1
|
Barakat H, Aljutaily T. Role of γ-Aminobutyric Acid (GABA) as an Inhibitory Neurotransmitter in Diabetes Management: Mechanisms and Therapeutic Implications. Biomolecules 2025; 15:399. [PMID: 40149935 PMCID: PMC11940341 DOI: 10.3390/biom15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
GABA (γ-Aminobutyric Acid), a well-established inhibitory neurotransmitter in the central nervous system, has garnered considerable interest for its potential role in diabetes management, particularly due to its presence in pancreatic islets. This review aims to explore the therapeutic role of GABA in diabetes management and its potential mechanisms for antidiabetic effects. Relevant studies were searched across databases such as PubMed and ScienceDirect, applying strict eligibility criteria focused on GABA administration methods and diabetic models. The collective results showed that the administration of GABA in diabetic models resulted in remarkable enhancements in glucose and insulin homeostasis, favorable modifications in lipid profiles, and amelioration of dysfunctions across neural, hepatic, renal, and cardiac systems. The findings from the literature demonstrated that GABAergic signaling within pancreatic tissues can significantly contribute to the stimulation of β cell proliferation through the facilitation of a sustained trans-differentiation process, wherein glucagon-secreting α cells are converted into insulin-secreting β-like cells. In addition, activated GABAergic signaling can trigger the initiation of the PI3K/AKT signaling pathway within pancreatic tissues, leading to improved insulin signaling and maintained glucose homeostasis. GABAergic signaling can further function within hepatic tissues, promoting inhibitory effects on the expression of genes related to gluconeogenesis and lipogenesis. Moreover, GABA may enhance gut microbiota diversity by attenuating gut inflammation, attributable to its anti-inflammatory and immunomodulatory properties. Furthermore, the neuroprotective effects of GABA play a significant role in ameliorating neural disorders associated with diabetes by facilitating a substantial reduction in neuronal apoptosis. In conclusion, GABA emerges as a promising candidate for an antidiabetic agent; however, further research is highly encouraged to develop a rigorously designed framework that comprehensively identifies and optimizes the appropriate dosages and intervention methods for effectively managing and combating diabetes.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia;
| | | |
Collapse
|
2
|
Zhang X, Wang X, Zhu J, Chen K, Ullah R, Tong J, Shen Y. Retinal VIP-amacrine cells: their development, structure, and function. Eye (Lond) 2024; 38:1065-1076. [PMID: 38066110 PMCID: PMC11009269 DOI: 10.1038/s41433-023-02844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 04/13/2024] Open
Abstract
Amacrine cells (ACs) are the most structurally and functionally diverse neuron type in the retina. Different ACs have distinct functions, such as neuropeptide secretion and inhibitory connection. Vasoactive intestinal peptide (VIP) -ergic -ACs are retina gamma-aminobutyric acid (GABA) -ergic -ACs that were discovered long ago. They secrete VIP and form connections with bipolar cells (BCs), other ACs, and retinal ganglion cells (RGCs). They have a specific structure, density, distribution, and function. They play an important role in myopia, light stimulated responses, retinal vascular disease and other ocular diseases. Their significance in the study of refractive development and disease is increasing daily. However, a systematic review of the structure and function of retinal VIP-ACs is lacking. We discussed the detailed characteristics of VIP-ACs from every aspect across species and providing systematic knowledge base for future studies. Our review led to the main conclusion that retinal VIP-ACs develop early, and although their morphology and distribution across species are not the same, they have similar functions in a wide range of ocular diseases based on their function of secreting neuropeptides and forming inhibitory connections with other cells.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jiru Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Rahim Ullah
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Zhang X, Wang X, Li Y, Zhang Y, Zhu H, Xie C, Zhou Y, Shen Y, Tong J. Characterization of Retinal VIP-Amacrine Cell Development During the Critical Period. Cell Mol Neurobiol 2024; 44:19. [PMID: 38315298 PMCID: PMC10844409 DOI: 10.1007/s10571-024-01452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Retinal vasoactive intestinal peptide amacrine cells (VIP-ACs) play an important role in various retinal light-mediated pathological processes related to different developmental ocular diseases and even mental disorders. It is important to characterize the developmental changes in VIP-ACs to further elucidate their mechanisms of circuit function. We bred VIP-Cre mice with Ai14 and Ai32 to specifically label retinal VIP-ACs. The VIP-AC soma and spine density generally increased, from postnatal day (P)0 to P35, reaching adult levels at P14 and P28, respectively. The VIP-AC soma density curve was different with the VIP-AC spine density curve. The total retinal VIP content reached a high level plateau at P14 but was decreased in adults. From P14 to P16, the resting membrane potential (RMP) became more negative, and the input resistance decreased. Cell membrane capacitance (MC) showed three peaks at P7, P12 and P16. The RMP and MC reached a stable level similar to the adult level at P18, whereas input resistance reached a stable level at P21. The percentage of sustained voltage-dependent potassium currents peaked at P16 and remained stable thereafter. The spontaneous excitatory postsynaptic current and spontaneous inhibitory postsynaptic current frequencies and amplitudes, as well as charge transfer, peaked at P12 to P16; however, there were also secondary peaks at different time points. In conclusion, we found that the second, third and fourth weeks after birth were important periods of VIP-AC development. Many developmental changes occurred around eye opening. The development of soma, dendrite and electrophysiological properties showed uneven dynamics of progression. Cell differentiation may contribute to soma development whereas the changes of different ion channels may play important role for spine development.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Medical College, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Xiaoyu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Medical College, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China
