1
|
Chen S, Guo J, Xu W, Song H, Xu J, Luo C, Yao K, Hu L, Chen X, Yu Y. Cataract-related variant R114C increases βA3-crystallin susceptibility to environmental stresses by disrupting the protein senior structure. Int J Biol Macromol 2024; 262:130191. [PMID: 38360245 DOI: 10.1016/j.ijbiomac.2024.130191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Congenital cataract is a major cause of childhood blindness worldwide, with crystallin mutations accounting for over 40 % of gene-mutation-related cases. Our research focused on a novel R114C mutation in a Chinese family, resulting in bilateral coronary cataract with blue punctate opacity. Spectroscopic experiments revealed that βA3-R114C significantly altered the senior structure, exhibiting aggregation, and reduced solubility at physiological temperature. The mutant also displayed decreased resistance and stability under environmental stresses such as UV irradiation, oxidative stress, and heat. Further, cellular models confirmed its heightened sensitivity to environmental stresses. These data suggest that the R114C mutation impairs the hydrogen bond network and structural stability of βA3-crystallin, particularly at the boundary of the second Greek-key motif. This study revealed the pathological mechanism of βA3-R114C and may help in the development of potential treatment strategies for related cataracts.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Jiarui Guo
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Wanyue Xu
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hang Song
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Chenqi Luo
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China.
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
2
|
Sun Q, Li J, Ma J, Zheng Y, Ju R, Li X, Ren X, Huang L, Chen R, Tan X, Luo L. JAM-C Is Important for Lens Epithelial Cell Proliferation and Lens Fiber Maturation in Murine Lens Development. Invest Ophthalmol Vis Sci 2023; 64:15. [PMID: 38095908 PMCID: PMC10723223 DOI: 10.1167/iovs.64.15.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose The underlying mechanism of congenital cataracts caused by deficiency or mutation of junctional adhesion molecule C (JAM-C) gene remains unclear. Our study aims to elucidate the abnormal developmental process in Jamc-/- lenses and reveal the genes related to lens development that JAM-C may regulate. Methods Jamc knockout (Jamc-/-) mouse embryos and pups were generated for in vivo studies. Four key developmental stages from embryonic day (E) 12.5 to postnatal day (P) 0.5 were selected for the following experiments. Hematoxylin and eosin staining was used for histological analysis. The 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and TUNEL staining were performed to label lens epithelial cell (LEC) proliferation and apoptosis, respectively. Immunofluorescence and Western blot were used to analyze the markers of lens epithelium, cell cycle exit, and lens fiber differentiation. Results JAM-C was expressed throughout the process of lens development. Deletion of Jamc resulted in decreased lens size and disorganized lens fibers, which arose from E16.5 and aggravated gradually. The LECs of Jamc-/- lenses showed decreased quantity and proliferation, accompanied with reduction of key transcription factor, FOXE3. The fibers in Jamc-/- lenses were disorganized. Moreover, Jamc-deficient lens fibers showed significantly altered distribution patterns of Cx46 and Cx50. The marker of fiber homeostasis, γ-crystallin, was also decreased in the inner cortex and core fibers of Jamc-/- lenses. Conclusions Deletion of JAM-C exhibits malfunction of LEC proliferation and fiber maturation during murine lens development, which may be related to the downregulation of FOXE3 expression and abnormal localization patterns of Cx46 and Cx50.
Collapse
Affiliation(s)
- Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingyu Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxing Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuhua Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
3
|
Khadka NK, Hazen P, Haemmerle D, Mainali L. Interaction of β L- and γ-Crystallin with Phospholipid Membrane Using Atomic Force Microscopy. Int J Mol Sci 2023; 24:15720. [PMID: 37958704 PMCID: PMC10649403 DOI: 10.3390/ijms242115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Highly concentrated lens proteins, mostly β- and γ-crystallin, are responsible for maintaining the structure and refractivity of the eye lens. However, with aging and cataract formation, β- and γ-crystallin are associated with the lens membrane or other lens proteins forming high-molecular-weight proteins, which further associate with the lens membrane, leading to light scattering and cataract development. The mechanism by which β- and γ-crystallin are associated with the lens membrane is unknown. This work aims to study the interaction of β- and γ-crystallin with the phospholipid membrane with and without cholesterol (Chol) with the overall goal of understanding the role of phospholipid and Chol in β- and γ-crystallin association with the membrane. Small unilamellar vesicles made of Chol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (Chol/POPC) membranes with varying Chol content were prepared using the rapid solvent exchange method followed by probe tip sonication and then dispensed on freshly cleaved mica disk to prepare a supported lipid membrane. The βL- and γ-crystallin from the cortex of the bovine lens was used to investigate the time-dependent association of βL- and γ-crystallin with the membrane by obtaining the topographical images using atomic force microscopy. Our study showed that βL-crystallin formed semi-transmembrane defects, whereas γ-crystallin formed transmembrane defects on the phospholipid membrane. The size of semi-transmembrane defects increases significantly with incubation time when βL-crystallin interacts with the membrane. In contrast, no significant increase in transmembrane defect size was observed in the case of γ-crystallin. Our result shows that Chol inhibits the formation of membrane defects when βL- and γ-crystallin interact with the Chol/POPC membrane, where the degree of inhibition depends upon the amount of Chol content in the membrane. At a Chol/POPC mixing ratio of 0.3, membrane defects were observed when both βL- and γ-crystallin interacted with the membrane. However, at a Chol/POPC mixing ratio of 1, no association of γ-crystallin with the membrane was observed, which resulted in a defect-free membrane, and the severity of the membrane defect was decreased when βL-crystallin interacted with the membrane. The semi-transmembrane or transmembrane defects formed by the interaction of βL- and γ-crystallin on phospholipid membrane might be responsible for light scattering and cataract formation. However, Chol suppressed the formation of such defects in the membrane, likely maintaining lens membrane homeostasis and protecting against cataract formation.
Collapse
Affiliation(s)
- Nawal K. Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (D.H.)
| | - Preston Hazen
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
| | - Dieter Haemmerle
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (D.H.)
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (D.H.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
| |
Collapse
|
4
|
Xu J, Wang H, Wu C, Wang A, Wu W, Xu J, Luo C, Ni S, Yao K, Chen X. Pathogenic mechanism of congenital cataract caused by the CRYBA1/A3-G91del variant and related intervention strategies. Int J Biol Macromol 2021; 189:44-52. [PMID: 34419537 DOI: 10.1016/j.ijbiomac.2021.08.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Congenital cataracts, which are genetically heterogeneous eye disorders, lead to visual impairment in childhood. In our previous study, we identified a novel mutation in exon 4 of the CRYBA1/BA3 gene, which resulted in the deletion of a highly conserved glycine at codon 91 (G91del) and perinuclear zonular cataract. The G91del variant is one of the most frequent pathogenic mutations in CRYBA1/BA3; however, its pathogenic mechanism remains unclear. In this study, we purified βA3-crystallin and the βA3-G91del variant. βA3-G91del was prone to proteolysis and exhibited very low solubility and low structural stability. Next, we constructed a CRYBA1/BA3 mutant cell model and observed that G91del mutant proteins were more sensitive to environmental stress and prone to form aggregates. Size-exclusion chromatography and molecular dynamics simulation showed that the G91del mutation impaired the ability of βA3 to form homo-oligomers. In addition, the protein folding process of βA3-G91del was complicated and showed more intermediate states, resulting in amyloid fiber aggregation and induction of cellular apoptosis. Finally, we investigated intervention strategies for congenital cataract caused by the CRYBA1/A3-G91del variant. The addition of lanosterol reversed the negative effects of the G91del mutation under external stress. This study may help explore potential treatment strategies for related cataracts.
Collapse
Affiliation(s)
- Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Huaxia Wang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Chengpeng Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Ailing Wang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Jia Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Chenqi Luo
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Shuang Ni
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| |
Collapse
|
5
|
Mittal C, Kumari A, De I, Singh M, Harsolia R, Yadav JK. Heat treatment of soluble proteins isolated from human cataract lens leads to the formation of non-fibrillar amyloid-like protein aggregates. Int J Biol Macromol 2021; 188:512-522. [PMID: 34333005 DOI: 10.1016/j.ijbiomac.2021.07.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
The loss of crystallins solubility with aging and the formation of amyloid-like aggregates is considered the hallmark characteristic of cataract pathology. The present study was carried out to assess the effect of temperature on the soluble lens protein and the formation of protein aggregates with typical amyloid characteristics. The soluble fraction of lens proteins was subjected for heat treatment in the range of 40-60 °C, and the nature of protein aggregates was assessed by using Congo red (CR), thioflavin T (ThT), and 8-anilinonaphthalene-1-sulfonic acid (ANS) binding assays, circular dichroism (CD), Fourier-transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The heat-treated protein samples displayed a substantial bathochromic shift (≈15 nm) in the CR's absorption maximum (λmax) and increased ThT and ANS binding. The heat treatment of lens soluble proteins results in the formation of nontoxic, β-sheet rich, non-fibrillar, protein aggregates similar to the structures evident in the insoluble fraction of proteins isolated from the cataractous lens. The data obtained from the present study suggest that the exposure of soluble lens proteins to elevated temperature leads to the formation of non-fibrillar aggregates, establishing the role of amyloid in the heat-induced augmentation of cataracts pathology.
