1
|
He S, Stankowska DL, Ellis DZ, Krishnamoorthy RR, Yorio T. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther 2017; 34:85-106. [PMID: 28820649 PMCID: PMC5963639 DOI: 10.1089/jop.2017.0041] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
Progressive neurodegeneration of the optic nerve and the loss of retinal ganglion cells is a hallmark of glaucoma, the leading cause of irreversible blindness worldwide, with primary open-angle glaucoma (POAG) being the most frequent form of glaucoma in the Western world. While some genetic mutations have been identified for some glaucomas, those associated with POAG are limited and for most POAG patients, the etiology is still unclear. Unfortunately, treatment of this neurodegenerative disease and other retinal degenerative diseases is lacking. For POAG, most of the treatments focus on reducing aqueous humor formation, enhancing uveoscleral or conventional outflow, or lowering intraocular pressure through surgical means. These efforts, in some cases, do not always lead to a prevention of vision loss and therefore other strategies are needed to reduce or reverse the progressive neurodegeneration. In this review, we will highlight some of the ocular pharmacological approaches that are being tested to reduce neurodegeneration and provide some form of neuroprotection.
Collapse
Affiliation(s)
- Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorette Z Ellis
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Thomas Yorio
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
2
|
Dulle JE, Rübsam A, Garnai SJ, Pawar HS, Fort PE. BetaB2-crystallin mutations associated with cataract and glaucoma leads to mitochondrial alterations in lens epithelial cells and retinal neurons. Exp Eye Res 2017; 155:85-90. [PMID: 28131617 PMCID: PMC5390483 DOI: 10.1016/j.exer.2017.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 11/17/2022]
Abstract
Crystallin proteins are the most prominent protein of the lens and have been increasingly shown to play critical roles in other tissues, especially the retina. Members of all 3 sub-families of crystallins, alpha-, beta- and gamma-crystallins have been reported in the retina during diabetes, traumatic injury and other retinal diseases. While their specific role in the retina is still unclear and may vary, beta-crystallin proteins have been shown to play a critical role in ganglion cell survival following trauma. We recently reported the correlation between a gene conversion in the betaB2-crystallin gene and a phenotype of familial congenital cataract. Interestingly, in half of the patients, this phenotype was associated with glaucoma. Taken together, these data suggested that the mutations we recently reported could have an impact on the role of betaB2-crystallin in both lens epithelial cells and retinal neurons. Consistent with this hypothesis, we show in the current study that the gene conversion leading to an amino acid conversion lead to a loss of solubility and a change of subcellular localization of betaB2-crystallin in both cell types. While the overall observations were similar in both cell types, there were some important nuances between them, suggesting different roles and regulation of betaB2-crystallin in lens cells versus retinal neurons. The data reported in this study strongly support a significant role of betaB2-crystallin in both lenticular and retinal ocular tissues and warrant further analysis of its regulation and its impact not only in cataract formation but also in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Jennifer E Dulle
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Anne Rübsam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sarah J Garnai
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Hemant S Pawar
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Thanos S, Böhm MR, Meyer zu Hörste M, Prokosch-Willing V, Hennig M, Bauer D, Heiligenhaus A. Role of crystallins in ocular neuroprotection and axonal regeneration. Prog Retin Eye Res 2014; 42:145-61. [DOI: 10.1016/j.preteyeres.2014.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
|
4
|
Prokosch V, Chiwitt C, Rose K, Thanos S. Deciphering proteins and their functions in the regenerating retina. Expert Rev Proteomics 2014; 7:775-95. [DOI: 10.1586/epr.10.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Thanos S, Böhm MRR, Schallenberg M, Oellers P. Traumatology of the optic nerve and contribution of crystallins to axonal regeneration. Cell Tissue Res 2012; 349:49-69. [PMID: 22638995 DOI: 10.1007/s00441-012-1442-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
