1
|
Soto TB, Tenconi PE, Buzzi ED, Dionisio L, Mateos MV, Rotstein NP, Spitzmaul G, Politi LE, German OL. Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119816. [PMID: 39159686 DOI: 10.1016/j.bbamcr.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.
Collapse
Affiliation(s)
- Tamara B Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Gao F, Li Z, Kang Z, Liu D, Li P, Ou Q, Xu JY, Li W, Tian H, Jin C, Wang J, Zhang J, Zhang J, Lu L, Xu GT. Inhibition of PARP activity improves therapeutic effect of ARPE-19 transplantation in RCS rats through decreasing photoreceptor death. Exp Eye Res 2021; 204:108448. [PMID: 33484702 DOI: 10.1016/j.exer.2021.108448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
Photoreceptor (PR) dysfunction or death is the key pathological change in retinal degeneration (RD). The death of PRs might be due to a primary change in PRs themselves or secondary to the dysfunction of the retinal pigment epithelium (RPE). Poly(ADP-ribose) polymerase (PARP) was reported to be involved in primary PR death, but whether it plays a role in PR death secondary to RPE dysfunction has not been determined. To clarify this question and develop a new therapeutic approach, we studied the changes in PAR/PARP in the RCS rat, a RD model, and tested the effect of PARP intervention when given alone or in combination with RPE cell transplantation. The results showed that poly(ADP-ribosyl)ation of proteins was increased in PRs undergoing secondary death in RCS rats, and this result was confirmed by the observation of similar changes in sodium iodate (SI)-induced secondary RD in SD rats. The increase in PAR/PARP was highly associated with increased apoptotic PRs and decreased visual function, as represented by lowered b-wave amplitudes on electroretinogram (ERG). Then, as we expected, when the RCS rats were treated with subretinal injection of the PARP inhibitor PJ34, the RD process was delayed. Furthermore, when PJ34 was given simultaneously with subretinal ARPE-19 cell transplantation, the therapeutic effects were significantly improved and lasted longer than those of ARPE-19 or PJ34 treatment alone. These results provide a potential new approach for treating RD.
Collapse
Affiliation(s)
- Furong Gao
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zongyi Li
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ziwei Kang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, USA
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
SHIRAI M, NIINO N, MORI K, KAI K. Microarray-based gene expression analysis combined with laser capture microdissection is beneficial in investigating the modes of action of ocular toxicity. J Toxicol Pathol 2021; 35:171-182. [PMID: 35516843 PMCID: PMC9018402 DOI: 10.1293/tox.2021-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
The retina consists of several layers, and drugs can affect the retina and choroid
separately. Therefore, investigating the target layers of toxicity can provide useful
information pertaining to its modes of action. Herein, we compared gene expression
profiles obtained via microarray analyses using samples of target layers collected via
laser capture microdissection and samples of the whole globe of the eye of rats treated
with N-methyl-N-nitrosourea. Pathway analyses suggested
changes in the different pathways between the laser capture microdissection samples and
the whole globe samples. Consistent with the histological distribution of glial cells,
upregulation of several inflammation-related pathways was noted only in the whole globe
samples. Individual gene expression analyses revealed several gene expression changes in
the laser capture microdissection samples, such as caspase- and glycolysis-related gene
expression changes, which is similar to previous reports regarding
N-methyl-N-nitrosourea-treated animals; however,
caspase- and glycolysis-related gene expressions did not change or changed unexpectedly in
the whole globe samples. Analyses of the laser capture microdissection samples revealed
new potential candidate genes involved in the modes of action of
N-methyl-N-nitrosourea-induced retinal toxicity.
Collectively, our results suggest that specific retinal layers, which may be targeted by
specific toxins, are beneficial in identifying genes responsible for drug-induced ocular
toxicity.
Collapse
Affiliation(s)
- Makoto SHIRAI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Noriyo NIINO
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Kazuhiko MORI
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kiyonori KAI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| |
Collapse
|
4
|
Prado Spalm FH, Vera MS, Dibo MJ, Simón MV, Politi LE, Rotstein NP. Ceramide Induces the Death of Retina Photoreceptors Through Activation of Parthanatos. Mol Neurobiol 2018; 56:4760-4777. [DOI: 10.1007/s12035-018-1402-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023]
|
5
|
Jordan JJ, Chhim S, Margulies CM, Allocca M, Bronson RT, Klungland A, Samson LD, Fu D. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage. Cell Death Dis 2017; 8:e2947. [PMID: 28726787 PMCID: PMC5550884 DOI: 10.1038/cddis.2017.343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022]
Abstract
Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents.