Collapse
Affiliation(s)
- Chandrika Mittal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ashwani Kumari
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Indranil De
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Manish Singh
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Ramswaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
6
|
Li M, Liu S, Huang W, Zhang J. Physiological and pathological functions of βB2-crystallins in multiple organs: a systematic review. Aging (Albany NY) 2021; 13:15674-15687. [PMID: 34118792 PMCID: PMC8221336 DOI: 10.18632/aging.203147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Crystallins, the major constituent proteins of mammalian lenses, are significant not only for the maintenance of eye lens stability, transparency, and refraction, but also fulfill various physiopathological functions in extraocular tissues. βB2-crystallin, for example, is a multifunctional protein expressed in the human retina, brain, testis, ovary, and multiple tumors. Mutations in the βB2 crystallin gene or denaturation of βB2-crystallin protein are associated with cataracts, ocular pathologies, and psychiatric disorders. A prominent role for βB2-crystallins in axonal growth and regeneration, as well as in dendritic outgrowth, has been demonstrated after optic nerve injury. Studies in βB2-crystallin-null mice revealed morphological and functional abnormalities in testis and ovaries, indicating βB2-crystallin contributes to male and female fertility in mice. Interestingly, although pathogenic significance remains obscure, several studies identified a clear correlation between βB2 crystallin expression and the prognosis of patients with breast cancer, colorectal cancer, prostate cancer, renal cell carcinoma, and glioblastoma in the African American population. This review summarizes the physiological and pathological functions of βB2-crystallin in the eye and other organs and tissues and discusses findings related to the expression and potential role of βB2-crystallin in tumors.
Collapse
Affiliation(s)
- Meihui Li
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, Yangpu, Shanghai 200433, China
| | - Shengnan Liu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, Yangpu, Shanghai 200433, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, Yangpu, Shanghai 200433, China
| | - Junjie Zhang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, Yangpu, Shanghai 200433, China
| |
Collapse
|
7
|
Velasco-Bolom JL, Domínguez L. Exploring the folding process of human βB2-crystallin using multiscale molecular dynamics and the Markov state model. Phys Chem Chem Phys 2021; 22:26753-26763. [PMID: 33205789 DOI: 10.1039/d0cp04136j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adequate knowledge of protein conformations is crucial for understanding their function and their association properties with other proteins. The cataract disease is correlated with conformational changes in key proteins called crystallins. These changes are due to mutations or post-translational modifications that may lead to protein unfolding, and thus the formation of aggregate states. Human βB2-crystallin (HβB2C) is found in high proportion in the eye lens, and its mutations are related to some cataracts. HβB2C also associates into dimers, tetramers, and other higher-order supramolecular complexes. However, it is the only protein of the βγ-crystallin family that has been found in an extended conformation. Therefore, we hypothesize that the extended conformation is not energetically favourable and that HβB2C may adopt a closed (completely folded) conformation, similar to the other members of the βγ-crystallin family. To corroborate this hypothesis, we performed extensive molecular dynamics simulations of HβB2C in its monomeric and dimeric conformations, using all-atom and coarse-grained scales. We employed Markov state model (MSM) analysis to characterize the conformational and kinetically relevant states in the folding process of monomeric HβB2C. The MSM analysis clearly shows that HβB2C adopts a completely folded structure, and this conformation is the most kinetically and energetically favourable one. In contrast, the extended conformations are kinetically unstable and energetically unfavourable. Our MSM analysis also reveals a key metastable state, which is particularly interesting because it is from this state that the folded state is reached. The folded state is stabilized by the formation of two salt bridges between the residue-pairs E74-R187 and R97-E166 and the two hydrophobic residue-pairs V59-L164 and V72-V151. Furthermore, free energy surface (FES) analysis revealed that the HβB2C dimer with both monomers in a closed conformation (face-en-face dimer) is energetically more stable than the domain-swapped dimer (crystallographic structure). The results presented in this report shed light on the molecular details of the folding mechanism of HβB2C in an aqueous environment and may contribute to interpreting different experimental findings. Finally, a detailed knowledge of HβB2C folding may be key to the rational design of potential molecules to treat cataract disease.
Collapse
Affiliation(s)
- José-Luis Velasco-Bolom
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | | |
Collapse
|
8
|
Harsolia RS, Kanwar A, Gour S, Kumar V, Kumar V, Bansal R, Kumar S, Singh M, Yadav JK. Predicted aggregation-prone region (APR) in βB1-crystallin forms the amyloid-like structure and induces aggregation of soluble proteins isolated from human cataractous eye lens. Int J Biol Macromol 2020; 163:702-710. [PMID: 32650012 DOI: 10.1016/j.ijbiomac.2020.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
The aggregation of β-crystallins in the human eye lens constitutes a critical step during the development of cataract. We anticipated that the presence of Aggregation-Prone Regions (APRs) in their primary structure, which might be responsible for conformational change required for the self-assembly. To examine the presence of APRs, we systematically analyzed the primary structures of β-crystallins. Out of seven subtypes, the βB1-crystallin found to possess the highest aggregation score with 9 APRs in its primary structure. To confirm the amyloidogenic nature of these newly identified APRs, we further studied the aggregation behavior of one of the APRs spanning from 174 to 180 residues (174LWVYGFS180) of βB1-crystallin, which is referred as βB1(174-180). Under in vitro conditions, the synthetic analogue of βB1(174-180) peptide formed visible aggregates and displayed high Congo red (CR) bathochromic shift, Thioflavin T (ThT) binding and fibrilar morphology under transmission electron microscopy, which are the typical characteristics of amyloids. Further, the aggregated βB1(174-180) was found to induce aggregation of the soluble fraction of proteins isolated from the human cataractous lens. This observation suggests that the presence of APRs in βB1-crystallin might be serving as one of the intrinsic supplementary factors responsible for constitutive aggregation behavior of βB1-crystallin and development of cataract.
Collapse
Affiliation(s)
- Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Ambika Kanwar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Shalini Gour
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vikas Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Rati Bansal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Suman Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Manish Singh
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
9
|
Anderson DM, Nye-Wood MG, Rose KL, Donaldson PJ, Grey AC, Schey KL. MALDI imaging mass spectrometry of β- and γ-crystallins in the ocular lens. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4473. [PMID: 31713937 PMCID: PMC8184062 DOI: 10.1002/jms.4473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Lens crystallin proteins make up 90% of expressed proteins in the ocular lens and are primarily responsible for maintaining lens transparency and establishing the gradient of refractive index necessary for proper focusing of images onto the retina. Age-related modifications to lens crystallins have been linked to insolubilization and cataractogenesis in human lenses. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) has been shown to provide spatial maps of such age-related modifications. Previous work demonstrated that, under standard protein IMS conditions, α-crystallin signals dominated the mass spectrum and age-related modifications to α-crystallins could be mapped. In the current study, a new sample preparation method was optimized to allow imaging of β- and γ-crystallins in ocular lens tissue. Acquired images showed that γ-crystallins were localized predominately in the lens nucleus whereas β-crystallins were primarily localized to the lens cortex. Age-related modifications such as truncation, acetylation, and carbamylation were identified and spatially mapped. Protein identifications were determined by top-down proteomics analysis of lens proteins extracted from tissue sections and analyzed by LC-MS/MS with electron transfer dissociation. This new sample preparation method combined with the standard method allows the major lens crystallins to be mapped by MALDI IMS.
