1
|
Etyemez S, Narita Z, Mihaljevic M, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Cascella NG, Batt FD, Hua J, Faria A, Ishizuka K, Kamath V, Yang K, Sawa A. Brain regions associated with olfactory dysfunction in first episode psychosis patients. World J Biol Psychiatry 2023; 24:178-186. [PMID: 35678361 PMCID: PMC10503825 DOI: 10.1080/15622975.2022.2082526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Olfactory dysfunction is reproducibly reported in psychotic disorders, particularly in association with negative symptoms. The superior frontal gyrus (SFG) has been frequently studied in patients with psychotic disorders, in particular with their associations with negative symptoms. The relationship between olfactory functions and brain structure has been studied in healthy controls (HCs). Nevertheless, the studies with patients with psychotic disorders are limited. Here we report the olfactory-brain relationship in a first episode psychosis (FEP) cohort through both hypothesis-driven (centred on the SFG) and data-driven approaches. METHODS Using data from 88 HCs and 76 FEP patients, we evaluated the correlation between olfactory functions and structural/resting-state functional magnetic resonance imaging (MRI) data. RESULTS We found a significant correlation between the left SFG volume and odour discrimination in FEP patients, but not in HCs. We also observed a significant correlation between rs-fMRI connectivity involving the left SFG and odour discrimination in FEP patients, but not in HCs. The data-driven approach didn't observe any significant correlations, possibly due to insufficient statistical power. CONCLUSION The left SFG may be a promising brain region in the context of olfactory dysfunction and negative symptoms in FEP.
Collapse
Affiliation(s)
- Semra Etyemez
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zui Narita
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marina Mihaljevic
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer M. Coughlin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gerald Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frederick C. Nucifora
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas W. Sedlak
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicola G. Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Finn-Davis Batt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Andreia Faria
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
2
|
A Mini-Review Regarding the Modalities to Study Neurodevelopmental Disorders-Like Impairments in Zebrafish—Focussing on Neurobehavioural and Psychological Responses. Brain Sci 2022; 12:brainsci12091147. [PMID: 36138883 PMCID: PMC9496774 DOI: 10.3390/brainsci12091147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are complex disorders which can be associated with many comorbidities and exhibit multifactorial-dependent phenotypes. An important characteristic is represented by the early onset of the symptoms, during childhood or young adulthood, with a great impact on the socio-cognitive functioning of the affected individuals. Thus, the aim of our review is to describe and to argue the necessity of early developmental stages zebrafish models, focusing on NDDs, especially autism spectrum disorders (ASD) and also on schizophrenia. The utility of the animal models in NDDs or schizophrenia research remains quite controversial. Relevant discussions can be opened regarding the specific characteristics of the animal models and the relationship with the etiologies, physiopathology, and development of these disorders. The zebrafish models behaviors displayed as early as during the pre-hatching embryo stage (locomotor activity prone to repetitive behavior), and post-hatching embryo stage, such as memory, perception, affective-like, and social behaviors can be relevant in ASD and schizophrenia research. The neurophysiological processes impaired in both ASD and schizophrenia are generally highly conserved across all vertebrates. However, the relatively late individual development and conscious social behavior exhibited later in the larval stage are some of the most important limitations of these model animal species.
Collapse
|
3
|
Carnemolla SE, Hsieh JW, Sipione R, Landis BN, Kumfor F, Piguet O, Manuel AL. Olfactory dysfunction in frontotemporal dementia and psychiatric disorders: A systematic review. Neurosci Biobehav Rev 2020; 118:588-611. [PMID: 32818582 DOI: 10.1016/j.neubiorev.2020.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a progressive neurodegenerative disease. Diagnosis of FTD, especially the behavioural variant, is challenging because of symptomatic overlap with psychiatric disorders (depression, schizophrenia, bipolar disorder). Olfactory dysfunction is common in both FTD and psychiatric disorders, and often appears years before symptom onset. This systematic review analysed 74 studies on olfactory function in FTD, depression, schizophrenia and bipolar disorder to identify differences in olfactory dysfunction profiles, focusing on the most common smell measures: odour identification and discrimination. Results revealed that FTD patients were severely impaired in odour identification but not discrimination; in contrast, patients diagnosed with schizophrenia showed impairments in both measures, while those diagnosed with depression showed no olfactory impairments. Findings in bipolar disorder were mixed. Therefore, testing odour identification and discrimination differentiates FTD from depression and schizophrenia, but not from bipolar disorder. Given the high prevalence of odour identification impairments in FTD, and that smell dysfunction predicts neurodegeneration in other diseases, olfactory testing seems a promising avenue towards improving diagnosis between FTD and psychiatric disorders.
Collapse
Affiliation(s)
| | - Julien Wen Hsieh
- Rhinology -Olfactology Unit, Department of Otorhinolaryngology- Head and Neck Surgery, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland; Laboratory of Inner ear and Olfaction, University of Geneva Faculty of Medicine, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Rebecca Sipione
- Laboratory of Inner ear and Olfaction, University of Geneva Faculty of Medicine, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Basile N Landis
- Rhinology -Olfactology Unit, Department of Otorhinolaryngology- Head and Neck Surgery, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland; Laboratory of Inner ear and Olfaction, University of Geneva Faculty of Medicine, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Fiona Kumfor
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; The University of Sydney, School of Psychology, Sydney, Australia
| | - Olivier Piguet
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; The University of Sydney, School of Psychology, Sydney, Australia
| | - Aurélie L Manuel
- The University of Sydney, Brain & Mind Centre, Sydney, Australia.
| |
Collapse
|
4
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|