Within a few decades, the repair of long neuronal pathways such as spinal cord tracts, the optic nerve or intracerebral tracts has gone from being strongly contested to being recognized as a potential clinical challenge. Cut axonal stumps within the optic nerve were originally thought to retract and become irreversibly necrotic within the injury zone. Optic nerve astrocytes were assumed to form a gliotic scar and remodelling of the extracellular matrix to result in a forbidden environment for re-growth of axons. Retrograde signals to the ganglion cell bodies were considered to prevent anabolism, thus also initiating apoptotic death and gliotic repair within the retina. However, increasing evidence suggests the reversibility of these regressive processes, as shown by the analysis of molecular events at the site of injury and within ganglion cells. We review optic nerve repair from the perspective of the proximal axon stump being a major player in determining the successful formation of a growth cone. The axonal stump and consequently the prospective growth cone, communicates with astrocytes, microglial cells and the extracellular matrix via a panoply of molecular tools. We initially highlight these aspects on the basis of recent data from numerous laboratories. Then, we examine the mechanisms by which an injury-induced growth cone can sense its surroundings within the area distal to the injury. Based on requirements for successful axonal elongation within the optic nerve, we explore the models employed to instigate successful growth cone formation by ganglion cell stimulation and optic nerve remodelling, which in turn accelerate growth. Ultimately, with regard to the proteomics of regenerating retinal tissue, we discuss the discovery of isoforms of crystallins, with crystallin beta-b2 (crybb2) being clearly upregulated in the regenerating retina. Crystallins are produced and used to promote the elongation of growth cones. In vivo and in vitro, crystallins beta and gamma additionally promote the growth of axons by enhancing the production of ciliary neurotrophic factor (CNTF), indicating that they also act on astrocytes to promote axonal regrowth synergistically. These are the first data showing that axonal regeneration is related to crybb2 movement within neurons and to additional stimulation of CNTF. We demonstrate that neuronal crystallins constitute a novel class of neurite-promoting factors that probably operate through an autocrine and paracrine mechanism and that they can be used in neurodegenerative diseases. Thus, the post-injury fate of neurons cannot be seen merely as inevitable but, instead, must be regarded as a challenge to shape conditions for initiating growth cone formation to repair the damaged optic nerve.
Collapse
Affiliation(s)
- Solon Thanos
- Institute of Experimental Ophthalmology, School of Medicine, University of Münster, Albert-Schweitzer-Campus 1, D15, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
6
|
Ahmed Z, Aslam M, Lorber B, Suggate EL, Berry M, Logan A. Optic nerve and vitreal inflammation are both RGC neuroprotective but only the latter is RGC axogenic. Neurobiol Dis 2009; 37:441-54. [PMID: 19900554 DOI: 10.1016/j.nbd.2009.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 10/02/2009] [Accepted: 10/31/2009] [Indexed: 12/27/2022] Open
Abstract
Intravitreal inflammation, induced by either lens injury, or intravitreal injection of zymosan (IVZ), protects RGC from apoptosis and stimulates axon regeneration after optic nerve transection. Here, we investigate the differential effects of intra-optic nerve zymosan (ONZ) and IVZ injections on RGC neuroprotection and axogenesis. After both IVZ and ONZ injection, zymosan-induced inflammation promoted a similar 4-/5-fold enhancement in RGC survival, compared to optic nerve transected controls, but only IVZ promoted RGC axon regeneration. IVZ was the most effective in activating retinal astrocyte/Müller cells while regulated intramembraneous proteolysis (RIP) of p75(NTR) and inactivation of Rho (key components of the axon growth inhibitory signalling cascade) occurred in both ONZ and IVZ, but only in the latter did RGC axons regenerate. We suggest that neuroprotective factors may be transported to RGC somata by retrograde transport after ONZ and diffuse into the retina after IVZ injection, but an axogenic agent is required to initiate and maintain disinhibited RGC axon regeneration that may be an exclusive property of a Müller cell-derived factor released after IVZ.
Collapse
Affiliation(s)
- Zubair Ahmed
- Molecular Neuroscience Group, Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Ying X, Zhang J, Wang Y, Wu N, Wang Y, Yew DT. Alpha-crystallin protected axons from optic nerve degeneration after crushing in rats. J Mol Neurosci 2008; 35:253-8. [PMID: 18551258 DOI: 10.1007/s12031-007-9010-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 08/31/2007] [Indexed: 11/25/2022]
Abstract
In mature mammals, optic nerve injury results in apoptosis of retinal ganglion cells. The literature confirms that lens injury enhances retinal ganglion cells survival, but the mechanism is not very clear. Using silver staining method and computer image analysis techniques, the effect of alpha-crystallin, a major component of the lens in the survival of retinal ganglion cell axons, was investigated in vivo after intravitreal injections. The results showed that enhanced survival of axotomized axons was observed beyond the crush site after a single intravitreal administration of alpha-crystallin at the time of axotomy. Axonal density of the retinal ganglion cell was significantly greater than in the untreated controls until 2 weeks after injection. This effect declined by 4 weeks after injection but survival of axons remained greater than controls. These findings indicate that alpha-crystallin plays a key role in protecting axons after optic nerve injury.
