1
|
Liu Y, Li Y, Liu H, Yu S, Ma S, Xing LB, Zhou F. High-Strength Anisotropic Fluorescent Hydrogel Based on Solvent Exchange for Patterning. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4114-4123. [PMID: 39754549 DOI: 10.1021/acsami.4c16695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide). This method restricts the intrachain rotation of AIE molecules and adjusts the orientation of the polymer network. The increased luminescence and mechanical qualities are determined to be caused by the clustering of AIE molecules, the creation of the associated hydrophobic phase and the asymmetrical polymer network. The fluorescent hydrogels exhibit exceptional mechanical characteristics, including a high fracture stress of 5.97 MPa, an outstanding elastic modulus of 93.97 MPa, and a fracture toughness of 7.21 MJ/m3. Furthermore, the AIE fluorescent hydrogels demonstrate outstanding water retention, antiswelling capabilities, and a writing function for solvent-regulated fluorescent information. This work presents a highly efficient technique for creating anisotropic hydrogels with changeable luminescence properties, which have the potential to be used in several applications, including information encryption, flexible sensors, and soft robots.
Collapse
Affiliation(s)
- Yanru Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yali Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai 264006, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Hassan RU, Abbas N, Ko J. Toward Customizable Smart Gels: A Comprehensive Review of Innovative Printing Techniques and Applications. Gels 2025; 11:32. [PMID: 39852003 PMCID: PMC11765241 DOI: 10.3390/gels11010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
New production technologies have transformed modern engineering fields, including electronics, mechanics, robotics, and biomedicine. These advancements have led to the creation of smart materials such as alloys, polymers, and gels that respond to various stimuli. This review focuses on smart materials (SMs), including their variety and fabrication techniques, that can be used to construct three- or four-dimensional structures. The mechanisms and designs of smart materials, limitations of current printing technologies, and perspectives for their future uses are also discussed in this review. The printed smart materials are expected to have a major impact on the design of real-world applications.
Collapse
Affiliation(s)
- Rizwan Ul Hassan
- School of Chemical, Biological, and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Jongkuk Ko
- School of Chemical, Biological, and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
3
|
Liu S, Ju R, Zhang Z, Jiang Z, Cui J, Liu W, Han B, Wang S. Temperature-sensitive injectable chitosan-based hydrogel for endoscopic submucosal dissection. Int J Biol Macromol 2024; 282:136566. [PMID: 39414205 DOI: 10.1016/j.ijbiomac.2024.136566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Endoscopic submucosal dissection (ESD) is an effective treatment for polyps and early gastrointestinal cancers, but requires a high level of operator skill. Injecting submucosal materials (SIM) helps create a fluid cushion between the mucosal and muscular layers, making the procedure easier and reducing associated risks. However, SIMs commonly used in current clinical practice tend to spread quickly and fail to provide long-lasting submucosal fluid cushions (SFC). Thus, there is a critical need for a material that is easy to inject while also maintaining a durable barrier. We prepared succinylated hydroxybutyl chitosan (HBC-SA) by adding succinic anhydride (SA) to hydroxybutyl chitosan (HBC). The hydrogel had excellent temperature-sensitive properties and was able to be injected via an endoscopic injection needle even after gel formation. In vitro and in vivo studies showed that it has satisfactory biocompatibility. Functional experiments showed that the submucosal lifting properties of this hydrogel were significantly better than that of normal saline (NS) and sodium hyaluronate (SH), two commonly used clinical materials. In addition, the hydrogel possessed excellent hemostatic properties. Based on these results, HBC-SA is a promising candidate for submucosal injection during ESD.
Collapse
Affiliation(s)
- Shourui Liu
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Ruibao Ju
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Zhenguo Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Zhen Jiang
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Jingzhao Cui
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, 266003, PR China.
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, 266003, PR China.