| | - Yanqing Li
- Department of Ophthalmology, The First Affiliated Hospital of Medical College, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Yingying Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Medical College, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China
| | - Hong Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Medical College, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Medical College, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Yudong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Medical College, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Medical College, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Medical College, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
4
|
Zhou H, Rao Z, Zhang Z, Zhou J. Function of the GABAergic System in Diabetic Encephalopathy. Cell Mol Neurobiol 2023; 43:605-619. [PMID: 35460435 PMCID: PMC11415196 DOI: 10.1007/s10571-022-01214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Diabetes is a common metabolic disease characterized by loss of blood sugar control and a high rate of complications. γ-Aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter in the adult mammalian brain. The normal function of the GABAergic system is affected in diabetes. Herein, we summarize the role of the GABAergic system in diabetic cognitive dysfunction, diabetic blood sugar control disorders, diabetes-induced peripheral neuropathy, diabetic central nervous system damage, maintaining diabetic brain energy homeostasis, helping central control of blood sugar and attenuating neuronal oxidative stress damage. We show the key regulatory role of the GABAergic system in multiple comorbidities in patients with diabetes and hope that further studies elucidating the role of the GABAergic system will yield benefits for the treatment and prevention of comorbidities in patients with diabetes.
Collapse
Affiliation(s)
- Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Zhili Rao
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, People's Republic of China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Rowe CJ, Delbridge-Perry M, Bonan NF, Cohen A, Bentley M, DeCicco-Skinner KL, Davidson T, Connaughton VP. Time dependent effects of prolonged hyperglycemia in zebrafish brain and retina. FRONTIERS IN OPHTHALMOLOGY 2022; 2:947571. [PMID: 38983568 PMCID: PMC11182107 DOI: 10.3389/fopht.2022.947571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/29/2022] [Indexed: 07/11/2024]
Abstract
Prolonged hyperglycemia causes long-term vision complications and an increased risk of cognitive deficits. High blood sugar also confers an osmotic load/stress to cells. We assessed behavioral and neurochemical changes in zebrafish brain and retina following prolonged hyperglycemia for 4-weeks or 8-weeks. At each time point, behavior was assessed using 3-chamber choice task and optomotor response; tissue was then collected and levels of inflammatory markers, tight junction proteins, and neurotransmitters determined using Western Blots. After 4-weeks, brain levels of v-rel reticuloendotheliosis viral oncogene homolog A (avian) (RelA; NF-kB subunit), IkB kinase (IKK), and glial fibrillary acidic protein (GFAP) were significantly elevated; differences in zonula occludens-1 (ZO-1), claudin-5, glutamic acid decarboxylase (GAD), and tyrosine hydroxylase (TH) were not significant. In retina, significant differences were observed only for TH (decreased), Rel A (increased), and GFAP (increased) levels. Glucose-specific differences in initial choice latency and discrimination ratios were also observed. After 8-weeks, RelA, GAD, and TH were significantly elevated in both tissues; IKK and GFAP levels were also elevated, though not significantly. ZO-1 and claudin-5 levels osmotically decreased in retina but displayed an increasing trend in glucose-treated brains. Differences in discrimination ratio were driven by osmotic load. OMRs increased in glucose-treated fish at both ages. In vivo analysis of retinal vasculature suggested thicker vessels after 4-weeks, but thinner vessels at 8-weeks. In vitro, glucose treatment reduced formation of nodes and meshes in 3B-11 endothelial cells, suggesting a reduced ability to form a vascular network. Overall, hyperglycemia triggered a strong inflammatory response causing initial trending changes in tight junction and neuronal markers. Most differences after 4-weeks of exposure were observed in glucose-treated fish suggesting effects on glucose metabolism independent of osmotic load. After 8-weeks, the inflammatory response remained and glucose-specific effects on neurotransmitter markers were observed. Osmotic differences impacted cognitive behavior and retinal protein levels; protein levels in brain displayed glucose-driven changes. Thus, we not only observed differential sensitivities of retina and brain to glucose-insult, but also different cellular responses, suggesting hyperglycemia causes complex effects at the cellular level and/or that zebrafish are able to compensate for the continued high blood glucose levels.