Collapse
Affiliation(s)
- Jennifer J Jordan
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophea Chhim
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Carrie M Margulies
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mariacarmela Allocca
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Arne Klungland
- Department of Molecular Microbiology A3.3021, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Leona D Samson
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dragony Fu
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
6
|
Zhu Y, Zhao Q, Gao H, Peng X, Wen Y, Dai G. Lycium barbarum polysaccharides attenuates N-methy-N-nitrosourea-induced photoreceptor cell apoptosis in rats through regulation of poly (ADP-ribose) polymerase and caspase expression. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:125-134. [PMID: 27208869 DOI: 10.1016/j.jep.2016.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/10/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lycium barbarum L., popularly known as "Goji berry", a classic of Traditional Chinese Medicine has long been used to treat ocular diseases and cardiovascular diseases. Recently, the photoreceptor cell protection of Lycium barbarum polysaccharides (LBP), a water extract from Lycium barbarum L. has received more attention. The present study was designed to investigate the effect of LBP on N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell apoptosis, and the involvement of the poly (ADP-ribose) polymerase (PARP) and caspase. MATERIALS AND METHODS Photoreceptor cell injury was induced in male Sprague-Dawley rats by an intraperitoneal injection of MNU 60mg/kg. Seven days prior to MNU injection, LBP were intragastrical administered daily, rats were sacrificed at 24h and 7 days after MNU injection. Retinal morphologies, photoreceptor cells apoptosis, and protein expression were evaluated at 24h and 7 days after MNU injection. RESULTS Morphologically, the outer nuclear layer was well preserved in the LBP-treated rat retinas throughout the experimental period. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-digoxigenin nick-end labeling (TUNEL) assays showed that LBP could significantly suppress the loss of photoreceptor cells, as determined by the photoreceptor cell ratio at the central retina 24h and 7 days after MNU administration. Western-blot analysis demonstrated the expression levels of procaspase-9, -7, -3 and cleaved caspase-9, -7, -3 were upregulated, and PARP were downregulated both 24h and 7 days after MNU injection. LBP treatment significantly decreased protein levels of procaspase and cleaved caspase, increased the level of PARP and cleaved PARP on 24h and 7 days. CONCLUSIONS LBP inhibits MNU-induced rat photoreceptor cell apoptosis and protects retinal structure via the regulation of the expressions of PARP and caspase.
Collapse
Affiliation(s)
- Yafei Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China; Key laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China; Key laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Hua Gao
- Departments of Pharmacy, General Hospital of Ningxia Medical University, 803 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Xiaodong Peng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China; Key laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Youmin Wen
- Departments of Pharmacy, General Hospital of Ningxia Medical University, 803 Shengli Street, Yinchuan, Ningxia 750004, PR China.
| | - Guidong Dai
- Department of Pharmaceutical Engineering, School of Chemical and Materials Engineering, Kaili University, Kaiyuan Road, Kaili, Guizhou 556011, PR China.
| |
Collapse
|
7
|
Guzyk MM, Tykhomyrov AA, Nedzvetsky VS, Prischepa IV, Grinenko TV, Yanitska LV, Kuchmerovska TM. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats. Neurochem Res 2016; 41:2526-2537. [DOI: 10.1007/s11064-016-1964-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
|
8
|
Wu Y, Chen Y, Wu Q, Jia L, Du X. Minocycline inhibits PARP‑1 expression and decreases apoptosis in diabetic retinopathy. Mol Med Rep 2015; 12:4887-94. [PMID: 26165350 PMCID: PMC4581760 DOI: 10.3892/mmr.2015.4064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/03/2015] [Indexed: 01/30/2023] Open
Abstract
The present study aimed to investigate the mechanism underlying the effects of minocycline on diabetic retinopathy-associated cellular apoptosis. A total of 40 Sprague Dawley (SD) rats were used as a diabetic retinopathy model following injection with streptozotocin. Among the 34 rats in which the diabetes model was successfully established, 24 rats were divided into two experimental groups: I and II (T1 and T2, respectively), and orally administered with various doses of minocycline. The remaining 10 rats served as the diabetic retinopathy control group. An additional group of 10 healthy SD rats with comparable weight served as normal controls. The rats in T1 and T2 groups were treated daily for eight consecutive weeks with minocycline at a dose of 2.5 mg/kg and 5 mg/kg, respectively. The mRNA expression levels of poly (ADP-ribose) polymerase-1 (PARP-1) were subsequently measured by reverse transcription-quantitative polymerase chain reaction, and the protein expression levels of poly-ADP-ribose were measured by western blot analysis and immunohistochemistry. Retinal morphology was observed following hematoxylin and eosin staining, and retinal cell apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase-3 activity assays. The amplitudes of the electroretinogram (ERG) b-wave and oscillary potentials (OPs) were measured using visual electrophysiology, and compared among the four groups. The results of the present study demonstrated that in the diabetic rats, retinal PARP-1 gene expression was markedly upregulated, the number of apoptotic cells and the activity levels of caspase-3 were increased, and the amplitude of the ERG b-wave and the OPs were markedly lower as compared with the normal rats. Following treatment with minocycline, the abnormal expression of PARP-1 in the retina was inhibited, and cellular apoptosis was decreased. In conclusion, the results of the present study suggest that PARP-1 is involved in the development of diabetic retinopathy, and minocycline is able to inhibit PARP-1 expression and decrease cellular apoptosis, suggesting that minocycline may prove to be a promising drug for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Ying Wu