Collapse
Affiliation(s)
- David M. Anderson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | | | - Kristie L. Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Paul J. Donaldson
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Angus C. Grey
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
10
|
Honisch C, Donadello V, Hussain R, Peterle D, De Filippis V, Arrigoni G, Gatto C, Giurgola L, Siligardi G, Ruzza P. Application of Circular Dichroism and Fluorescence Spectroscopies To Assess Photostability of Water-Soluble Porcine Lens Proteins. ACS OMEGA 2020; 5:4293-4301. [PMID: 32149259 PMCID: PMC7057709 DOI: 10.1021/acsomega.9b04234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The eye lens is mainly composed of the highly ordered water-soluble (WS) proteins named crystallins. The aggregation and insolubilization of these proteins lead to progressive lens opacification until cataract onset. Although this is a well-known disease, the mechanism of eye lens protein aggregation is not well understood; however, one of the recognized causes of proteins modification is related to the exposure to UV light. For this reason, the spectroscopic properties of WS lens proteins and their stability to UV irradiation have been evaluated by different biophysical methods including synchrotron radiation circular dichroism, fluorescence, and circular dichroism spectroscopies. Moreover, dynamic light scattering, gel electrophoresis, transmission electron microscopy, and protein digestion followed by tandem LC-MS/MS analysis were used to study the morphological and structural changes in protein aggregates induced by exposure to UV light. Our results clearly indicated that the exposure to UV radiation modified the protein conformation, inducing a loss of ordered structure and aggregation. Furthermore, we confirmed that these changes were attributable to the generation of reactive oxygen species due to the irradiation of the protein sample. This approach, involving the photodenaturation of proteins, provides a benchmark in high-throughput screening of small molecules suitable to prevent protein denaturation and aggregation.
Collapse
Affiliation(s)
- Claudia Honisch
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Viola Donadello
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
| | - Rohanah Hussain
- Diamond
Light Source Ltd., Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Daniele Peterle
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Vincenzo De Filippis
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department
of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Proteomics
Center, University of Padova and Azienda
Ospedaliera di Padova, 35129 Padova, Italy
| | - Claudio Gatto
- Alchilife
Srl, R&D, Viale Austria
14, 35020 Ponte
San Nicolò (PD), Italy
| | - Laura Giurgola
- Alchilife
Srl, R&D, Viale Austria
14, 35020 Ponte
San Nicolò (PD), Italy
| | - Giuliano Siligardi
- Diamond
Light Source Ltd., Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Paolo Ruzza
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
| |
Collapse
|
11
|
Abstract
The crystallins (α, β and γ), major constituent proteins of eye lens fiber cells play their critical role in maintaining the transparency and refractive index of the lens. Under different stress factors and with aging, β- and γ-crystallins start to unfold partially leading to their aggregation. Protein aggregation in lens basically enhances light scattering and causes the vision problem, commonly known as cataract. α-crystallin as a molecular chaperone forms complexes with its substrates (β- and γ-crystallins) to prevent such aggregation. In this chapter, the structural features of β- and γ-crystallins have been discussed. Detailed structural information linked with the high stability of γC-, γD- and γS-crystallins have been incorporated. The nature of homologous and heterologous interactions among crystallins has been deciphered, which are involved in their molecular association and complex formation.
Collapse
Affiliation(s)
- Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, Himachal Pradesh, India.
| | - Priyanka Chauhan
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, Himachal Pradesh, India
| |
Collapse
|
12
|
Chen P, Chen H, Pan XJ, Tang SZ, Xia YJ, Zhang H. Novel mutations in CRYBB1/CRYBB2 identified by targeted exome sequencing in Chinese families with congenital cataract. Int J Ophthalmol 2018; 11:1577-1582. [PMID: 30364188 PMCID: PMC6192965 DOI: 10.18240/ijo.2018.10.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/08/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To summarize the phenotypes and identify the underlying genetic cause of the CRYBB1 and CRYBB2 gene responsible for congenital cataract in two Chinese families. METHODS Detailed family histories and clinical data were collected from patients during an ophthalmologic examination. Of 523 inheritable genetic vision system-related genes were captured and sequenced by targeted next-generation sequencing, and the results were confirmed by Sanger sequencing. The possible functional impacts of an amino acid substitution were performed with PolyPhen-2 and SIFT predictions. RESULTS The patients in the two families were affected with congenital cataract. Sixty-five (FAMILY-1) and sixty-two (FAMILY-2) single-nucleotide polymorphisms and indels were selected by recommended filtering criteria. Segregation was then analyzed by applying Sanger sequencing with the family members. A heterozygous CRYBB1 mutation in exon 4 (c.347T>C, p.L116P) was identified in sixteen patients in FAMILY-1. A heterozygous CRYBB2 mutation in exon 5 (c.355G>A, p.G119R) was identified in three patients in FAMILY-2. Each mutation co-segregated with the affected individuals and did not exist in unaffected family members and 200 unrelated normal controls. The mutation was predicted to be highly conservative and to be deleterious by both PolyPhen-2 and SIFT. CONCLUSION The CRYBB1 mutation (c.347T>C) and CRYBB2 mutation (c.355G>A) are novel in patients with congenital cataract. We summarize the variable phenotypes among the patients, which expanded the phenotypic spectrum of congenital cataract in a different ethnic background.
Collapse
Affiliation(s)
- Peng Chen
- Qingdao University, Qingdao 266071, Shandong Province, China
| | - Hao Chen
- Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jing Pan
- Shandong Eye Institute, Qingdao 266071, Shandong Province, China
| | - Su-Zhen Tang
- Qingdao University, Qingdao 266071, Shandong Province, China
| | - Yu-Jun Xia
- Qingdao University, Qingdao 266071, Shandong Province, China
| | - Hui Zhang
- Jinan Second People's Hospital, Jinan 250022, Shandong Province, China
| |
Collapse
|
13
|
Ghaffari Sharaf M, Cetinel S, Semenchenko V, Damji KF, Unsworth LD, Montemagno C. Peptides for targeting βB2-crystallin fibrils. Exp Eye Res 2017; 165:109-117. [PMID: 28986145 DOI: 10.1016/j.exer.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 01/24/2023]
Abstract
Crystallins are a major family of proteins located within the lens of the eye. Cataracts are thought to be due to the formation of insoluble fibrillar aggregates, which are largely composed of proteins from the crystallin family. Today the only cataract treatment that exists is surgery and this can be difficult to access for individuals in the developing world. Development of novel pharmacotherapeutic approaches for the treatment of cataract rests on the specific targeting of these structures. βB2-crystallin, a member of β-crystallin family, is a large component of the crystallin proteins within the lens, and as such was used to form model fibrils in vitro. Peptides were identified, using phage display techniques, that bound to these fibrils with high affinity. Fibrillation of recombinantly expressed human βB2-crystallin was performed in 10% (v/v) trifluoroethanol (TFE) solution (pH 2.0) at various temperatures, and its amyloid-like structure was confirmed using Thioflavin-T (ThT) assay, transmission electron microscopy (TEM), and X-ray fiber diffraction (XRFD) analysis. Affinity of identified phage-displayed peptides were analyzed using enzyme-linked immunosorbent assay (ELISA). Specific binding of a cyclic peptide (CKQFKDTTC) showed the highest affinity, which was confirmed using a competitive inhibition assay.
Collapse
Affiliation(s)
- Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Ingenuity Lab, University of Alberta, Edmonton, AB, Canada
| | - Sibel Cetinel
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Ingenuity Lab, University of Alberta, Edmonton, AB, Canada
| | - Valentyna Semenchenko
- National Institute of Nanotechnology, National Research Council, Edmonton, AB, Canada
| | - Karim F Damji
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; National Institute of Nanotechnology, National Research Council, Edmonton, AB, Canada.
| | - Carlo Montemagno
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; National Institute of Nanotechnology, National Research Council, Edmonton, AB, Canada; Ingenuity Lab, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Xiang M, Zhang X, Li Q, Wang H, Zhang Z, Han Z, Ke M, Chen X. Identification of proteins in the aqueous humor associated with cataract development using iTRAQ methodology. Mol Med Rep 2017; 15:3111-3120. [PMID: 28339073 DOI: 10.3892/mmr.2017.6345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Proteins in the aqueous humor (AH) are important in the induction of cataract development. The identification of cataract-associated proteins assists in identifying patients and predisposed to the condition and improve treatment efficacy. Proteomics analysis has previously been used for identifying protein markers associated with eye diseases; however, few studies have examined the proteomic alterations in cataract development due to high myopia, glaucoma and diabetes. The present study, using the isobaric tagging for relative and absolute protein quantification methodology, aimed to examine cataract-associated proteins in the AH from patients with high myopia, glaucoma or diabetes, and controls. The results revealed that 445 proteins were identified in the AH groups, compared with the control groups, and 146, 264 and 130 proteins were differentially expressed in the three groups of patients, respectively. In addition, 44 of these proteins were determined to be cataract‑associated, and the alterations of five randomly selected proteins were confirmed using enzyme-linked immunosorbent assays. The biological functions of these 44 cataract-associated proteins were analyzed using Gen Ontology/pathways annotation, in addition to protein‑protein interaction network analysis. The results aimed to expand current knowledge of the pathophysiologic characteristics of cataract development and provided a panel of candidates for biomarkers of the disease, which may assist in further diagnosis and the monitoring of cataract development.