Collapse
Affiliation(s)
- Cassie J. Rowe
- Department of Biology, American University, Washington, DC, United States
- Center for Neuroscience and Behavior, American University, Washington, DC, United States
| | - Mikayla Delbridge-Perry
- Department of Biology, American University, Washington, DC, United States
- Department of Chemistry, American University, Washington, DC, United States
| | - Nicole F. Bonan
- Department of Biology, American University, Washington, DC, United States
| | - Annastelle Cohen
- Department of Biology, American University, Washington, DC, United States
| | - Meg Bentley
- Department of Biology, American University, Washington, DC, United States
| | - Kathleen L. DeCicco-Skinner
- Department of Biology, American University, Washington, DC, United States
- Center for Neuroscience and Behavior, American University, Washington, DC, United States
| | - Terry Davidson
- Center for Neuroscience and Behavior, American University, Washington, DC, United States
- Department of Neuroscience, and American University, Washington, DC, United States
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC, United States
- Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
6
|
El-Zahabi MA, Bamanie FH, Ghareeb S, Alshaeri HK, Alasmari MM, Moustafa M, Al-Marzooki Z, Zayed MF. Design, Synthesis, Molecular Modeling and Anti-Hyperglycemic Evaluation of Quinazoline-Sulfonylurea Hybrids as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) and Sulfonylurea Receptor (SUR) Agonists. Int J Mol Sci 2022; 23:9605. [PMID: 36077003 PMCID: PMC9455857 DOI: 10.3390/ijms23179605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
New quinazoline-sulfonylurea hybrids were prepared and examined for their in vivo anti-hyperglycemic activities in STZ-induced hyperglycemic rats using glibenclamide as a reference drug. Compounds VI-6-a, V, IV-4, VI-4-c, IV-6, VI-2-a, IV-1, and IV-2 were more potent than the reference glibenclamide. They induced significant reduction in the blood glucose levels of diabetic rats: 78.2, 73.9, 71.4, 67.3, 62, 60.7, 58.4, and 55.9%, respectively, while the reference glibenclamide had 55.4%. Compounds IV-1, VI-2-a, IV-2, V, and IV-6 showed more prolonged antidiabetic activity than glibenclamide. Moreover, molecular docking and pharmacokinetic studies were performed to examine binding modes of the prepared compounds against peroxisome proliferator-activated receptor gamma (PPARγ). The highest active compounds exhibited good binding affinity with high free energy of binding against PPARγ. In silico absorption, distribution, metabolism, elimination and toxicity (ADMET) studies were performed to investigate pharmacokinetics and safety of the synthesized compounds. They showed considerable human intestinal absorption with low toxicity profile.
Collapse
Affiliation(s)
- Mohamed Ayman El-Zahabi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Faida H. Bamanie
- Biochemistry Department, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salah Ghareeb
- Pharmacology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Heba K. Alshaeri
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| | - Moudi M. Alasmari
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21461, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Jeddah 21423, Saudi Arabia
| | - Mohamed Moustafa
- Medicinal Chemistry Department, Faculty of Pharmacy, Mansurah University, El Mansurah 35516, Egypt
| | - Zohair Al-Marzooki
- Biochemistry Department, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed F. Zayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| |
Collapse
|
7
|
Ibrahim A, Sakr HM, Ayyad RR, Khalifa MM. Design, Synthesis, In‐Vivo Anti‐Diabetic Activity, In‐Vitro α‐Glucosidase Inhibitory Activity and Molecular Docking Studies of Some Quinazolinone Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Albaraa Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department Faculty of Pharmacy (Boys) Al-Azhar University Cairo 11884 Egypt
| | - Helmy M. Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department Faculty of Pharmacy (Boys) Al-Azhar University Cairo 11884 Egypt
| | - Rezk R. Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department Faculty of Pharmacy (Boys) Al-Azhar University Cairo 11884 Egypt
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department Faculty of Pharmacy (Boys) Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
8
|
Khalifa MM, Sakr HM, Ibrahim A, Mansour AM, Ayyad RR. Design and synthesis of new benzylidene-quinazolinone hybrids as potential anti-diabetic agents: In vitro α-glucosidase inhibition, and docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Abstract
Diabetic retinopathy (DR) is a frequent complication of diabetes mellitus and an increasingly common cause of visual impairment. Blood vessel damage occurs as the disease progresses, leading to ischemia, neovascularization, blood-retina barrier (BRB) failure and eventual blindness. Although detection and treatment strategies have improved considerably over the past years, there is room for a better understanding of the pathophysiology of the diabetic retina. Indeed, it has been increasingly realized that DR is in fact a disease of the retina's neurovascular unit (NVU), the multi-cellular framework underlying functional hyperemia, coupling neuronal computations to blood flow. The accumulating evidence reveals that both neurochemical (synapses) and electrical (gap junctions) means of communications between retinal cells are affected at the onset of hyperglycemia, warranting a global assessment of cellular interactions and their role in DR. This is further supported by the recent data showing down-regulation of connexin 43 gap junctions along the vascular relay from capillary to feeding arteriole as one of the earliest indicators of experimental DR, with rippling consequences to the anatomical and physiological integrity of the retina. Here, recent advancements in our knowledge of mechanisms controlling the retinal neurovascular unit will be assessed, along with their implications for future treatment and diagnosis of DR.