- Department of Ultrasound, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Yongdong Chen
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Lili Jia
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xinhua Du
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
9
|
Koriyama Y, Sugitani K, Ogai K, Kato S. Heat shock protein 70 induction by valproic acid delays photoreceptor cell death by N-methyl-N-nitrosourea in mice. J Neurochem 2014; 130:707-19. [PMID: 24773621 DOI: 10.1111/jnc.12750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 12/28/2022]
Abstract
Retinal degenerative diseases (RDs) are a group of inherited diseases characterized by the loss of photoreceptor cells. Selective photoreceptor loss can be induced in mice by an intraperitoneal injection of N-methyl-N-nitrosourea (MNU) and, because of its selectivity, this model is widely used to study the mechanism of RDs. Although it is known that calcium-calpain activation and lipid peroxidation are involved in the initiation of cell death, the precise mechanisms of this process remain unknown. Heat shock protein 70 (HSP70) has been shown to function as a chaperone molecule to protect cells against environmental and physiological stresses. In this study, we investigated the role of HSP70 on photoreceptor cell death in mice. HSP70 induction by valproic acid, a histone deacetylase inhibitor, attenuated the photoreceptor cell death by MNU through inhibition of apoptotic caspase signals. Furthermore, HSP70 itself was rapidly and calpain-dependently cleaved after MNU treatment. Therefore, HSP70 induction by valproic acid was dually effective against MNU-induced photoreceptor cell loss as a result of its anti-apoptotic actions and its ability to prevent HSP70 degradation. These findings might help lead us to a better understanding of the pathogenic mechanism of RDs. Retinal degenerative diseases are characterized by the loss of photoreceptor cells. We proposed the following cascade for N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death: MNU gives rise to cleavage of heat shock protein 70 (HSP70); HSP70 induction by valproic acid (VPA) is dually effective against MNU-induced photoreceptor cell loss because of its anti-apoptotic actions and its ability to prevent HSP70 degradation. We hope that the present study heralds a new era in developing therapeutic tools against retinal degenerative diseases.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan; Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | | | | | | |
Collapse
|
10
|
Chen YY, Liu SL, Hu DP, Xing YQ, Shen Y. N -methyl- N -nitrosourea-induced retinal degeneration in mice. Exp Eye Res 2014; 121:102-13. [PMID: 24509257 DOI: 10.1016/j.exer.2013.12.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
Abstract
Mouse retinal degeneration models have been investigated for many years in the hope of understanding the mechanism of photoreceptor cell death. N -methyl- N -nitrosourea (MNU) has been previously shown to induce outer retinal degeneration in mice. After MNU was intraperitoneally injected in C57/BL mice, we observed a gradual decrease in the outer nuclear layer (ONL) thickness associated with photoreceptor outer segment loss, bipolar cell dendritic retraction and reactive gliosis. Reactive gliosis was confirmed by increased GFAP protein levels. More serious damage to the central retina as opposed to the peripheral retina was found in the MNU-induced retinal degeneration model. Retinal ganglion cells (RGC) appear to be spared for at least two months after MNU treatment. Following retinal vessel labelling, we observed vascular complexes in the distal vessels, indicating retinal vessel damage. In the remnant retinal photoreceptor of the MNU-treated mouse, concentrated colouring nuclei were detected by electron microscopy, together with the loss of mitochondria and displaced remnant synaptic ribbons in the photoreceptor. We also observed decreased mitochondrial protein levels and increased amounts of nitrosylation/nitration in the photoreceptors. The mechanism of MNU-induced apoptosis may result from oxidative stress or the loss of retinal blood supply. MNU-induced mouse retinal degeneration in the outer retina is a useful animal model for photoreceptor degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Dept of Ophthalmology, Wuhan Univ, Renmin Hospital, Wuhan, China; Eye Institute of Wuhan University, Wuhan, China
| | - Shi-Liang Liu
- Dept of Ophthalmology, Wuhan Univ, Renmin Hospital, Wuhan, China; Eye Institute of Wuhan University, Wuhan, China
| | - Dan-Ping Hu
- Dept of Ophthalmology, Wuhan Univ, Renmin Hospital, Wuhan, China; Eye Institute of Wuhan University, Wuhan, China
| | - Yi-Qiao Xing
- Dept of Ophthalmology, Wuhan Univ, Renmin Hospital, Wuhan, China; Eye Institute of Wuhan University, Wuhan, China.
