DOI: 10.1016/j.ijbiomac.2025.142329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
A new and green strategy for assembling cellulose nanocomposites with unique structure and properties using cellulose nano-modules in water is proposed. First, the acetoacetyl groups are modified on the surface of cellulose nanofibers (CNFs) to obtain acetoacetyl-CNFs (ACNFs). Then, ACNFs react with the reducing end of cellulose nanocrystals (CNCs) in water via the Biginelli three-component reaction to assemble the ACNF-CNC nanocomposites with unique briar-like structure. Compared with the tensile strength of CNF film (78.2 MPa), the tensile strength of ACNF-CNC film (149.3 MPa) is significantly improved, which is attributed to the increase of physical entanglement points between ACNF-CNC nanocomposites. Similarly, the tensile strength of the PVA/ACNF-CNC film (187.9 MPa) is significantly higher than that of the PVA/CNF film (131.8 MPa). The development of cellulose nanocomposites with unique structure and properties can promote the functionalization and high-value application of cellulose.
Collapse
Affiliation(s)
- Yu Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
Sringam J, Kajornprai T, Trongsatitkul T, Suppakarn N. Shape Memory Performance and Microstructural Evolution in PLA/PEG Blends: Role of Plasticizer Content and Molecular Weight. Polymers (Basel) 2025; 17:225. [PMID: 39861296 PMCID: PMC11768420 DOI: 10.3390/polym17020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (Tg), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.27%) and recovery (95.77%) in shape memory tests conducted at a programming temperature (Tp) of 45 °C and a recovery temperature (Tr) of 60 °C. Differential scanning calorimetry (DSC) analysis provided insights into the thermal mechanisms driving shape memory behavior of the PLA/PEG blend. The addition of PEG to the PLA blend resulted in a reduction in Tg and an increase in crystallinity, thereby facilitating enhanced chain mobility and structural reorganization. These thermal changes enhanced the shape fixity and recovery of the PLA/PEG blend. Synchrotron wide-angle X-ray scattering (WAXS) was further employed to elucidate the microstructural evolution of PLA/PEG blends during the shape memory process. Upon stretching, the PLA/PEG chains aligned predominantly along the tensile direction, reflecting strain-induced orientation. During recovery, the PLA/PEG chains underwent isotropic relaxation, reorganizing into their original configurations. This structural reorganization highlighted the critical role of chain mobility and alignment in driving the shape memory behavior of PLA/PEG blends, enabling them to effectively return to their initial shape. Mechanical testing confirmed that increasing PEG content and molecular weight enhanced elongation at break and impact strength, balancing flexibility and strength. These findings demonstrated that PLA/PEG blends, especially with 15 wt% PEG at 12,000 g/mol, offer an optimal combination of shape memory performance and mechanical properties, positioning them as promising candidates for customizable and biodegradable medical applications.
Collapse
Affiliation(s)
- Jiradet Sringam
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.S.); (T.K.); (T.T.)
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Todsapol Kajornprai
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.S.); (T.K.); (T.T.)
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Tatiya Trongsatitkul
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.S.); (T.K.); (T.T.)
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Nitinat Suppakarn
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.S.); (T.K.); (T.T.)
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
3
|
Guo XR, Sheng PH, Hu JW, Liu J, Wang SL, Ma Q, Yu ZZ, Ding Y. Multistimuli-Responsive Shape-Memory Composites with a Water-Assisted Self-Healing Function Based on Sodium Carboxymethyl Cellulose/Poly(vinyl alcohol)/MXene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17981-17991. [PMID: 38553425 DOI: 10.1021/acsami.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Recent advancements in artificial intelligence have propelled the development of shape-memory polymers (SMPs) with sophisticated, environment-sensitive capabilities. Despite the progress, most of the existing SMPs are limited to responding to a single stimulus and show poor functionality, which has severely hindered their future applications. Herein, we report a high-performance multistimuli-responsive shape-memory and self-healing composite film fabricated by embedding MXene nanosheets into a conventional shape-memory sodium carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) matrix. The incorporation of photothermal MXene nanosheets not only enhances the composite films' mechanical strength but also provides efficient solar-thermal conversion and robust light-actuated shape-memory properties. The resultant composite films exhibit an exceptional shape-memory response to various stimuli including heat, light, and water. Meanwhile, the interfacial interactions can be modulated by adjusting the MXene content, thereby enabling precise manipulation of the shape-memory performance. Moreover, thanks to the intrinsic hydrophilicity of the components and the unique physically cross-linked network, the composite films also demonstrate an effective water-assisted self-healing capability with an impressive healing efficiency of 85.7%. This work offers insights into the development of multifunctional, multistimuli-responsive shape-memory composites, opening up new possibilities for future applications in smart technologies.
Collapse
Affiliation(s)
- Xiang-Rui Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ping-Hou Sheng
- State Key Laboratory of Bio-based Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China
| | - Jing-Wan Hu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ji Liu
- School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Shi-Long Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian Ma
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Chiang KT, Lin SH, Ye YZ, Zeng BH, Cheng YL, Lee RH, Lin KYA, Yang H. Leafhopper-inspired reversibly switchable antireflection coating with sugar apple-like structure arrays. J Colloid Interface Sci 2023; 650:81-93. [PMID: 37393770 DOI: 10.1016/j.jcis.2023.06.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Optical coatings with reversibly tunable antireflective characteristics hold a tremendous potential for next generation optical energy-related applications. Bioinpsired by the camouflage behavior of small yellow leafhoppers, silica hollow sphere/shape memory polymer composites are self-assembled using a non-lithography-based approach. The average visible transmittance of the as-patterned hierarchical structure array-covered substrate is increased by ca. 6.3% at normal incident, and even improved by more than 20% for an incident angle of 75°. Interestingly, the broadband omnidirectional antireflection performance can be reversibly erased and recovered by applying external stimuli under ambient conditions. To gain a better understanding, its reversibility, mechanical robustness, and the structure-shape effect on the antireflective properties are systematically investigated in this research.
Collapse
Affiliation(s)
- Kuan-Ting Chiang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Shin-Hua Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Yu-Zhe Ye
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Bo-Han Zeng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Ya-Lien Cheng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan.
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan.
| |
Collapse
|
5
|
Balk M, Sofia P, Neffe AT, Tirelli N. Lignin, the Lignification Process, and Advanced, Lignin-Based Materials. Int J Mol Sci 2023; 24:11668. [PMID: 37511430 PMCID: PMC10380785 DOI: 10.3390/ijms241411668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
At a time when environmental considerations are increasingly pushing for the application of circular economy concepts in materials science, lignin stands out as an under-used but promising and environmentally benign building block. This review focuses (A) on understanding what we mean with lignin, i.e., where it can be found and how it is produced in plants, devoting particular attention to the identity of lignols (including ferulates that are instrumental for integrating lignin with cell wall polysaccharides) and to the details of their coupling reactions and (B) on providing an overview how lignin can actually be employed as a component of materials in healthcare and energy applications, finally paying specific attention to the use of lignin in the development of organic shape-memory materials.
Collapse
Affiliation(s)
- Maria Balk
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Pietro Sofia
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- The Open University Affiliated Research Centre at the Istituto Italiano di Tecnologia (ARC@IIT), Via Morego 30, 16163 Genova, Italy
| | - Axel T Neffe
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
6
|
Mian MM, Kamana IML, An X, Abbas SC, Ahommed MS, He Z, Ni Y. Cellulose nanofibers as effective binders for activated biochar-derived high-performance supercapacitors. Carbohydr Polym 2022; 301:120353. [DOI: 10.1016/j.carbpol.2022.120353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|