Collapse
|
10
|
Becker S, Carroll LS, Vinberg F. Rod phototransduction and light signal transmission during type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:e001571. [PMID: 32784250 PMCID: PMC7418690 DOI: 10.1136/bmjdrc-2020-001571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Diabetic retinopathy is a major complication of diabetes recently associated with compromised photoreceptor function. Multiple stressors in diabetes, such as hyperglycemia, oxidative stress and inflammatory factors, have been identified, but systemic effects of diabetes on outer retina function are incompletely understood. We assessed photoreceptor physiology in vivo and in isolated retinas to better understand how alterations in the cellular environment compared with intrinsic cellular/molecular properties of the photoreceptors, affect light signal transduction and transmission in the retina in chronic type 2 diabetes. RESEARCH DESIGN AND METHODS Photoreceptor function was assessed in BKS.Cs-Dock7m+/+Lepr db/J mice, using homozygotes for Leprdb as a model of type 2 diabetes and heterozygotes as non-diabetic controls. In vivo electroretinogram (ERG) was recorded in dark-adapted mice at both 3 and 6 months of age. For ex vivo ERG, isolated retinas were superfused with oxygenated Ames' media supplemented with 30 mM glucose or mannitol as iso-osmotic control and electrical responses to light stimuli were recorded. RESULTS We found that both transduction and transmission of light signals by rod photoreceptors were compromised in 6-month-old (n=9-10 eyes from 5 animals, ***p<0.001) but not in 3-month-old diabetic mice in vivo (n=4-8 eyes from 2 to 4 animals). In contrast, rod signaling was similar in isolated retinas from 6-month-old control and diabetic mice under normoglycemic conditions (n=11). Acutely elevated glucose ex vivo increased light-evoked rod photoreceptor responses in control mice (n=11, ***p<0.001), but did not affect light responses in diabetic mice (n=11). CONCLUSIONS Our data suggest that long-term diabetes does not irreversibly change the ability of rod photoreceptors to transduce and mediate light signals. However, type 2 diabetes appears to induce adaptational changes in the rods that render them less sensitive to increased availability of glucose.
Collapse
Affiliation(s)
- Silke Becker
- Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Lara S Carroll
- Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Frans Vinberg
- Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Fan Y, Lai J, Yuan Y, Wang L, Wang Q, Yuan F. Taurine Protects Retinal Cells and Improves Synaptic Connections in Early Diabetic Rats. Curr Eye Res 2020; 45:52-63. [PMID: 31404506 DOI: 10.1080/02713683.2019.1653927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Purpose: Taurine has long been thought to be involved in retinal protection from retinal degenerative diseases, but the underlying molecular mechanisms remain unclear. Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR) that precedes and participates in the microcirculatory abnormalities that occur in DR. Our objective was to investigate the role and mechanisms of taurine in early diabetic retinas.Methods: Eight-week-old STZ-induced diabetic rats and control animals were randomly assigned to receive taurine or vehicle by intraperitoneal injection or by intragastric administration. The retinal function and retinal cell counts were evaluated using an electroretinography (ERG) and immunofluorescence microscopy. Plasma amino acids were measured by ion-exchange chromatography (IEC). The expression levels of retinal taurine transporter (Tau-T), mitochondria-dependent apoptosis-associated genes and reactive gliosis markers were studied by western blotting and immunofluorescence. Pre- and post-synaptic markers (PSD95 and mGluR6) in outer plexiform layer (OPL), and the bipolar cell marker protein kinase C alpha (PKCα) were localized by immunofluorescence. Levels of PSD95 and mGluR6 were determined by quantitative western blot.Results: Taurine significantly prevented the reduction of photopic b-wave amplitude and retinal cone cells and ganglion cells loss and maintained the Bcl-2/Bax ratio balance in diabetic rats. Taurine also prevented the upregulation of glial fibrillary acidic protein (GFAP) and reduced retinal reactive gliosis. Taurine reduced plasma glutamate and tyrosine levels, which were elevated in diabetic rats. Moreover, mGluR6 levels reduction detected by western blot and immunofluorescence in diabetic retinas was inhibited and the displacement of mGluR6 in OPL into the inner nuclear layer (INL) detected by immunofluorescence was reduced by Taurine treatment.Conclusion: Taurine may protect retinal cells from diabetic attacks by activating Tau-T, reducing retinal reactive gliosis, improving retinal synaptic connections and decreasing retinal cell apoptosis. Thus, taurine treatment may be a novel approach for early DR.