Collapse
Affiliation(s)
- Xi Ying
- Department of Ophthalmology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
8
|
Fischer D, Hauk TG, Müller A, Thanos S. Crystallins of the beta/gamma-superfamily mimic the effects of lens injury and promote axon regeneration. Mol Cell Neurosci 2007; 37:471-9. [PMID: 18178099 DOI: 10.1016/j.mcn.2007.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/31/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022] Open
Abstract
Adult retinal ganglion cells (RGCs) can survive axotomy and regrow lengthy axons when exposed to lens injury (LI). The neuroprotective and axon-growth-promoting effects of LI have been attributed to an infiltration of activated macrophages into the inner eye and recently also to astrocyte-derived CNTF. The present work reveals that certain purified lens proteins (crystallins) cause the effects of LI. Intravitreal injections of beta- or gamma-crystallins, but not of alpha-crystallin, strongly enhanced axon regeneration from retinal explants in culture, within peripheral nerve grafts or the crushed optic nerve. Deposition of the effective crystallins within the vitreous body was also associated with an influx of circulating macrophages and an activation of retinal astrocytes, Müller cells, and resident microglia. Furthermore beta-crystallin induced CNTF expression in retinal astrocytes and activation of CNTF's major downstream signaling pathway (JAK/STAT3) when intravitreally injected or added to the culture medium ex vivo. Consistently, in culture the addition of beta- and gamma-crystallins to the medium also increased axon regeneration from retinal explants. These results demonstrate that crystallins of the beta/gamma-superfamily are the lens-derived activators of cascades, which lead to axonal regeneration and suggest that their effects might be mediated by astrocyte-derived CNTF.
Collapse
Affiliation(s)
- Dietmar Fischer
- Department of Experimental Neurology, Medical School, University of Ulm, Albert-Einstein-Allee 11, D89081 Ulm, Germany.
| | | | | | | |
Collapse
|
9
|
Müller A, Hauk TG, Fischer D. Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. ACTA ACUST UNITED AC 2007; 130:3308-20. [PMID: 17971355 DOI: 10.1093/brain/awm257] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Retinal ganglion cells (RGCs) normally fail to regenerate injured axons and undergo apoptosis soon after injury. We have recently shown that lens injury (LI) or intravitreally applied zymosan allow RGCs to survive axotomy and regenerate axons in the injured optic nerve. Activated macrophages and oncomodulin have been suggested to be the principal mediators of this phenomenon. However, several lines of evidence show that macrophage-derived factors alone cannot account for all the beneficial effects of intraocular inflammation. We show here that LI or zymosan induce upregulation of ciliary neurotrophic factor (CNTF) in retinal astrocytes and release CNTF independent of macrophages and activate the transcription factor signal transducers and activators of transcription 3 (STAT3) in RGCs. Levels of CNTF expressed in retinal glia and STAT3 activation in RGC were correlated with the time course of RGCs switching to an active regenerative state. Intravitreal injections of antibodies against CNTF or a Janus-kinase inhibitor compromised the beneficial effects of LI, whereas an antiserum against oncomodulin was ineffective. Like the action of CNTF, the effects of LI were potentiated by drugs that increase intracellular cAMP levels, resulting in strong axon regeneration in vivo. These data indicate that astrocyte-derived CNTF is a major contributor to the neuroprotective and axon-growth-promoting effects of LI and zymosan. These findings could lead to the development of a therapeutic principle for promoting axon regeneration in the CNS as a whole.
Collapse
Affiliation(s)
- Adrienne Müller
- Department of Experimental Neurology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | |
Collapse
|
10
|
Fitzgerald M, Nairn P, Bartlett CA, Chung RS, West AK, Beazley LD. Metallothionein-IIA promotes neurite growth via the megalin receptor. Exp Brain Res 2007; 183:171-80. [PMID: 17634932 DOI: 10.1007/s00221-007-1032-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Metallothionein (MT)-I/II has been shown to be neuroprotective and neuroregenerative in a model of rat cortical brain injury. Here we examine expression patterns of MT-I/II and its putative receptor megalin in rat retina. At neonatal stages, MT-I/II was present in retinal ganglion cells (RGCs) but not glial or amacrine cells; megalin was present throughout the retina. Whilst MT-I/II was absent from adult RGC in normal animals and after optic nerve transection, the constitutive megalin expression in RGCs was lost following optic nerve transection. In vitro MT-IIA treatment stimulated neuritic growth: more RGCs grew neurites longer than 25 microm (P < 0.05) in dissociated retinal cultures and neurite extension increased in retinal explants (P < 0.05). MT-IIA treatment of mixed retinal cultures increased megalin expression in RGCs, and pre-treating cells with anti-megalin antibodies prevented MT-IIA-stimulated neurite extension. Our results indicate that MT-IIA stimulates neurite outgrowth in RGCs and may do so via the megalin receptor; we propose that neurite extension is triggered via signal transduction pathways activated by the NPxY motifs of megalin's cytoplasmic tail.