| |
Collapse
|
4
|
Zhang W, Zeng Y, Cai F, Wei H, Wu Y, Yu H. Facile preparation of interpenetrating network hydrogel adsorbent from starch- chitosan for effective removal of methylene blue in water. Int J Biol Macromol 2024; 277:134340. [PMID: 39094889 DOI: 10.1016/j.ijbiomac.2024.134340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Hydrogels based on biopolymers have attracted considerable interest in the last decades. Herein, an interpenetrating network hydrogel (IPN-Gel) adsorbent from starch-chitosan was fabricated facilely in one-pot through tandem Schiff base reaction and photopolymerization. First, aldehyde starch (DAS) was synthesized by the reaction of soluble starch with sodium periodate. Afterward, acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), polyethylene glycol dimethacrylate (PEGDMA), photoinitiator, chitosan and DAS were dissolved in water to obtain a clear solution. Schiff base reaction between chitosan and DAS took place quickly to form the first network, and then photopolymerization of AM, AMPS, and PEGDMA occurred under ultraviolet radiation to form the second network. The preparation conditions of the as-prepared IPN-Gel were optimized with two indexes of gel mass fraction and swelling ratio. Its swelling behavior with pH and temperature change was explored. Finally, its adsorption performance was characterized with methylene blue (MB) as a model contaminant. The maximum adsorption capacity of IPN-Gel can reach 2039 mg·g-1 at pH =10. Its adsorption performance accords with Langmuir isothermal model and pseudo-second-order kinetic model and it was mainly controlled by chemisorption. This strategy is expected to found broad application prospects in the preparation of hydrogel adsorbents.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yin Zeng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Fengying Cai
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongliang Wei
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Yuxuan Wu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hui Yu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
5
|
Xin Y, Gao W, Zeng G, Chen S, Shi J, Wang W, Ma K, Qu B, Fu J, He X. Multifunctional organohydrogel via the synergy of dialdehyde starch and glycerol for motion monitoring and sign language recognition. Int J Biol Macromol 2024; 258:129068. [PMID: 38158069 DOI: 10.1016/j.ijbiomac.2023.129068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Conductive hydrogel which belongs to a type of soft materials has recently become promising candidate for flexible electronics application. However, it remains difficult for conductive hydrogel-based strain sensors to achieve the organic unity of large stretchability, high conductivity, self-healing, anti-freezing, anti-drying and transparency. Herein, a multifunctional conductive organohydrogel with all of the above superiorities is prepared by crosslinking polyacrylamide (PAM) with dialdehyde starch (DAS) in glycerol-water binary solvent. Attributing to the synergy of abundant hydrogen bonding and Schiff base interactions caused by introducing glycerol and dialdehyde starch, respectively, the organohydrogel achieved balanced mechanical and electrical properties. Besides, the addition of glycerol promoted the water-locking effects, making the organohydrogel retain the superior mechanical properties and conductivity even at extreme conditions. The resultant organohydrogel strain sensor exhibits desirable sensing performance with high sensitivity (GF = 6.07) over a wide strain range (0-697 %), enabling the accurate monitoring of subtle body motions even at -30 °C. On the basis, a hand gesture monitor system based on the organohydrogel sensors arrays is constructed using machine learning method, achieving a considerable sign language recognition rate of 100 %, and thus providing convenience for communications between the hearing or speaking-impaired and general person.
Collapse
Affiliation(s)
- Yue Xin
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, PR China
| | - Wenshuo Gao
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, PR China
| | - Guang Zeng
- School of Information Engineering, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen 518055, Guangdong, PR China.
| | - Shousen Chen
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, PR China
| | - Jijin Shi
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, PR China
| | - Wenquan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou 510055, Guangdong, PR China
| | - Ke Ma
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, PR China
| | - Baoliu Qu
- School of Textile Materials and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, PR China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, Guangdong, PR China.
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, PR China.
| |
Collapse
|
6
|
Lee C, Huang HS, Wang YY, Zhang YS, Chakravarthy RD, Yeh MY, Lin HC, Wei J. Stretchable, Adhesive, and Biocompatible Hydrogel Based on Iron-Dopamine Complexes. Polymers (Basel) 2023; 15:4378. [PMID: 38006102 PMCID: PMC10674470 DOI: 10.3390/polym15224378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Hydrogels' exceptional mechanical strength and skin-adhesion characteristics offer significant advantages for various applications, particularly in the fields of tissue adhesion and wearable sensors. Herein, we incorporated a combination of metal-coordination and hydrogen-bonding forces in the design of stretchable and adhesive hydrogels. We synthesized four hydrogels, namely PAID-0, PAID-1, PAID-2, and PAID-3, consisting of acrylamide (AAM), N,N'-methylene-bis-acrylamide (MBA), and methacrylic-modified dopamine (DA). The impact of different ratios of iron (III) ions to DA on each hydrogel's performance was investigated. Our results demonstrate that the incorporation of iron-dopamine complexes significantly enhances the mechanical strength of the hydrogel. Interestingly, as the DA content increased, we observed a continuous and substantial improvement in both the stretchability and skin adhesiveness of the hydrogel. Among the hydrogels tested, PAID-3, which exhibited optimal mechanical properties, was selected for adhesion testing on various materials. Impressively, PAID-3 demonstrated excellent adhesion to diverse materials and, combined with the low cytotoxicity of PAID hydrogel, holds great promise as an innovative option for biomedical engineering applications.