Collapse
Affiliation(s)
- Yichao Fan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Lai
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University Nanchang, Jiangxi, China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liyang Wang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qingping Wang
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
12
|
Calbiague VM, Vielma AH, Cadiz B, Paquet‐Durand F, Schmachtenberg O. Physiological assessment of high glucose neurotoxicity in mouse and rat retinal explants. J Comp Neurol 2019; 528:989-1002. [DOI: 10.1002/cne.24805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/09/2019] [Accepted: 10/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Víctor M. Calbiague
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias Universidad de Valparaíso Valparaíso Chile
- Programa Doctorado en Ciencias, mención Neurociencias Universidad de Valparaíso Valparaíso Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias Universidad de Valparaíso Valparaíso Chile
| | - Bárbara Cadiz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias Universidad de Valparaíso Valparaíso Chile
| | - Francois Paquet‐Durand
- Cell Death Mechanism Group Institute for Ophthalmic Research, University of Tübingen Tübingen Germany
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias Universidad de Valparaíso Valparaíso Chile
| |
Collapse
|
13
|
El-Zahabi MA, Elbendary ER, Bamanie FH, Radwan MF, Ghareib SA, Eissa IH. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of phthalimide-sulfonylurea hybrids as PPARγ and SUR agonists. Bioorg Chem 2019; 91:103115. [PMID: 31310882 DOI: 10.1016/j.bioorg.2019.103115] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
New series of phthalimide-sulfonylurea hybrids were prepared and examined for their in vivo anti-hyperglycemic activities in STZ-induced hyperglycemic rats using glibenclamide as a reference drug. Compounds 6c, 6d, 6g, 6h, 6j and 6k induced significant reduction in the blood glucose levels of diabetic rats ranging from 24.43 to 21.43%. Moreover, molecular docking and pharmacophore approaches were carried out to examine binding modes and fit values of the prepared compounds against PPARγ and SUR, respectively. Compounds 6c, 6d, 6j and 6m exhibited the highest binding free energies against PPARγ. Compounds 6c, 6j, 6k, 6l, and 6n showed the highest fit values against the generated pharmacophore model. Also, QSAR technique was carried out to estimate the proposed PPARγ binding affinities and insulin-secreting abilities. The synthesized compounds showed promising estimated activities. In-silico ADMET studies were performed to investigate pharmacokinetics of the synthesized compounds. They showed considerable human intestinal absorption with low BBB penetration.
Collapse
Affiliation(s)
- Mohamed Ayman El-Zahabi
- Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Eman R Elbendary
- Medicinal Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Faida H Bamanie
- Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed F Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salah A Ghareib
- Pharmacology Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim H Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
14
|
Reactive Oxygen Species in the Regulation of the GABA Mediated Inhibitory Neurotransmission. Neuroscience 2019; 439:137-145. [PMID: 31200105 DOI: 10.1016/j.neuroscience.2019.05.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) are best known for being involved in cellular metabolism and oxidative stress, but also play important roles in cell communication. ROS signaling has become increasingly recognized as a mechanism implicated in the regulation of synaptic neurotransmission, under both physiological and pathological conditions. Hydrogen peroxide (H2O2) and superoxide anion are the main biologically relevant endogenous ROS in the nervous system. They are predominantly produced in the mitochondria of neurons and glial cells and their levels are tightly regulated by the antioxidant cell machinery, which allows for dynamic signaling through these agents. Physicochemical and biological properties of H2O2 enable it to effectively play an important role in signaling. This review brings up some or the most significant evidence supporting ROS as signaling agents in the nervous system and summarizes data showing that ROS modulate γ-aminobutyric acid (GABA)-mediated neurotransmission by pre- and postsynaptic mechanisms. ROS induce changes on both, the activity of phasic and tonic GABAA receptors and GABA release from presynaptic terminals. Based on these facts, ROS signaling is discussed as a possible selective mechanism linking cellular metabolism to inhibitory neurotransmission through the direct or indirect modulation of the GABAA receptor function. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
|
15
|
Zhou X, Zong Y, Zhang R, Zhang X, Zhang S, Wu J, Sun X. Differential Modulation of GABA A and NMDA Receptors by an α7-nicotinic Acetylcholine Receptor Agonist in Chronic Glaucoma. Front Mol Neurosci 2017; 10:422. [PMID: 29326549 PMCID: PMC5741651 DOI: 10.3389/fnmol.2017.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/04/2017] [Indexed: 01/29/2023] Open
Abstract