| | - Yin Shen
- Dept of Ophthalmology, Wuhan Univ, Renmin Hospital, Wuhan, China; Eye Institute of Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Wang D, Wang Z, Li Y, Chen X, Sun GY. Nimodipine inhibits N-methyl-N-nitrosourea-induced retinal photoreceptor apoptosis in vivo. Indian J Pharmacol 2014; 45:149-54. [PMID: 23716891 PMCID: PMC3660927 DOI: 10.4103/0253-7613.108297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/09/2012] [Accepted: 01/12/2012] [Indexed: 11/17/2022] Open
Abstract
Purpose: The purpose of the present study was to investigate the effect of nimodipine (NMD), a calcium channel blocker, on N-methyl-N-nitrosourea (MNU)-induced retinal degeneration. Materials and Methods: 60 mg/kg MNU was given intraperitoneally to 6-week-old female Sprague-Dawley rats, and NMD was injected intraperitoneally for up to 5 days after MNU. The effect of NMD was evaluated by electron microscopy and electroretinography (ERG). Proteins of Bax, Bcl-2, Caspase-3, and mitochondrial membrane potential (MMP) were analyzed with flow cytometry. The expressions of phosphodiesterase (PDE) and Caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR). Results: The apparent preservation of NMD to the photoreceptor cell was demonstrated by electron microscopy. After NMD treatment, both a- and b-waves of ERG were significantly higher compared with the control group, and had a protective effect on MNU-damaged retinal ERG. Flow cytometric assays showed that NMD decreased the level of Bax and Caspase-3 and increased the activity of Bcl-2 in retina. NMD significantly restored the mitochondrial membrane potential (MMP). RT-PCR analysis demonstrated that NMD treatment significantly decreased mRNA level of Caspase-3, and mRNA level of PDE was clearly upregulated. Conclusions: These data suggest that NMD may regulate the expressions of Bax, Bcl-2, Caspases-3, and PDE, and protection on the functions of retinal cell mitochondria inhibit MNU-induced photoreceptor cell apoptosis and protect retinal function in rats.
Collapse
Affiliation(s)
- Dan Wang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang- 110 001, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Wang D, Li Y, Wang Z, Sun GY, Zhang QH. Nimodipine rescues N-methyl-N-nitrosourea-induced retinal degeneration in rats. Pharmacogn Mag 2013; 9:149-54. [PMID: 23772111 PMCID: PMC3680855 DOI: 10.4103/0973-1296.111276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 02/29/2012] [Accepted: 04/30/2013] [Indexed: 11/09/2022] Open
Abstract
Background: That nimodipine (NMD) is potentially useful for ophthalmic treatment. However, the effect of NMD is unknown on retinal degenerative diseases. Objective: The purpose of the present study was to investigate the effect of NMD on N-methyl-N-nitrosourea (MNU)-induced retinal degeneration (RD) and elucidate its possible mechanisms. Materials and Methods: Morphological observation of NMD on MNU-induced RD was evaluated by light microscopy and electron microscopy. Nonenzymatic antioxidant glutathione (GSH) was measured by a colorimetric method. Transforming growth factor-beta (TGF-β) was measured by enzyme-linked immunosorbent assay (ELISA). Telomerase was detected by reverse transcriptase polymerase chain reaction (RT-PCR). Results: The significantly protective effect of NMD on MNU-induced RD was demonstrated morphologically. NMD increased the content of GSH and decreased the level of TGF-β in rat retina. RT-PCR analysis demonstrated that NMD treatment significantly decreased mRNA level of telomerase. Conclusion: These data suggest that NMD inhibit MNU-induced RD in rats. The expressions of TGF-β, telomerase and GSH contents might partially contribute to its protective effects on MNU-induced RD.
Collapse
Affiliation(s)
- Dan Wang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, P. R. China ; Department of Pharmacology, HE's University, P. R. China
| | | | | | | | | |
Collapse
|
13
|
Paik SS, Jeong E, Jung SW, Ha TJ, Kang S, Sim S, Jeon JH, Chun MH, Kim IB. Anthocyanins from the seed coat of black soybean reduce retinal degeneration induced by N-methyl-N-nitrosourea. Exp Eye Res 2012; 97:55-62. [PMID: 22387136 DOI: 10.1016/j.exer.2012.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/02/2012] [Accepted: 02/15/2012] [Indexed: 11/26/2022]
Abstract
Anthocyanins are known to have antioxidant effects and thus may play an important role in preventing various degenerative diseases. In this study, we examined the effect of anthocyanins extracted from the seed coat of black soybean on an animal model of retinal degeneration (RD), a leading cause of photoreceptor cell death resulting in blindness. RD was induced in rats by an intraperitoneal injection of N-methyl-N-nitrosourea (MNU) (50mg/kg), a DNA-methylating agent that causes photoreceptor damage. Anthocyanins extracted from black soybean seed coat (50mg/kg) were daily administered, orally, for 1, 2, and 4 weeks after MNU injection. Electroretinographic (ERG) recordings and morphological analyses were performed. In control rats with MNU-induced retinal damage, the ERG recordings showed a gradual significant time-dependent reduction in both a- and b-wave amplitudes compared with those of normal animals. In the MNU-induced RD rats given anthocyanins for 4 weeks, ERG responses were significantly increased compared with untreated RD rats, more apparently in scotopic stimulation than in the photopic condition. However, in the MNU-injected rats given anthocyanins for 1 and 2 weeks, the increase in ERG responses was not significant. Morphologically, the outer nuclear layer, where photoreceptors reside, was well preserved in the anthocyanin-treated rat retinas throughout the experimental period. In addition, retinal injury, evaluated by immunolabeling with an antibody against glial fibrillary acidic protein, was markedly reduced in anthocyanin-treated retinas. These results demonstrate that anthocyanins extracted from black soybean seeds can protect retinal neurons from MNU-induced structural and functional damages, suggesting that anthocyanins from black soybean seed coat may be used as a useful supplement to modulate RD.