Collapse
Affiliation(s)
- Minhong Xiang
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xingru Zhang
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingsong Li
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Hanmin Wang
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zhenyong Zhang
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zhumei Han
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Meiqing Ke
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xingxing Chen
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
15
|
Cortelazzo A, Pietri T, De Felice C, Leoncini S, Guerranti R, Signorini C, Timperio AM, Zolla L, Ciccoli L, Hayek J. Proteomic analysis of the Rett syndrome experimental model mecp2 Q63X mutant zebrafish. J Proteomics 2017; 154:128-133. [PMID: 28062374 DOI: 10.1016/j.jprot.2016.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022]
Abstract
Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Recently, a zebrafish carrying a mecp2-null mutation has been developed with the resulting phenotypes exhibiting defective sensory and thigmotactic responses, and abnormal motor behavior reminiscent of the human disease. Here, we performed a proteomic analysis to examine protein expression changes in mecp2-null vs. wild-type larvae and adult zebrafish. We found a total of 20 proteins differentially expressed between wild-type and mutant zebrafish, suggesting skeletal and cardiac muscle functional defects, a stunted glycolysis and depleted energy availability. This molecular evidence is directly linked to the mecp2-null zebrafish observed phenotype. In addition, we identified changes in expression of proteins critical for a proper redox balance, suggesting an enhanced oxidative stress, a phenomenon also documented in human patients and RTT murine models. The molecular alterations observed in the mecp2-null zebrafish expand our knowledge on the molecular cascade of events that lead to the RTT phenotype. BIOLOGICAL SIGNIFICANCE We performed a proteomic study of a non-mammalian vertebrate model (zebrafish, Danio rerio) for Rett syndrome (RTT) at larval and adult stages of development. Our results reveal major protein expression changes pointing out to defects in energy metabolism, redox status imbalance, and muscle function, both skeletal and cardiac. Our molecular analysis grants the mecp2-null zebrafish as a valuable RTT model, triggering new research approaches for a better understanding of the RTT pathogenesis and phenotype expression. This non-mammalian vertebrate model of RTT strongly suggests a broad impact of Mecp2 dysfunction.
Collapse
Affiliation(s)
- Alessio Cortelazzo
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy; Clinical Pathology Laboratory Unit, University Hospital, AOUS, Siena, Italy.
| | - Thomas Pietri
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, Paris, France
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, AOUS, Siena, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Clinical Pathology Laboratory Unit, University Hospital, AOUS, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| |
Collapse
|
16
|
Donaldson PJ, Grey AC, Maceo Heilman B, Lim JC, Vaghefi E. The physiological optics of the lens. Prog Retin Eye Res 2017; 56:e1-e24. [DOI: 10.1016/j.preteyeres.2016.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
|
17
|
Dixit K, Pande A, Pande J, Sarma SP. Nuclear Magnetic Resonance Structure of a Major Lens Protein, Human γC-Crystallin: Role of the Dipole Moment in Protein Solubility. Biochemistry 2016; 55:3136-49. [PMID: 27187112 DOI: 10.1021/acs.biochem.6b00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A hallmark of the crystallin proteins is their exceptionally high solubility, which is vital for maintaining the high refractive index of the eye lens. Human γC-crystallin is a major γ-crystallin whose mutant forms are associated with congenital cataracts but whose three-dimensional structure is not known. An earlier study of a homology model concluded that human γC-crystallin has low intrinsic solubility, mainly because of the atypical magnitude and fluctuations of its dipole moment. On the contrary, the high-resolution tertiary structure of human γC-crystallin determined here shows unequivocally that it is a highly soluble, monomeric molecule in solution. Notable differences between the orientations and interactions of several side chains are observed upon comparison to those in the model. No evidence of the pivotal role ascribed to the effect of dipole moment on protein solubility was found. The nuclear magnetic resonance structure should facilitate a comprehensive understanding of the deleterious effects of cataract-associated mutations in human γC-crystallin.
Collapse
Affiliation(s)
- Karuna Dixit
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore, Karnataka 560012, India
| | - Ajay Pande
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Jayanti Pande
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore, Karnataka 560012, India
| |
Collapse
|
18
|
Ji Y, Rong X, Ye H, Zhang K, Lu Y. Proteomic analysis of aqueous humor proteins associated with cataract development. Clin Biochem 2015; 48:1304-9. [DOI: 10.1016/j.clinbiochem.2015.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/26/2022]
|
19
|
Hejtmancik JF, Riazuddin SA, McGreal R, Liu W, Cvekl A, Shiels A. Lens Biology and Biochemistry. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:169-201. [PMID: 26310155 DOI: 10.1016/bs.pmbts.2015.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The primary function of the lens resides in its transparency and ability to focus light on the retina. These require both that the lens cells contain high concentrations of densely packed lens crystallins to maintain a refractive index constant over distances approximating the wavelength of the light to be transmitted, and a specific arrangement of anterior epithelial cells and arcuate fiber cells lacking organelles in the nucleus to avoid blocking transmission of light. Because cells in the lens nucleus have shed their organelles, lens crystallins have to last for the lifetime of the organism, and are specifically adapted to this function. The lens crystallins comprise two major families: the βγ-crystallins are among the most stable proteins known and the α-crystallins, which have a chaperone-like function. Other proteins and metabolic activities of the lens are primarily organized to protect the crystallins from damage over time and to maintain homeostasis of the lens cells. Membrane protein channels maintain osmotic and ionic balance across the lens, while the lens cytoskeleton provides for the specific shape of the lens cells, especially the fiber cells of the nucleus. Perhaps most importantly, a large part of the metabolic activity in the lens is directed toward maintaining a reduced state, which shelters the lens crystallins and other cellular components from damage from UV light and oxidative stress. Finally, the energy requirements of the lens are met largely by glycolysis and the pentose phosphate pathway, perhaps in response to the avascular nature of the lens. Together, all these systems cooperate to maintain lens transparency over time.
Collapse
Affiliation(s)
- J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca McGreal
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wei Liu
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ales Cvekl
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
20
|
Akashi S, Maleknia SD, Saikusa K, Downard KM. Stability of the βB2B3 crystallin heterodimer to increased oxidation by radical probe and ion mobility mass spectrometry. J Struct Biol 2014; 189:20-7. [PMID: 25478970 DOI: 10.1016/j.jsb.2014.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Ion mobility mass spectrometry was employed to study the structure of the βB2B3-crystallin heterodimer following oxidation through its increased exposure to hydroxyl radicals. The results demonstrate that the heterodimer can withstand limited oxidation through the incorporation of up to some 10 oxygen atoms per subunit protein without any appreciable change to its average collision cross section and thus conformation. These results are in accord with the oxidation levels and timescales applicable to radical probe mass spectrometry (RP-MS) based protein footprinting experiments. Following prolonged exposure, the heterodimer is increasingly degraded through cleavage of the backbone of the subunit crystallins rather than denaturation such that heterodimeric structures with altered conformations and ion mobilities were not detected. However, evidence from measurements of oxidation levels within peptide segments, suggest the presence of some aggregated structure involving C-terminal domain segments of βB3 crystallin across residues 115-126 and 152-166. The results demonstrate, for the first time, the ability of ion mobility in conjunction with RP-MS to investigate the stability of protein complexes to, and the onset of, free radical based oxidative damage that has important implications in cataractogenesis.