Collapse
Affiliation(s)
- Celine Lee
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - He-Shin Huang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - Yun-Ying Wang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - You-Sheng Zhang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - Rajan Deepan Chakravarthy
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., East Dist., Hsinchu City 300093, Taiwan;
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., East Dist., Hsinchu City 300093, Taiwan;
| | - Jeng Wei
- Heart Center, Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Beitou Dist., Taipei City 112401, Taiwan
| |
Collapse
|
7
|
Deng H, Wang H, Tian Y, Lin Z, Cui J, Chen J. Highly stretchable and self-healing photoswitchable supramolecular fluorescent polymers for underwater anti-counterfeiting. MATERIALS HORIZONS 2023; 10:5256-5262. [PMID: 37740393 DOI: 10.1039/d3mh01239e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Thanks to the non-destructiveness and spatial-controllability of light, photoswitchable fluorescent polymers (PFPs) have been successfully applied in advanced anti-counterfeiting and information encryption. However, most of them are not suitable for use in harsh underwater environments, including high salinity seawater. In this study, by integrating photochromic molecules into a hydrophobic polymer matrix with the fluorine elastomer, including dipole-dipole interactions, we describe a class of novel photoswitchable supramolecular fluorescent polymers (PSFPs) that can adaptively change their fluorescence between none, green and red by the irradiation of different light. The PSFPs not only exhibited excellent photoswitchable properties, including fast photo-responsibility, prominent photo-reversibility, and photostability, but also exhibited some desired properties, including exceptional stretchability, hydrophobicity, antifouling, self-healing ability, simple preparation process, and processability. We thus demonstrated their applications in underwater data encryption and anti-counterfeiting labels.
Collapse
Affiliation(s)
- Haitao Deng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Hong Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Yong Tian
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Zhong Lin
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| |
Collapse
|
8
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
9
|
Hu Y, Lyu C, Teng L, Wu A, Zhu Z, He Y, Lu J. Glycopolypeptide hydrogels with adjustable enzyme-triggered degradation: A novel proteoglycans analogue to repair articular-cartilage defects. Mater Today Bio 2023; 20:100659. [PMID: 37229212 PMCID: PMC10205498 DOI: 10.1016/j.mtbio.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Proteoglycans (PGs), also known as a viscous lubricant, is the main component of the cartilage extracellular matrix (ECM). The loss of PGs is accompanied by the chronic degeneration of cartilage tissue, which is an irreversible degeneration process that eventually develops into osteoarthritis (OA). Unfortunately, there is still no substitute for PGs in clinical treatments. Herein, we propose a new PGs analogue. The Glycopolypeptide hydrogels in the experimental groups with different concentrations were prepared by Schiff base reaction (Gel-1, Gel-2, Gel-3, Gel-4, Gel-5 and Gel-6). They have good biocompatibility and adjustable enzyme-triggered degradability. The hydrogels have a loose and porous structure suitable for the proliferation, adhesion, and migration of chondrocytes, good anti-swelling, and reduce the reactive oxygen species (ROS) in chondrocytes. In vitro experiments confirmed that the glycopolypeptide hydrogels significantly promoted ECM deposition and up-regulated the expression of cartilage-specific genes, such as type-II collagen, aggrecan, and glycosaminoglycans (sGAG). In vivo, the New Zealand rabbit knee articular cartilage defect model was established and the hydrogels were implanted to repair it, the results showed good cartilage regeneration potential. It is worth noting that the Gel-3 group, with a pore size of 122 ± 12 μm, was particularly prominent in the above experiments, and provides a theoretical reference for the design of cartilage-tissue regeneration materials in the future.
Collapse
Affiliation(s)
- Yinghan Hu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chengqi Lyu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Teng
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anqian Wu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zeyu Zhu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - YuShi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
10
|
Gao M, Li J, Peng N, Jiang L, Zhao S, Fu DY, Li G. Multi-stimuli responsive lanthanides-based luminescent hydrogels for advanced information encryption. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Jiang L, Li J, Peng N, Gao M, Fu DY, Zhao S, Li G. Reversible stimuli responsive lanthanide-polyoxometalate-based luminescent hydrogel with shape memory and self-healing properties for advanced information security storage. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|