Collapse
Affiliation(s)
- Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Hackett Drive, Crawley 6009, WA, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Liedtke T, Schwamborn JC, Schröer U, Thanos S. Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2). Mol Cell Proteomics 2007; 6:895-907. [PMID: 17264069 DOI: 10.1074/mcp.m600245-mcp200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adult retinal ganglion cells (RGCs) can regenerate their axons in vitro. Using proteomics, we discovered that the supernatants of cultured retinas contain isoforms of crystallins with crystallin beta b2 (crybb2) being clearly up-regulated in the regenerating retina. Immunohistochemistry revealed the expression of crybb within the retina, including in filopodial protrusions and axons of RGCs. Cloning and overexpression of crybb2 in RGCs and hippocampal neurons increased axonogenesis, which in turn could be blocked with antibodies against beta-crystallin. Conditioned medium from crybb2-transfected cell cultures also supported the growth of axons. Finally real time imaging of the uptake of green fluorescent protein-tagged crybb2 fusion protein showed that this protein becomes internalized. These data are the first to show that axonal regeneration is related to crybb2 movement. The results suggest that neuronal crystallins constitute a novel class of neurite-promoting factors that likely operate through an autocrine mechanism and that they could be used in neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Liedtke
- Department of Experimental Ophthalmology, University of Münster, Germany
| | | | | | | |
Collapse
|
12
|
Wong WK, Cheung AWS, Cho EYP. Lens epithelial cells promote regrowth of retinal ganglion cells in culture and in vivo. Neuroreport 2006; 17:699-704. [PMID: 16641672 DOI: 10.1097/01.wnr.0000215776.91850.96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lens damage has been demonstrated to promote axonal regeneration of retinal ganglion cells. Various mechanisms associated with this enhancement have been proposed, including macrophage recruitment and stimulatory factors from the lesioned lens. Lens epithelial cells, which become activated as a result of injury, are another potential stimulus. A recent study of co-culturing lens epithelial cells adjacent to retinal explants without direct contact showed that neurites were attracted to grow towards them. We explored the ability of lens epithelial cells to act as a favorable substrate for ganglion cell axonal regeneration, by culturing retinal explants on top of a lens epithelial cell layer, as well as in vivo by transplanting freshly isolated lens epithelial cells to the cut optic nerve. Retinal explants cultured on lens epithelial cells regenerated more and longer neurites than those cultured on either an acellular substrate or a substrate of corneal cells, while lens epithelial cells transplanted to the optic nerve stimulated axons to regenerate in close association with them.
Collapse
Affiliation(s)
- Wai Kai Wong
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
13
|
Liedtke T, Naskar R, Eisenacher M, Thanos S. Transformation of adult retina from the regenerative to the axonogenesis state activates specific genes in various subsets of neurons and glial cells. Glia 2006; 55:189-201. [PMID: 17078023 DOI: 10.1002/glia.20447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to identify the gene expression profile of the regenerating retina in vitro. To achieve this goal, three experimental groups were studied: (1) an injury control group (OC-LI group) that underwent open crush (OC) of the optic nerve and lens injury (LI) in vivo; (2) an experimental group (OC-LI-R group) that comprised animals treated like those in the OC-LI group except that retinal axons were allowed to regenerate (R) in vitro; and (3) an experimental group (OC-LI-NR group) that comprised animals treated as those in the OC-LI group, except that the retinas were cultured in vitro with the retinal ganglion cell (RGC) layer facing upwards to prevent axonal regeneration (NR). Gene expression in each treatment group was compared to that of untreated controls. Immunohistochemistry was used to examine whether expression of differentially regulated genes also occurred at the protein level and to localize these proteins to the respective retinal cells. Genes that were regulated belonged to different functional categories such as antioxidants, antiapoptotic molecules, transcription factors, secreted signaling molecules, inflammation-related genes, and others. Comparison of changes in gene expression among the various treatment groups revealed a relatively small cohort of genes that was expressed in different subsets of cells only in the OC-LI-R group; these genes can be considered to be regeneration-specific. Our findings demonstrate that axonal regeneration of RGC involves an orchestrated response of all retinal neurons and glia, and could provide a platform for the development of therapeutic strategies for the regeneration of injured ganglion cells.
Collapse
Affiliation(s)
- Thomas Liedtke
- Department of Experimental Ophthalmology, University Eye Hospital Münster Domagkstrasse, Muenster, Germany
| | | | | | | |
Collapse
|