Collapse
Affiliation(s)
- Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Simin D Maleknia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Kazumi Saikusa
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kevin M Downard
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia.
| |
Collapse
|
21
|
Serebryany E, King JA. The βγ-crystallins: native state stability and pathways to aggregation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:32-41. [PMID: 24835736 DOI: 10.1016/j.pbiomolbio.2014.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/26/2023]
Abstract
The βγ-crystallins are among the most stable and long-lived proteins in the human body. With increasing age, however, they transform to high molecular weight light-scattering aggregates, resulting in cataracts. This occurs despite the presence in the lens of high concentrations of the a-crystallin chaperones. Aggregation of crystallins can be induced in vitro by a variety of stresses, including acidic pH, ultraviolet light, oxidative damage, heating or freezing, and specific amino acid substitutions. Accumulating evidence points to the existence of specific biochemical pathways of protein: protein interaction and polymerization. We review the methods used for studying crystallin stability and aggregation and discuss the sometimes counterintuitive relationships between factors that favor native state stability and those that favor non-native aggregation. We discuss the behavior of βγ-crystallins in mixtures and their chaperone ability; the consequences of missense mutations and covalent damage to the side-chains; and the evolutionary strategies that have shaped these proteins. Efforts are ongoing to reveal the nature of cataractous crystallin aggregates and understand the mechanisms of aggregation in the context of key models of protein polymerization: amyloid, native-state, and domain-swapped. Such mechanistic understanding is likely to be of value for the development of therapeutic interventions and draw attention to unanswered questions about the relationship between a protein's native state stability and its transformation to an aggregated state.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
22
|
Leng XY, Wang S, Cao NQ, Qi LB, Yan YB. The N-terminal extension of βB1-crystallin chaperones β-crystallin folding and cooperates with αA-crystallin. Biochemistry 2014; 53:2464-73. [PMID: 24669963 DOI: 10.1021/bi500146d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
β/γ-Crystallins are the major structural proteins in mammalian lens. The N-terminal truncation of βB1-crystallin has been associated with the regulation of β-crystallin size distributions in human lens. Herein we studied the roles of βB1 N-terminal extension in protein structure and folding by constructing five N-terminal truncated forms. The truncations did not affect the secondary and tertiary structures of the main body as well as stability against denaturation. Truncations with more than 28 residues off the N-terminus promoted the dissociation of the dimeric βB1 into monomers in diluted solutions. Interestingly, the N-terminal extension facilitated βB1 to adopt the correct folding pathway, while truncated proteins were prone to undergo the misfolding/aggregation pathway during kinetic refolding. The N-terminal extension of βB1 acted as an intramolecular chaperone (IMC) to regulate the kinetic partitioning between folding and misfolding. The IMC function of the N-terminal extension was also critical to the correct refolding of β-crystallin heteromer and the action of the lens-specific molecular chaperone αA-crystallin. The cooperation between IMC and molecular chaperones produced a much stronger chaperoning effect than if they acted separately. To our knowledge, this is the first report showing the cooperation between IMC and molecular chaperones.
Collapse
Affiliation(s)
- Xiao-Yao Leng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | | | | | | | | |
Collapse
|
23
|
Valapala M, Wilson C, Hose S, Bhutto IA, Grebe R, Dong A, Greenbaum S, Gu L, Sengupta S, Cano M, Hackett S, Xu G, Lutty GA, Dong L, Sergeev Y, Handa JT, Campochiaro P, Wawrousek E, Zigler JS, Sinha D. Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/βA3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy 2014; 10:480-96. [PMID: 24468901 PMCID: PMC4077886 DOI: 10.4161/auto.27292] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In phagocytic cells, including the retinal pigment epithelium (RPE), acidic compartments of the endolysosomal system are regulators of both phagocytosis and autophagy, thereby helping to maintain cellular homeostasis. The acidification of the endolysosomal system is modulated by a proton pump, the V-ATPase, but the mechanisms that direct the activity of the V-ATPase remain elusive. We found that in RPE cells, CRYBA1/βA3/A1-crystallin, a lens protein also expressed in RPE, is localized to lysosomes, where it regulates endolysosomal acidification by modulating the V-ATPase, thereby controlling both phagocytosis and autophagy. We demonstrated that CRYBA1 coimmunoprecipitates with the ATP6V0A1/V0-ATPase a1 subunit. Interestingly, in mice when Cryba1 (the gene encoding both the βA3- and βA1-crystallin forms) is knocked out specifically in RPE, V-ATPase activity is decreased and lysosomal pH is elevated, while cathepsin D (CTSD) activity is decreased. Fundus photographs of these Cryba1 conditional knockout (cKO) mice showed scattered lesions by 4 months of age that increased in older mice, with accumulation of lipid-droplets as determined by immunohistochemistry. Transmission electron microscopy (TEM) of cryba1 cKO mice revealed vacuole-like structures with partially degraded cellular organelles, undigested photoreceptor outer segments and accumulation of autophagosomes. Further, following autophagy induction both in vivo and in vitro, phospho-AKT and phospho-RPTOR/Raptor decrease, while pMTOR increases in RPE cells, inhibiting autophagy and AKT-MTORC1 signaling. Impaired lysosomal clearance in the RPE of the cryba1 cKO mice also resulted in abnormalities in retinal function that increased with age, as demonstrated by electroretinography. Our findings suggest that loss of CRYBA1 causes lysosomal dysregulation leading to the impairment of both autophagy and phagocytosis.
Collapse
Affiliation(s)
- Mallika Valapala
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Christine Wilson
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Stacey Hose
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Imran A Bhutto
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Rhonda Grebe
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Aling Dong
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Seth Greenbaum
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Limin Gu
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA; Department of Ophthalmology of Shanghai Tenth People's Hospital and Tongji Eye Institute; Tongji University School of Medicine; Shanghai, China
| | - Samhita Sengupta
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Marisol Cano
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Sean Hackett
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Guotong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital and Tongji Eye Institute; Tongji University School of Medicine; Shanghai, China
| | - Gerard A Lutty
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Lijin Dong
- National Eye Institute; National Institutes of Health; Bethesda, MD USA
| | - Yuri Sergeev
- National Eye Institute; National Institutes of Health; Bethesda, MD USA
| | - James T Handa
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Peter Campochiaro
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Eric Wawrousek
- National Eye Institute; National Institutes of Health; Bethesda, MD USA
| | - J Samuel Zigler
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Debasish Sinha
- Wilmer Eye Institute; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|
24
|
Xu J, Wang S, Zhao WJ, Xi YB, Yan YB, Yao K. The congenital cataract-linked A2V mutation impairs tetramer formation and promotes aggregation of βB2-crystallin. PLoS One 2012; 7:e51200. [PMID: 23236454 PMCID: PMC3516508 DOI: 10.1371/journal.pone.0051200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/30/2012] [Indexed: 11/28/2022] Open
Abstract
β/γ-Crystallins, the major structural proteins in human lens, are highly conserved in their tertiary structures but distinct in the quaternary structures. The N- and C-terminal extensions have been proposed to play a crucial role in mediating the size of β-crystallin assembly. In this research, we investigated the molecular mechanism underlying the congenital hereditary cataract caused by the recently characterized A2V mutation in βB2-crystallin. Spectroscopic experiments indicated that the mutation did not affect the secondary and tertiary structures of βB2-crystallin. The mutation did not affect the formation of βB2/βA3-crystallin heteromer as well as the stability and folding of the heteromer, suggesting that the mutation might not interfere with the protein interacting network in the lens. However, the tetramerization of βB2-crystallin at high protein concentrations was retarded by the A2V mutation. The mutation slightly decreased the thermal stability and promoted the thermal aggregation of βB2-crystallin. Although it did not influence the stability of βB2-crystallin against denaturation induced by chemical denaturants and UV irradiation, the A2V mutant was more prone to be trapped in the off-pathway aggregation process during kinetic refolding. Our results suggested that the A2V mutation might lead to injury of lens optical properties by decreasing βB2-crystallin stability against heat treatment and by impairing βB2-crystallin assembly into high-order homo-oligomers.
Collapse
Affiliation(s)
- Jia Xu
- Eye Center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Sha Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei-Jie Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi-Bo Xi
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute of Biophysics, Lanzhou University, Lanzhou, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (Y-BY); (KY)
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- * E-mail: (Y-BY); (KY)
| |
Collapse
|
25
|
Dolinska MB, Wingfield PT, Sergeev YV. βB1-crystallin: thermodynamic profiles of molecular interactions. PLoS One 2012; 7:e29227. [PMID: 22238594 PMCID: PMC3253074 DOI: 10.1371/journal.pone.0029227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/22/2011] [Indexed: 11/18/2022] Open
Abstract
Background β-Crystallins are structural proteins maintaining eye lens transparency and opacification. Previous work demonstrated that dimerization of both βA3 and βB2 crystallins (βA3 and βB2) involves endothermic enthalpy of association (∼8 kcal/mol) mediated by hydrophobic interactions. Methodology/Principal Findings Thermodynamic profiles of the associations of dimeric βA3 and βB1 and tetrameric βB1/βA3 were measured using sedimentation equilibrium. The homo- and heteromolecular associations of βB1 crystallin are dominated by exothermic enthalpy (−13.3 and −24.5 kcal/mol, respectively). Conclusions/Significance Global thermodynamics of βB1 interactions suggest a role in the formation of stable protein complexes in the lens via specific van der Waals contacts, hydrogen bonds and salt bridges whereas those β-crystallins which associate by predominately hydrophobic forces participate in a weaker protein associations.