Presynaptic modulation of γ-aminobutyric acid (GABA) release by an alpha7 nicotinic acetylcholine receptor (α7-nAChR) agonist promotes retinal ganglion cell (RGC) survival and function, as suggested by a previous study on a chronic glaucomatous model from our laboratory. However, the role of excitatory and inhibitory amino acid receptors and their interaction with α7-nAChR in physiological and glaucomatous events remains unknown. In this study, we investigated GABAA and N-methyl-D-aspartate (NMDA) receptor activity in control and glaucomatous retinal slices and the regulation of amino acid receptor expression and function by α7-nAChR. Whole-cell patch-clamp recordings from RGCs revealed that the α7-nAChR specific agonist PNU-282987 enhanced the amplitude of currents elicited by GABA and reduced the amplitude of currents elicited by NMDA. The positive modulation of GABAA receptor and the negative modulation of NMDA receptor (NMDAR) by PNU-282987-evoked were prevented by pre-administration of the α7-nAChR antagonist methyllycaconitine (MLA). The frequency and the amplitude of glutamate receptor-mediated miniature glutamatergic excitatory postsynaptic currents (mEPSCs) were not significantly different between the control and glaucomatous RGCs. Additionally, PNU-282987-treated slices showed no alteration in the frequency or amplitude of mEPSCs relative to control RGCs. Moreover, we showed that expression of the α1 subunit of the GABAA receptor was downregulated and the expression of the NMDAR NR2B subunit was upregulated by intraocular pressure (IOP) elevation, and the changes of high IOP were blocked by PNU-282987. In conclusion, retina GABAA and NMDARs are modulated positively and negatively, respectively, by activation of α7-nAChR in in vivo chronic glaucomatous models.
Collapse
Affiliation(s)
- Xujiao Zhou
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Yuan Zong
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China.,Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Rong Zhang
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuejin Zhang
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China.,Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China.,Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Neurodegeneration in diabetic retinopathy: Potential for novel therapies. Vision Res 2017; 139:82-92. [PMID: 28988945 DOI: 10.1016/j.visres.2017.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022]
Abstract
The complex pathology of diabetic retinopathy (DR) affects both vascular and neural tissue. The characteristics of neurodegeneration are well-described in animal models but have more recently been confirmed in the clinical setting, mostly by using non-invasive imaging approaches such as spectral domain optical coherence tomography (SD-OCT). The most frequent observations report loss of tissue in the nerve fiber layer and inner plexiform layer, confirming earlier findings from animal models. In several cases the reduction in inner retinal layers is reported in patients with little evidence of vascular lesions or macular edema, suggesting that degenerative loss of neural tissue in the inner retina can occur after relatively short durations of diabetes. Animal studies also suggest that neurodegeneration leading to retinal thinning is not limited to cell death and tissue loss but also includes changes in neuronal morphology, reduced synaptic protein expression and alterations in neurotransmission, including changes in expression of neurotransmitter receptors as well as neurotransmitter release, reuptake and metabolism. The concept of neurodegeneration as an early component of DR introduces the possibility to explore alternative therapies to prevent the onset of vision loss, including neuroprotective therapies and drugs targeting individual neurotransmitter systems, as well as more general neuroprotective approaches to preserve the integrity of the neural retina. In this review we consider some of the evidence for progressive retinal neurodegeneration in diabetes, and explore potential neuroprotective therapies.
Collapse
|
17
|
Ibrahim MK, Eissa IH, Alesawy MS, Metwaly AM, Radwan MM, ElSohly MA. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazolin-4(3H)-one derivatives as potential PPARγ and SUR agonists. Bioorg Med Chem 2017; 25:4723-4744. [PMID: 28720328 DOI: 10.1016/j.bmc.2017.07.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) and sulfonylurea receptor (SUR) play crucial roles in management of type-2 diabetes mellitus. In this study, a series of novel quinazoline-4(3H)-one-sulfonylurea hybrids were designed and synthesized as dual PPARγ and SUR agonists. The synthesized compounds were evaluated for their in vivo anti-hyperglycemic activities against STZ-induced hyperglycemic rats. Four compounds (19a, 19d, 19f and 25g) demonstrated potent activities with reduction in blood glucose levels of 40.43, 46.42, 41.23 and 42.50 %, respectively. The most active ten compounds were further evaluated in vitro for their PPARγ binding affinities and insulin-secreting abilities. Compounds 19b, 19d, 19f, 25f and 25g exhibited the highest affinities against PPARγ with IC50 values of 0.371, 0.350, 0.369, 0.408 and 0.353µM, respectively. In addition, compounds 19d, 19f, and 25d showed the highest insulin-secreting activities with EC50 values of 0.97, 1.01 and 1.15µM, respectively. Furthermore, molecular docking and pharmacophore generation techniques were carried out to investigate binding patterns and fit values of the designed compounds with PPARγ and SUR, respectively. Also, two QSAR models were generated to explore the structural requirements controlling the different biological activities of the synthesized compounds against PPARγ and SUR.