Collapse
Affiliation(s)
- Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tsuruma K, Yamauchi M, Inokuchi Y, Sugitani S, Shimazawa M, Hara H. Role of oxidative stress in retinal photoreceptor cell death in N-methyl-N-nitrosourea-treated mice. J Pharmacol Sci 2012; 118:351-62. [PMID: 22362184 DOI: 10.1254/jphs.11110fp] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
This study aimed to investigate whether oxidative stress contributes to retinal cell death in a mouse model of photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU). We measured in vitro MNU-induced radical production in retinal cell cultures of murine 661W photoreceptor-derived cells; RGC-5, a mouse ganglion cell line; and primary retinal cells. The addition of MNU induced oxidative radical generation in 661W and primary retinal cells, but not in RGC-5 cells. Edaravone, a free radical scavenger, at 1 µM reduced MNU-induced radical production in 661W and primary retinal cells. To induce in vivo retinal photoreceptor degeneration in mice, we administered 60 mg/kg MNU by intraperitoneal injection. We intravenously administered 1 mg/kg edaravone immediately and at 6 h after the MNU injection. Retinal photoreceptor degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and by oxidative stress markers. MNU caused photoreceptor cell loss at 7 days after administration. Edaravone inhibited ONL thinning and reduced TUNEL-positive cells and the oxidative stress markers. These findings indicate that MNU leads to selective photoreceptor degradation via oxidative stress in vitro and in vivo and may help to understand the pathogenic mechanism of retinitis pigmentosa.
Collapse
Affiliation(s)
- Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Jeong E, Paik SS, Jung SW, Chun MH, Kim IB. Morphological and functional evaluation of an animal model for the retinal degeneration induced by N-methyl-N-nitrosourea. Anat Cell Biol 2011; 44:314-23. [PMID: 22254160 PMCID: PMC3254885 DOI: 10.5115/acb.2011.44.4.314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 11/27/2022] Open
Abstract
The retinal degeneration (RD) is a general cause of blindness. To study its pathophysiology and evaluate the effects of new therapeutic agents before clinical trials, it is essential to establish reliable and stable animal models. This study evaluated a RD animal model in which blindness was induced by N-methyl-N-nitrosourea (MNU), a potent retinotoxin leading to apoptosis of photoreceptors. MNU was applied to the Sprague-Dawley rats by a single intraperitoneal injection in different doses (40, 50, and 60 mg/kg). The retinal functions were examined at 1 week after MNU injection by electroretinogram (ERG). Afterwards, each retina was examined by hematoxylin and eosin stain and immunohistochemistry with anti-glial fibrillary acidic protein antibody. Upon MNU injection of 40, 50 and 60 mg/kg, the ERG amplitude of a-waves showed significant reductions of 7, 26, and 44%, respectively, when compared to that of normal a-waves. The b-wave amplitudes were about 89, 65, and 58% of normal b-waves in the response to scotopic light stimulus. At 1 week, 2 weeks, and 4 weeks after MNU injection (50 mg/kg), all scotopic ERG components decreased progressively. In addition, degeneration of retinal neurons was observed in a time- and dose-dependent manner after MNU injection. Taken together, functional reduction following RD induced by MNU correlates with morphological changes. Thus, this RD rat model may be a useful model to study its pathophysiology and to evaluate the effects of new therapeutic agents before clinical trials.