Collapse
Affiliation(s)
- Monika B. Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul T. Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuri V. Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Wang S, Leng XY, Yan YB. The Benefits of Being β-Crystallin Heteromers: βB1-Crystallin Protects βA3-Crystallin against Aggregation during Co-refolding. Biochemistry 2011; 50:10451-61. [DOI: 10.1021/bi201375p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sha Wang
- State Key
Laboratory of Biomembrane and Membrane Biotechnology, School of Life
Sciences, Tsinghua University, Beijing
100084, China
| | - Xiao-Yao Leng
- State Key
Laboratory of Biomembrane and Membrane Biotechnology, School of Life
Sciences, Tsinghua University, Beijing
100084, China
| | - Yong-Bin Yan
- State Key
Laboratory of Biomembrane and Membrane Biotechnology, School of Life
Sciences, Tsinghua University, Beijing
100084, China
| |
Collapse
|
27
|
Downard KM, Kokabu Y, Ikeguchi M, Akashi S. Homology-modelled structure of the βB2B3-crystallin heterodimer studied by ion mobility and radical probe MS. FEBS J 2011; 278:4044-54. [PMID: 21848669 DOI: 10.1111/j.1742-4658.2011.08309.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ion mobility MS was employed to study the structure of the βB2B3-crystallin heterodimer following its detection by ESI-TOF MS. The results demonstrate that the heterodimer has a similar cross-section (3 165 Å(2)) and structure to the βB2B2-crystallin homodimer. Several homology-modelled structures for the βB2B3 heterodimer were constructed and assessed in terms of their calculated collision cross-sections and whether the solvent accessibilities of reactive amino acid side chains throughout the βB3 subunit are in accord with measured oxidation levels in radical probe MS protein footprinting experiments. The βB2B3 heterodimer AD model provides the best representation of the heterodimer's structure overall following a consideration of both the ion mobility and radical probe MS data.
Collapse
Affiliation(s)
- Kevin M Downard
- School of Molecular Bioscience, University of Sydney, Sydney, Australia.
| | | | | | | |
Collapse
|
28
|
Zimmerman TA, Debois D, Mazzucchelli G, Bertrand V, De Pauw-Gillet MC, De Pauw E. An Analytical Pipeline for MALDI In-Source Decay Mass Spectrometry Imaging. Anal Chem 2011; 83:6090-7. [DOI: 10.1021/ac201221h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tyler A. Zimmerman
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Delphine Debois
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Virginie Bertrand
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Marie-Claire De Pauw-Gillet
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| |
Collapse
|
29
|
Muranov KO, Maloletkina OI, Poliansky NB, Markossian KA, Kleymenov SY, Rozhkov SP, Goryunov AS, Ostrovsky MA, Kurganov BI. Mechanism of aggregation of UV-irradiated β(L)-crystallin. Exp Eye Res 2010; 92:76-86. [PMID: 21093434 DOI: 10.1016/j.exer.2010.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 11/19/2022]
Abstract
Thermal denaturation and aggregation of UV-irradiated β(L)-crystallin from eye lenses of steers have been studied. The data on size-exclusion chromatography and SDS-PAGE indicated that UV irradiation of β(L)-crystallin at 10 °С resulted in fragmentation of the protein molecule and formation of cross-linked aggregates. Fluorescence data showed that tryptophan fluorescence in the irradiated protein decreased exponentially with the UV dose. Decrease in tryptophan fluorescence is a result of photochemical destruction, but not of conformational changes of protein, because there is no red shift in the fluorescence maximum. The differential scanning calorimetry (DSC) profiles of the samples of UV-irradiated and wild type β(L)-crystallin were registered. The area under curves, which is proportional to the amount of the native protein, decreased exponentially with increasing the irradiation dose. The shape of the DSC profiles for the samples of UV-irradiated β(L)-crystallin was identical to that for wild type β(L)-crystallin. The DSC data allowed estimating the portion of UV-denatured β(L)-crystallin, which is not registered by DSC, and the portion of the combined fraction consisting of native and UV-damaged molecules retaining the native structure. A conclusion has been made that UV-induced denaturation of β(L)-crystallin follows the one-hit model. The study of the kinetics of thermal aggregation of UV-irradiated β(L)-crystallin at 37 °С using dynamic light scattering showed that the initial stage of aggregation was that of formation of the start aggregates with the hydrodynamic radius of 20 nm. Further sticking of the start aggregates proceeded in the regime of reaction-limited cluster-cluster aggregation. Splitting of the aggregate population into two components occurred above a definite point in time.
Collapse
Affiliation(s)
- Konstantin O Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ha JW, Schwahn AB, Downard KM. Ability of N-acetylcarnosine to protect lens crystallins from oxidation and oxidative damage by radical probe mass spectrometry (RP-MS). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2900-2908. [PMID: 20857450 DOI: 10.1002/rcm.4720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The application of Radical Probe Mass Spectrometry based on protein footprinting studies is described to investigate the effectiveness of the antioxidant N-acetylcarnosine (NAC) in preventing oxidative damage to lens crystallins present in the eye of mammals. Despite separate clinical trials which have reported the benefit of administering NAC to the eye as a 1% topical solution for the treatment of human cataract, no evidence was found to suggest that the antioxidant had any significant direct effect on reducing the levels of oxidation within the most abundant lens crystallins, α and β-crystallin, at the molecular level at increasing concentrations of NAC. The results of this laboratory study suggest that the therapeutic benefit demonstrated in clinical trials is associated with the nature or formulation of the topical solution and/or that the mode of action of NAC as an antioxidant is not a direct one.
Collapse
Affiliation(s)
- Ji-won Ha
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
31
|
Srivastava K, Gupta R, Chaves JM, Srivastava OP. Truncated human betaB1-crystallin shows altered structural properties and interaction with human betaA3-crystallin. Biochemistry 2009; 48:7179-89. [PMID: 19548648 PMCID: PMC2778247 DOI: 10.1021/bi900313c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of the study was to determine the effects of truncation of various regions of betaB1-crystallin on its structural properties and stability of heterooligomers formed by wild-type (WT) betaB1 or its deletion mutants with WT betaA3-crystallin. For these analyses, seven deletion mutants of betaB1-crystallin were generated with the following sequential deletions of either N-terminal arm [betaB1(59-252)], N-terminal arm + motif I [betaB1(99-252)], N-terminal arm + motif I + motif II [betaB1(144-252)], N-terminal arm + motif I + motif II + connecting peptide [betaB1(149-252)], C-terminal extension [betaB1(1-234)], C-terminal extension plus motif IV [betaB1(1-190)], or C-terminal extension + motif III + motif IV [betaB1(1-148)]. The betaB1-crystallin became water insoluble on the deletion of C-terminal extension and subsequent deletions of the C-terminal domain (C-terminal extension plus motifs III and IV) while it remained partially soluble on the deletion of the N-terminal domain (N-terminal arm plus motifs I and II). However, circular dichroism spectral analysis showed that the deletion of the N-terminal domain but not the C-terminal domain exhibited relatively greater structural changes in the crystallin. The deletion of the C-terminal domain resulted in a greater exposure and disturbance in the microenvironment of Trp-100, Trp-123, and Trp-126 (localized in the motif II), suggesting a relatively greater role of the C-terminal domain than the N-terminal domain in the structural stability of the crystallin. The deletion of the N-terminal extension in betaB1 resulted in maximum exposure of hydrophobic patches and compact structure and in a maximum loss of subunit exchange with WT betaA3-crystallin compared to deletion of either the C-terminal extension, the N-terminal domain, or the C-terminal domain. The thermal stability results of the heterooligomer of betaB1- plus betaA3-crystallins suggested that oligomers lose their stability on deletion of the C-terminal domain. Together, the results suggested that the N-terminal arm of betaB1-crystallin plays a major role in interaction with betaA3-crystallin during heterooligomer formation, and the solubility of betaB1-crystallin per se and that of the heterooligomer with betaA3-crystallin are dependent on the intact C-terminal domain of betaB1-crystallin.