Collapse
Affiliation(s)
- Eojin Jeong
- Department of Anatomy, Catholic Institute for Advanced Biomaterials, The Catholic University of Korea College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
16
|
Zulliger R, Lecaudé S, Eigeldinger-Berthou S, Wolf-Schnurrbusch UEK, Enzmann V. Caspase-3-independent photoreceptor degeneration by N-methyl-N-nitrosourea (MNU) induces morphological and functional changes in the mouse retina. Graefes Arch Clin Exp Ophthalmol 2011; 249:859-69. [PMID: 21240523 DOI: 10.1007/s00417-010-1584-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Retinal degeneration is followed by significant changes in the structure and function of photoreceptors in humans and several genetic animal models. However, it is not clear whether similar changes occur when the degeneration is induced pharmacologically. Therefore, our aim was to investigate the influence of retinotoxic N-methyl-N-nitrosourea (MNU) on the function, morphology and underlying molecular pathways of programmed cell death. METHODS C57/BL6 mice were injected with different doses of MNU, and function was determined by analysing optokinetic reflex measurements and cued water maze results at several time points post-injection. Morphometric measurements were also taken from H&E-stained paraffin eye sections. TUNEL-positive cells and caspase-3 and -6 were detected by immunohistochemistry. To assess the molecular changes leading to cell death, qRT-PCR from neurosensory retina mRNA was performed. RESULTS The application of MNU led to an instant decrease in function and a delayed decrease in the thickness of the retinal outer nuclear layer. These responses were observed in the absence of any structural changes in the retinal pigment epithelium. The degeneration of the photoreceptor cell layer was highest with 60 mg/kg MNU. The assessment of TUNEL-positive cells visualised cell death after treatment, but no detectable caspase-3 activity was observed concomitant with these changes. qRT-PCR revealed the possible involvement of the inflammatory mediator caspase-1 and endoplasmic reticulum stress-mediated apoptosis by caspase-12. CONCLUSION MNU leads to the dose-dependent degeneration of photoreceptor cells in mice by caspase-3-independent pathways and is, therefore, a suitable model to study retinal degeneration in an animal model.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Ophthalmology, Inselspital, University of Bern, Freiburgstrasse 14, 3010, Bern, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Zhang JH, Fung SJ, Xi M, Sampogna S, Chase MH. Prevention of apnea-induced apoptosis in NREM- and REM-generating nuclei of adult guinea pigs. Brain Res 2010; 1347:161-9. [PMID: 20515665 DOI: 10.1016/j.brainres.2010.05.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/23/2010] [Accepted: 05/25/2010] [Indexed: 12/31/2022]
Abstract
The present study was designed to investigate the effects of recurrent periods of apnea/hypoxia on the morphology of neurons in sites that control NREM and REM sleep. In addition, we determined whether the administration of a GABA agonist, eszopiclone, was capable of preventing the degenerative, i.e., apoptotic, sequelae of hypoxia in these sleep-promoting neurons. Adult guinea pigs were divided into control (normoxic) and hypoxic groups; a separate group of hypoxic animals was administered eszopiclone. Recurrent periods of hypoxia and normoxia lasted for a duration of 3h. Subsequently, the brains were sectioned, and areas in the CNS that control NREM sleep as well as REM sleep were examined after staining with an antibody raised against single-stranded DNA, which labels apoptotic neurons. In the group of control (normoxic) animals, apoptotic neurons were not observed in CNS regions that control NREM or REM sleep. In hypoxic animals, a large number of apoptotic neurons were found in the preceding regions. In the hypoxic animals that were administered eszopiclone, there were almost no apoptotic neurons in the brain regions that control NREM or REM sleep. These results demonstrate that recurrent periods of apnea induce extensive apoptosis in CNS nuclei that control NREM and REM sleep and that eszopiclone is capable of preventing neuronal degeneration in these sites. We suggest that the degeneration of neurons in sites that control the states of sleep is responsible for those sleep disturbances that arise as a consequence of hypoxia in individuals with sleep-related breathing disorders.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024, USA.
| | | | | | | | | |
Collapse
|
18
|
Zhang JH, Fung SJ, Xi M, Sampogna S, Chase MH. Apnea produces neuronal degeneration in the pons and medulla of guinea pigs. Neurobiol Dis 2010; 40:251-64. [PMID: 20554036 DOI: 10.1016/j.nbd.2010.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 05/19/2010] [Accepted: 05/30/2010] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea and other sleep-related breathing disorders result in recurrent periods of oxygen deprivation (hypoxia), hypercapnia and an increase in the cellular production of reactive oxygen species (oxidative stress-related injury). Individuals with these disorders suffer from a variety of cellular abnormalities that result in cardiopulmonary dysfunctions, disturbances in sleep and other pathologies. In the present experiment, using an animal model of sleep apnea, we determined that the degeneration of neurons and glia, due to apoptosis, occurs in specific regions of the pons and medulla. Adult guinea pigs, which were divided into control (normoxic) and experimental (hypoxic) groups, were anesthetized with alpha-chloralose and immobilized with Flaxedil. Apnea (hypoxia) was induced by ventilatory arrest in order to desaturate the oxyhemoglobin to 75% SpO(2). A sequence of apnea, followed by ventilation with recovery to >95% SpO(2), was repeated for a period of 3h. At the end of the period of recurrent apnea, the animals were perfused and brain sections were immunostained with a mouse monoclonal antibody raised against single-stranded DNA (ssDNA). Apoptotic neurons and glia, which were not found in the control group of animals, were present in brainstem regions in hypoxic group of animals; these regions involved in the control of respiration (e.g., the parafacial respiratory group and the ventral respiratory group), cardiovascular functions (e.g., the nucleus ambiguus, the nucleus tractus solitarius and the dorsal motor nucleus of the vagus) as well as REM sleep (the nucleus pontis oralis) and wakefulness (e.g., the dorsal raphe and locus ceruleus). We suggest apoptotic neurons and glia in critical areas of the pons and medulla results in many of the comorbidities experienced by patients with sleep-disordered breathing pathologies.