Collapse
Affiliation(s)
- K Srivastava
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
32
|
Diemer H, Atmanene C, Sanglier S, Morrissey B, Van Dorsselaer A, Downard KM. Detection and structural features of the betaB2-B3-crystallin heterodimer by radical probe mass spectrometry (RP-MS). JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:803-812. [PMID: 19206113 DOI: 10.1002/jms.1560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The predilection of the beta-crystallin B2 subunit to interact with the betaB3 subunit rather than self associate is evident by the detection of the betaB2-B3-crystallin heterodimer by native gel electrophoresis and electrospray ionisation time-of-flight (ESI-TOF) mass spectrometry under non denaturing conditions. The complex has been detected for the first time and its molecular mass is measured to be 47,450 +/- 1 Da. Radical probe mass spectrometry (RP-MS) was subsequently applied to investigate the nature of the heterodimer through the limited oxidation of the subunits in the complex. Two peptide segments of the betaB2 subunit and six of the betaB3 subunit were found to oxidise, with far greater oxidation observed within the betaB3 versus the betaB2 subunit. This, and the observation that the oxidation data of betaB2 subunit is inconsistent with the structure of the betaB2 monomer, demonstrates that the protection of betaB2 is conferred by its association with betaB3 subunit within the heterodimer where only the residues of, and towards, its N-terminal domain remain exposed to solvent. The results suggest that the betaB2 subunit adopts a more compacted form than in its monomeric form in order for much of its structure to be enveloped by the betaB3 subunit within the heterodimer.
Collapse
Affiliation(s)
- Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Université Louis Pasteur, Centre National de la Recherche Scientifique UMR7178, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
33
|
Guterl JK, Andexer JN, Sehl T, von Langermann J, Frindi-Wosch I, Rosenkranz T, Fitter J, Gruber K, Kragl U, Eggert T, Pohl M. Uneven twins: comparison of two enantiocomplementary hydroxynitrile lyases with alpha/beta-hydrolase fold. J Biotechnol 2009; 141:166-73. [PMID: 19433222 DOI: 10.1016/j.jbiotec.2009.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 03/11/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Hydroxynitrile lyases (HNLs) are applied in technical processes for the synthesis of chiral cyanohydrins. Here we describe the thorough characterization of the recently discovered R-hydroxynitrile lyase from Arabidopsis thaliana and its S-selective counterpart from Manihot esculenta (MeHNL) concerning their properties relevant for technical applications. The results are compared to available data of the structurally related S-HNL from Hevea brasiliensis (HbHNL), which is frequently applied in technical processes. Whereas substrate ranges are highly similar for all three enzymes, the stability of MeHNL with respect to higher temperature and low pH-values is superior to the other HNLs with alpha/beta-hydrolase fold. This enhanced stability is supposed to be due to the ability of MeHNL to form tetramers in solution, while HbHNL and AtHNL are dimers. The different inactivation pathways, deduced by means of circular dichroism, tryptophan fluorescence and static light scattering further support these results. Our data suggest different possibilities to stabilize MeHNL and AtHNL for technical applications: whereas the application of crude cell extracts is appropriate for MeHNL, AtHNL is stabilized by addition of polyols. In addition, the molecular reason for the inhibition of MeHNL and HbHNL by acetate could be elucidated, whereas no such inhibition was observed with AtHNL.
Collapse
Affiliation(s)
- Jan-Karl Guterl
- Institute of Molecular Enzyme Technology, Heinrich-Heine University Duesseldorf, Juelich Forschungszentrum, Juelich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Christis C, Lubsen NH, Braakman I. Protein folding includes oligomerization - examples from the endoplasmic reticulum and cytosol. FEBS J 2008; 275:4700-27. [DOI: 10.1111/j.1742-4658.2008.06590.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Wang SSS, Wu JW, Yamamoto S, Liu HS. Diseases of protein aggregation and the hunt for potential pharmacological agents. Biotechnol J 2008; 3:165-92. [DOI: 10.1002/biot.200700065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Mills IA, Flaugh SL, Kosinski-Collins MS, King JA. Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin. Protein Sci 2007; 16:2427-44. [PMID: 17905830 PMCID: PMC2211709 DOI: 10.1110/ps.072970207] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The transparency of the eye lens depends on the high solubility and stability of the lens crystallin proteins. The monomeric gamma-crystallins and oligomeric beta-crystallins have paired homologous double Greek key domains, presumably evolved through gene duplication and fusion. Prior investigation of the refolding of human gammaD-crystallin revealed that the C-terminal domain folds first and nucleates the folding of the N-terminal domain. This result suggested that the human N-terminal domain might not be able to fold on its own. We constructed and expressed polypeptide chains corresponding to the isolated N- and C-terminal domains of human gammaD-crystallin, as well as the isolated domains of human gammaS-crystallin. Both circular dichroism and fluorescence spectroscopy indicated that the isolated domains purified from Escherichia coli were folded into native-like monomers. After denaturation, the isolated domains refolded efficiently at pH 7 and 37 degrees C into native-like structures. The in vitro refolding of all four domains revealed two kinetic phases, identifying partially folded intermediates for the Greek key motifs. When subjected to thermal denaturation, the isolated N-terminal domains were less stable than the full-length proteins and less stable than the C-terminal domains, and this was confirmed in equilibrium unfolding/refolding experiments. The decrease in stability of the N-terminal domain of human gammaD-crystallin with respect to the complete protein indicated that the interdomain interface contributes of 4.2 kcal/mol to the overall stability of this very long-lived protein.
Collapse
Affiliation(s)
- Ishara A Mills
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
37
|
Jobby MK, Sharma Y. Calcium-binding to lens βB2- and βA3-crystallins suggests that all β-crystallins are calcium-binding proteins. FEBS J 2007; 274:4135-47. [PMID: 17651443 DOI: 10.1111/j.1742-4658.2007.05941.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Crystallins are the major proteins of a mammalian eye lens. The topologically similar eye lens proteins, beta- and gamma-crystallins, are the prototype and founding members of the betagamma-crystallin superfamily. Betagamma-crystallins have until recently been regarded as structural proteins. However, the calcium-binding properties of a few members and the potential role of betagamma-crystallins in fertility are being investigated. Because the calcium-binding elements of other member proteins, such as spherulin 3a, are not present in betaB2-crystallin and other betagamma-crystallins from fish and mammalian genomes, it was argued that lens betagamma-crystallins should not bind calcium. In order to probe whether beta-crystallins can bind calcium, we selected one basic (betaB2) and one acidic (betaA3) beta-crystallin for calcium-binding studies. Using calcium-binding assays such as 45Ca overlay, terbium binding, Stains-All and isothermal titration calorimetry, we established that both betaB2- and betaA3-crystallin bind calcium with moderate affinity. There was no significant change in their conformation upon binding calcium as monitored by fluorescence and circular dichroism spectroscopy. However, 15N-1H heteronuclear single quantum correlation NMR spectroscopy revealed that amide environment of several residues underwent changes indicating calcium ligation. With the corroboration of calcium-binding to betaB2- and betaA3-crystallins, we suggest that all beta-crystallins bind calcium. Our results have important implications for understanding the calcium-related cataractogenesis and maintenance of ionic homeostasis in the lens.
Collapse
Affiliation(s)
- Maroor K Jobby
- Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | | |
Collapse
|
38
|
Liu BF, Liang JJN. Protein-protein interactions among human lens acidic and basic beta-crystallins. FEBS Lett 2007; 581:3936-42. [PMID: 17662718 PMCID: PMC2045703 DOI: 10.1016/j.febslet.2007.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/05/2007] [Indexed: 11/18/2022]
Abstract
Human lens beta-crystallin contains four acidic (betaA1-->betaA4) and three basic (betaB1-->betaB3) subunits. They oligomerize in the lens, but it is uncertain which subunits are involved in the oligomerization. We used a two-hybrid system to detect protein-protein interactions systematically. Proteins were also expressed for some physicochemical studies. The results indicate that all acidic-basic pairs (betaA-betaB) except betaA4-betaBs pairs show strong hetero-molecular interactions. For acidic or basic pairs, only two pairs (betaA1-betaA1 and betaA3-betaA3) show strong self-association. betaA2 and betaA4 show very weak self-association, which arises from their low solubility. Confocal fluorescence microscopy shows enormous protein aggregates in betaA2- or betaA4-crystallin transfected cells. However, coexpression with betaB2-crystallin decreased both the number and size of aggregates. Circular dichroism indicates subtle differences in conformation among beta-crystallins that may have contributed to the differences in interactions.
Collapse
Affiliation(s)
| | - Jack J.-N. Liang
- Corresponding author. Fax: +1 617 278 0556. E-mail address: (J.J.-N. Liang)
| |
Collapse
|
39
|
Smith MA, Bateman OA, Jaenicke R, Slingsby C. Mutation of interfaces in domain-swapped human betaB2-crystallin. Protein Sci 2007; 16:615-25. [PMID: 17327390 PMCID: PMC2203347 DOI: 10.1110/ps.062659107] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The superfamily of eye lens betagamma-crystallins is highly modularized, with Greek key motifs being used to form symmetric domains. Sequences of monomeric gamma-crystallins and oligomeric beta-crystallins fold into two domains that pair about a further conserved symmetric interface. Conservation of this assembly interface by domain swapping is the device adopted by family member betaB2-crystallin to form a solution dimer. However, the betaB1-crystallin solution dimer is formed from an interface used by the domain-swapped dimer to form a tetramer in the crystal lattice. Comparison of these two structures indicated an intriguing relationship between linker conformation, interface ion pair networks, and higher assembly. Here the X-ray structure of recombinant human betaB2-crystallin showed that domain swapping was determined by the sequence and not assembly conditions. The solution characteristics of mutants that were designed to alter an ion pair network at a higher assembly interface and a mutant that changed a proline showed they remained dimeric. X-ray crystallography showed that the dimeric mutants did not reverse domain swapping. Thus, the sequence of betaB2-crystallin appears well optimized for domain swapping. However, a charge-reversal mutation to the conserved domain-pairing interface showed drastic changes to solution behavior. It appears that the higher assembly of the betagamma-crystallin domains has exploited symmetry to create diversity while avoiding aggregation. These are desirable attributes for proteins that have to exist at very high concentration for a very long time.
Collapse
Affiliation(s)
- Myron A Smith
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | | | | | | |
Collapse
|
40
|
Marín-Vinader L, Onnekink C, van Genesen ST, Slingsby C, Lubsen NH. In vivo heteromer formation. Expression of soluble betaA4-crystallin requires coexpression of a heteromeric partner. FEBS J 2006; 273:3172-82. [PMID: 16774643 DOI: 10.1111/j.1742-4658.2006.05326.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The beta-crystallins are a family of long-lived, abundant structural proteins that are coexpressed in the vertebrate lens. As beta-crystallins form heteromers, a process that involves transient exposure of hydrophobic interfaces, we have examined whether in vivobeta-crystallin assembly is enhanced by protein chaperones, either small heat shock proteins, Hsp27 or alphaB-crystallin, or Hsp70. We show here that betaA4-crystallin is abundantly expressed in HeLa cells, but rapidly degraded, irrespective of the presence of Hsp27, alphaB-crystallin or Hsp70. Degradation is even enhanced by Hsp70. Coexpression of betaA4-crystallin with betaB2-crystallin yielded abundant soluble betaA4-betaB2-crystallin heteromers; betaB1-crystallin was much less effective in solubilizing betaA4-crystallin. As betaB2-crystallin competed for betaA4-crystallin with Hsp70 and the proteasomal degradation pathway, betaB2-crystallin probably captures an unstable betaA4-crystallin intermediate. We suggest that the proper folding of betaA4-crystallin is not mediated by general chaperones but requires a heteromeric partner, which then also acts as a dedicated chaperone towards betaA4-crystallin.
Collapse
|
41
|
Bahk SC, Lee SH, Jang JU, Choi CU, Lee BS, Chae SC, Song HJ, Park ZY, Yang YS, Chung HT. Identification of crystallin family proteins in vitreous body in rat endotoxin-induced uveitis: Involvement of crystallin truncation in uveitis pathogenesis. Proteomics 2006; 6:3436-3444. [PMID: 16622839 DOI: 10.1002/pmic.200500779] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Indexed: 11/08/2022]
Abstract
Endotoxin-induced uveitis (EIU) is an animal model of acute ocular inflammation. To characterize the mechanism of EIU, we analyzed the infiltration of proteins in the vitreous bodies of rats with EIU and normal rats using 2-DE and micro LC/LC-MS/MS. Twenty spots were identified in vitreous bodies of rats. Eighteen of these spots were members of the crystallin family. The truncated form of beta A4- and beta B2-crystallin were predominant in normal vitreous bodies, but there were intact form of crystallins in lipopolysaccharide-injected rats with EIU. These results suggest that crystallin family proteins are the major group of proteins involved in uveitic vitreous and that C-terminal truncation of beta-crystallins may play a role in EIU-related disease progression.
Collapse
Affiliation(s)
- Song-Chul Bahk
- Genome Research Center for Immune Disorders, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hoehenwarter W, Klose J, Jungblut PR. Eye lens proteomics. Amino Acids 2006; 30:369-89. [PMID: 16583312 DOI: 10.1007/s00726-005-0283-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 09/01/2005] [Indexed: 01/12/2023]
Abstract
The eye lens is a fascinating organ as it is in essence living transparent matter. Lenticular transparency is achieved through the peculiarities of lens morphology, a semi-apoptotic process where cells elongate and loose their organelles and the precise molecular arrangement of the bulk of soluble lenticular proteins, the crystallins. The 16 crystallins ubiquitous in mammals and their modifications have been extensively characterized by 2-DE, liquid chromatography, mass spectrometry and other protein analysis techniques. The various solubility dependant fractions as well as subproteomes of lenticular morphological sections have also been explored in detail. Extensive post translational modification of the crystallins is encountered throughout the lens as a result of ageing and disease resulting in a vast number of protein species. Proteomics methodology is therefore ideal to further comprehensive understanding of this organ and the factors involved in cataractogenesis.
Collapse
Affiliation(s)
- W Hoehenwarter
- Max Planck Institute for Infection Biology, Core Facility Protein Analysis, Berlin, Germany
| | | | | |
Collapse
|
43
|
Abstract
betaB2-crystallin, the major component of beta-crystallin, is a dimer at low concentrations but can form oligomers under physiological conditions. The interaction domains have been speculated to be the beta-sheets, each of which is formed by two or more beta-strands. betaB2-crystallin consists of 16 beta-strands, 8 in the N-terminal domain and 8 in the C-terminal domain. Domain interaction sites may be removed by destroying the beta-strands, which can be done by site-specific mutations, substituting the beta-formers (Val, Phe, Leu) with Glu or Asn, strong beta-breakers. We have cloned the following beta-strand-deleted mutants, I20E, L34E, V54E, V60E, V73E, L97E, I109E, I124E, V144E, V152E, L162E, L165E, and V187E and their corresponding X --> Asn mutants. We also made two mutants, V46E and V129E, that were not on the beta-strand as controls. Disruption of protein-protein interactions was screened by a mammalian two-hybrid system assay. Protein-protein interactions decreased for all beta-strand-deleted mutants except I20E, L34E, and L162E mutants; this effect was not seen in the two mutant controls, V46E and V129E. The sequences around Val-54, Val-60, Val-73, and Leu-97 in the N-terminal region and Ile-109, Ile-124, Val-144, Val-152, Leu-165, and Val-187 in the C-terminal region that formed beta-strands appear to be important in dimerization. Some selected mutant proteins that showed strong (V46E and V129E) and reduced (V60E, V144E, V60N, and V144N) interactions were expressed in bacterial culture and were studied with spectroscopy and chromatography. The V60E and V144E mutants were found to be partially unfolded and incapable of forming a complete dimer.
Collapse
Affiliation(s)
- Bing-Fen Liu
- Center for Ophthalmic Research/Surgery, Brigham and Women's Hospital, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
Chaudhry MA. Radiation-induced gene expression profile of human cells deficient in 8-hydroxy-2′-deoxyguanine glycosylase. Int J Cancer 2005; 118:633-42. [PMID: 16106417 DOI: 10.1002/ijc.21392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The human OGG1 gene encodes a DNA glycosylase that is involved in the base excision repair of 8-hydroxy-2'-deoxyguanine (8-OH-dG) from oxidatively damaged DNA. Cellular 8-OH-dG levels accumulate in the absence of this activity and could be deleterious for the cell. To assess the role of 8-oxoguanine glycosylase (OGG1) in the cellular defense mechanism in a specific DNA repair defect background, we set out to determine the expression pattern of base excision repair genes and other cellular genes not involved in the base excision pathway in OGG1-deficient human KG-1 cells after ionizing radiation exposure. KG-1 cells have lost OGG1 activity due to a homozygous mutation of Arg229Gln. Gene expression alterations were monitored at 4, 8, 12 and 24 hr in 2 Gy irradiated cells. Large-scale gene expression profiling was assessed with DNA microarray technology. Gene expression analysis identified a number of ionizing radiation-responsive genes, including several novel genes. There were 2 peaks of radiation-induced gene induction or repression: one at 8 hr and the other at 24 hr. Overall the number of downregulated genes was higher than the number of upregulated genes. The highest number of downregulated genes was at 8 hr postirradiation. Genes corresponding to cellular, physiologic, developmental and extracellular processes were identified. The highest number of radiation-induced genes belonged to the signal transduction category, followed by genes involved in transcription and response to stress. Microarray gene expression data were independently validated by relative quantitative RT-PCR. Surprisingly, none of the genes involved in the base excision repair of radiation-induced DNA damage showed altered expression.
Collapse
Affiliation(s)
- M Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, DNA Microarray Facility, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|