Collapse
|
19
|
Fung SJ, Xi MC, Zhang JH, Yamuy J, Sampogna S, Tsai KL, Lim V, Morales FR, Chase MH. Eszopiclone prevents excitotoxicity and neurodegeneration in the hippocampus induced by experimental apnea. Sleep 2010; 32:1593-601. [PMID: 20041595 DOI: 10.1093/sleep/32.12.1593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
STUDY OBJECTIVE This study was designed to determine the effects of eszopiclone on apnea-induced excitotoxic synaptic processes and apoptosis in the hippocampus. DESIGN Recurrent periods of apnea, which consisted of a sequence of apnea (75% SpO2), followed by ventilation with recovery to normoxia (> 95% SpO2), were induced for a period of three hours in anesthetized guinea pigs. The CA3 Schaffer collateral pathway in the hippocampus was stimulated and the field excitatory postsynaptic potential (fEPSP) response was recorded in CA1. Animals in the experimental group received an intravenous injection of eszopiclone (3 mg/kg) 10 min prior to the initiation of the periods of recurrent apnea, and once every 60 min thereafter; control animals received comparable injections of vehicle. At the end of the 3-h period of recurrent apnea, the animals were perfused, and hippocampal sections were immunostained in order to determine the presence of apoptosis, i.e., programmed cell death. ANALYSES AND RESULTS: Apnea resulted in a persistent increase in synaptic responsiveness of CA1 neurons as determined by analyses of the fEPSP. Eszopiclone antagonized the apnea-induced increase in the fEPSP. Morphological analyses revealed significant apoptosis of CA1 neurons in control animals; however, there was no significant apoptosis in eszopiclone-treated animals. CONCLUSIONS Eszopiclone was determined to suppress the apnea-induced hyperexcitability of hippocampal CA1 neurons, thereby reducing/eliminating neurotoxicity. These data lend credence to our hypothesis that eszopiclone, exclusive of its hypnotic actions, has the capacity to function as a potent neuroprotective agent.
Collapse
Affiliation(s)
- Simon J Fung
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Puthussery T, Fletcher E. Extracellular ATP induces retinal photoreceptor apoptosis through activation of purinoceptors in rodents. J Comp Neurol 2009; 513:430-40. [PMID: 19180669 DOI: 10.1002/cne.21964] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have previously demonstrated that photoreceptors express P2X(7) purinoceptors. These excitatory receptors are activated by extracellular adenosine 5'-triphosphate (ATP) and have been implicated in neurodegeneration in other parts of the central nervous system (CNS). In this study we examined whether extracellular ATP could contribute to photoreceptor degeneration in rodents through excessive activation of P2 purinoceptors. Intravitreal injection of high concentrations of extracellular ATP into normal rat eyes induced extensive and selective apoptosis of photoreceptors within 18 hours of injection. Five days after injection the outer nuclear layer was severely degenerated and electroretinographic responses were impaired. Preinjection of the purinergic antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) protected against ATP-mediated apoptosis. The initial phase of ATP-induced photoreceptor death did not temporally coincide with retinal pigment epithelium degeneration or microglial activation, suggesting that cell death was due to direct activation of purinergic receptors on photoreceptors. Finally, we demonstrate that intravitreal injection of PPADS results in a 30% increase in photoreceptor survival in the rd1 mouse, a model of human recessive retinitis pigmentosa (RP). These findings highlight the importance of extracellular ATP in retinal neurodegeneration and provide a potential new avenue for therapeutic intervention in RP.
Collapse
Affiliation(s)
- Theresa Puthussery
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Victoria, Australia
| | | |
Collapse
|
21
|
Early remodeling in an inducible animal model of retinal degeneration. Neuroscience 2009; 160:517-29. [PMID: 19272416 DOI: 10.1016/j.neuroscience.2009.02.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 01/02/2023]
Abstract
Photoreceptor degeneration is followed by significant morphological changes in the second-order retinal neurons in humans and in several genetic animal models. However, it is not clear whether similar changes occur when photoreceptor degeneration is induced nongenetically, raising the question whether these changes are a general effect of deafferentation independent of the cause of degeneration. We addressed this by inducing selective photoreceptor degeneration with N-methyl-N-nitrosourea (MNU) and studying its effects on inner retinal neurons in a mouse for up to 3 months, using immunocytochemistry and iontophoretic labeling. To develop objective measures of photoreceptor degeneration and of retinal remodeling, we measured several retinal proteins using immunoblot analysis, and quantified gross visual ability of the animal in a visual cliff test. The MNU-induced progressive degeneration of rods and cones was associated with declining levels of postsynaptic density 95 protein in the retina, and with deteriorating visual performance of the animal. Müller glial cells showed enhanced reactivity for glial fibrillary acidic protein as demonstrated by immunocytochemistry, which also reflected in increased levels of the protein as demonstrated by immunoblotting. Horizontal cells and rod bipolar cells progressively lost their dendritic processes, which correlated with a slight decline in the levels of calbindin and protein kinase C alpha respectively. Horizontal cell axons, immunoreactive for nonphosphorylated neurofilaments, showed sprouting into the inner nuclear layer. Ganglion cells and their synaptic inputs, probed by immunolocalizing beta-III-tubulin, neurofilaments, bassoon and synaptophysin, appeared to be unaffected. These results demonstrate that MNU-induced photoreceptor degeneration leads to retinal remodeling similar to that observed in genetic models, suggesting that the remodeling does not depend on the etiopathology that underlies photoreceptor degeneration.
Collapse
|
22
|
Zhang JH, Fung SJ, Xi M, Sampogna S, Chase MH. Recurrent apnea induces neuronal apoptosis in the guinea pig forebrain. Exp Neurol 2008; 216:290-4. [PMID: 19124019 DOI: 10.1016/j.expneurol.2008.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/01/2008] [Indexed: 11/29/2022]
Abstract
Obstructive sleep apnea (OSA) and sleep-disordered breathing (SDB) can result in impaired cognition and mental acuity, and the generation of mood disorders, including depression. However, the mechanisms of neuronal damage for these complications have not been elucidated. Accordingly, using immunohistochemical technique with monoclonal antibody against single-stranded DNA, we examined the morphological effects of chronic recurrent apnea on neurons in the hippocampus and related forebrain sites in guinea pigs. Our results show that a large number of neurons labeled by anti-ssDNA antibody were present in the cingulate, insular and frontal cortices, the hippocampus and the amygdala in conjunction with periods of recurrent apnea. However, no labeling was observed in comparable regions of the brain in control guinea pigs. In the cortices of experimental animals, labeled neurons were detected mainly in the superficial layers (II-III) in the frontal, insular and cingulate cortex. In the hippocampus, most labeled neurons were located in the CA1 region, in which most of stained neurons were observed in strata pyramidal, while only a few positive neurons were located in the strata radiatum and the strata oriens. In addition, a large number of labeled neurons were also detected in the central nucleus of amygdala in the guinea pigs underwent recurrent periods of apnea. The present data indicate that recurrent apnea results in cell death in the hippocampus and related forebrain regions via mechanisms of apoptosis, which may represent the basis for the clinical complications of obstructive sleep apnea and sleep-disordered breathing.
Collapse
|
23
|
Paquet-Durand F, Silva J, Talukdar T, Johnson LE, Azadi S, van Veen T, Ueffing M, Hauck SM, Ekström PAR. Excessive activation of poly(ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. J Neurosci 2007; 27:10311-9. [PMID: 17881537 PMCID: PMC6672664 DOI: 10.1523/jneurosci.1514-07.2007] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited blinding disease for which there is no treatment available. It is characterized by a progressive and neurodegenerative loss of photoreceptors but the underlying mechanisms are poorly understood. Excessive activation of the enzyme poly(ADP-ribose) polymerase (PARP) has recently been shown to be involved in several neuropathologies. To investigate the possible role of PARP in retinal photoreceptor degeneration, we used the retinal degeneration 1 (rd1) mouse RP model to study PARP expression, PARP activity, and to test the effects of PARP inhibition on photoreceptor viability. PARP expression was found to be equal between rd1 and wild-type counterpart retinas. In contrast to this, a dramatic increase in both PARP activity per se and PARP product formation was detected by in situ assays in rd1 photoreceptors actively undergoing cell death. Furthermore, PARP activity colabeled with oxidatively damaged DNA and nuclear translocation of AIF (apoptosis-inducing factor), suggesting activation of PARP as a bridge between these events in the degenerating photoreceptors. The PARP-specific inhibitor PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide x HCl[ reduced the number of cells exhibiting death markers in a short-term retinal culture paradigm, a protective effect that was translated into an increased number of surviving photoreceptors when the inhibitor was used in a long-term culture setting. Our results thus demonstrate an involvement of PARP activity in rd1 photoreceptor cell death, which could have a bearing on the understanding of neurodegenerations as such. The findings also suggest that the therapeutical possibilities of PARP inhibition should include retinal diseases like RP.
Collapse
|