Collapse
Affiliation(s)
- Mohamed K Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Mohamed S Alesawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
18
|
Valembois S, Krall J, Frølund B, Steffansen B. Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells. Eur J Pharm Sci 2017; 103:77-84. [DOI: 10.1016/j.ejps.2017.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
19
|
Ibrahim MK, Eissa IH, Abdallah AE, Metwaly AM, Radwan MM, ElSohly MA. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of novel quinoxaline derivatives as potential PPARγ and SUR agonists. Bioorg Med Chem 2017; 25:1496-1513. [PMID: 28117121 DOI: 10.1016/j.bmc.2017.01.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 02/03/2023]
Abstract
In our effort to develop potent anti-hyperglycemic agents with potential agonistic activities toward PPARγ and SUR, three novel series of quinoxaline derivatives bearing sulfonylurea or sulfonylthiourea moieties with different linkers were designed and synthesized. Some of the newly synthesized compounds were evaluated in vivo for their anti-hyperglycemic activities in STZ-induced hyperglycemic rats. Compounds 15a, 15e, 19b and 24a exhibited the highest anti-hyperglycemic activities with % reduction in blood glucose level of (50.58, 43.84, 45.10 and 49.62, respectively). Additionally, eight compounds revealed potent anti-hyperglycemic activities were further evaluated in vitro for their PPARγ binding affinity and insulin-secreting ability as potential mechanisms for anti-hyperglycemic activity. Four compounds (15a, 15b, 15d and 15e) significantly bound to PPARγ with IC50 values of 0.482, 0.491, 0.350 and 0.369μM, respectively. Moreover, Compounds 15a and 15b have demonstrated induction of insulin-secretion with EC50 values of 0.92 and 0.98μM, respectively. Furthermore, molecular docking and pharmacophore generation techniques were carried out to investigate binding patterns and fit values of the designed compounds with PPARγ and SUR, respectively.
Collapse
Affiliation(s)
- Mohammed K Ibrahim
- Pharmaceutical Chemistry Departments, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Chemistry Departments, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Abdallah E Abdallah
- Pharmaceutical Chemistry Departments, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), University of Al-Azhar, Cairo 11884, Egypt
| | - M M Radwan
- National Center for Natural Products Research, University of Mississippi University, MS 38677, USA
| | - M A ElSohly
- National Center for Natural Products Research, University of Mississippi University, MS 38677, USA.
| |
Collapse
|
20
|
Li L, Cheng WY, Glicksberg BS, Gottesman O, Tamler R, Chen R, Bottinger EP, Dudley JT. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 2016; 7:311ra174. [PMID: 26511511 DOI: 10.1126/scitranslmed.aaa9364] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D) is a heterogeneous complex disease affecting more than 29 million Americans alone with a rising prevalence trending toward steady increases in the coming decades. Thus, there is a pressing clinical need to improve early prevention and clinical management of T2D and its complications. Clinicians have understood that patients who carry the T2D diagnosis have a variety of phenotypes and susceptibilities to diabetes-related complications. We used a precision medicine approach to characterize the complexity of T2D patient populations based on high-dimensional electronic medical records (EMRs) and genotype data from 11,210 individuals. We successfully identified three distinct subgroups of T2D from topology-based patient-patient networks. Subtype 1 was characterized by T2D complications diabetic nephropathy and diabetic retinopathy; subtype 2 was enriched for cancer malignancy and cardiovascular diseases; and subtype 3 was associated most strongly with cardiovascular diseases, neurological diseases, allergies, and HIV infections. We performed a genetic association analysis of the emergent T2D subtypes to identify subtype-specific genetic markers and identified 1279, 1227, and 1338 single-nucleotide polymorphisms (SNPs) that mapped to 425, 322, and 437 unique genes specific to subtypes 1, 2, and 3, respectively. By assessing the human disease-SNP association for each subtype, the enriched phenotypes and biological functions at the gene level for each subtype matched with the disease comorbidities and clinical differences that we identified through EMRs. Our approach demonstrates the utility of applying the precision medicine paradigm in T2D and the promise of extending the approach to the study of other complex, multifactorial diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 700 Lexington Ave., New York, NY 10065, USA
| | - Wei-Yi Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 700 Lexington Ave., New York, NY 10065, USA
| | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 700 Lexington Ave., New York, NY 10065, USA
| | - Omri Gottesman
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald Tamler
- Division of Endocrinology, Diabetes, and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 700 Lexington Ave., New York, NY 10065, USA
| | - Erwin P Bottinger
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 700 Lexington Ave., New York, NY 10065, USA. Department of Health Policy and Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Calvo DJ, Beltrán González AN. Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms. Mol Pharmacol 2016; 90:326-33. [PMID: 27439531 DOI: 10.1124/mol.116.105205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022] Open
Abstract
Oxidizing and reducing agents, which are currently involved in cell metabolism and signaling pathways, can regulate fast inhibitory neurotransmission mediated by GABA receptors in the nervous system. A number of in vitro studies have shown that diverse redox compounds, including redox metabolites and reactive oxygen and nitrogen species, modulate phasic and tonic responses mediated by neuronal GABAA receptors through both presynaptic and postsynaptic mechanisms. We review experimental data showing that many redox agents, which are normally present in neurons and glia or are endogenously generated in these cells under physiologic states or during oxidative stress (e.g., hydrogen peroxide, superoxide and hydroxyl radicals, nitric oxide, ascorbic acid, and glutathione), induce potentiating or inhibiting actions on different native and recombinant GABAA receptor subtypes. Based on these results, it is thought that redox signaling might represent a homeostatic mechanism that regulates the function of synaptic and extrasynaptic GABAA receptors in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ¨Dr. Héctor N. Torres¨ (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (D.J.C., A.N.B.G.)
| | - Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ¨Dr. Héctor N. Torres¨ (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (D.J.C., A.N.B.G.)
| |
Collapse
|
22
|
Moore-Dotson JM, Beckman JJ, Mazade RE, Hoon M, Bernstein AS, Romero-Aleshire MJ, Brooks HL, Eggers ED. Early Retinal Neuronal Dysfunction in Diabetic Mice: Reduced Light-Evoked Inhibition Increases Rod Pathway Signaling. Invest Ophthalmol Vis Sci 2016; 57:1418-30. [PMID: 27028063 PMCID: PMC4819579 DOI: 10.1167/iovs.15-17999] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Recent studies suggest that the neural retinal response to light is compromised in diabetes. Electroretinogram studies suggest that the dim light retinal rod pathway is especially susceptible to diabetic damage. The purpose of this study was to determine whether diabetes alters rod pathway signaling. Methods Diabetes was induced in C57BL/6J mice by three intraperitoneal injections of streptozotocin (STZ; 75 mg/kg), and confirmed by blood glucose levels > 200 mg/dL. Six weeks after the first injection, whole-cell voltage clamp recordings of spontaneous and light-evoked inhibitory postsynaptic currents from rod bipolar cells were made in dark-adapted retinal slices. Light-evoked excitatory currents from rod bipolar and AII amacrine cells, and spontaneous excitatory currents from AII amacrine cells were also measured. Receptor inputs were pharmacologically isolated. Immunohistochemistry was performed on whole mounted retinas. Results Rod bipolar cells had reduced light-evoked inhibitory input from amacrine cells but no change in excitatory input from rod photoreceptors. Reduced light-evoked inhibition, mediated by both GABAA and GABAC receptors, increased rod bipolar cell output onto AII amacrine cells. Spontaneous release of GABA onto rod bipolar cells was increased, which may limit GABA availability for light-evoked release. These physiological changes occurred in the absence of retinal cell loss or changes in GABAA receptor expression levels. Conclusions Our results indicate that early diabetes causes deficits in the rod pathway leading to decreased light-evoked rod bipolar cell inhibition and increased rod pathway output that provide a basis for the development of early diabetic visual deficits.
Collapse
Affiliation(s)
| | - Jamie J Beckman
- Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, Arizona, United States
| | - Reece E Mazade
- Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, Arizona, United States
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Adam S Bernstein
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | | | - Heddwen L Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona, United States 4Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
23
|
Nguyen HTT, Bhattarai JP, Park SJ, Lee JC, Cho DH, Han SK. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice. J Diabetes Complications 2015; 29:629-36. [PMID: 25891974 DOI: 10.1016/j.jdiacomp.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022]
Abstract
Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were larger than those of control mice. These results demonstrate that SG neurons in offspring from diabetic mice are more sensitive to GABA compared to control mice, suggesting that GABA sensitivity may alter orofacial pain processing in offspring from diabetic female mice.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Janardhan Prasad Bhattarai
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Jeong Chae Lee
- Department of Orthodontics, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital and School of Medicine, Jeonju, Republic of Korea.
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
24
|
Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. J Neurosci 2015; 35:5422-33. [PMID: 25834065 DOI: 10.1523/jneurosci.5285-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Diabetes leads to dysfunction of the neural retina before and independent of classical microvascular diabetic retinopathy, but previous studies have failed to demonstrate which neurons and circuits are affected at the earliest stages. Here, using patch-clamp recording and two-photon Ca(2+) imaging in rat retinal slices, we investigated diabetes-evoked changes in a microcircuit consisting of rod bipolar cells and their dyad postsynaptic targets, AII and A17 amacrine cells, which play an essential role in processing scotopic visual signals. AII amacrines forward their signals to ON- and OFF-cone bipolar cells and A17 amacrines provide GABAergic feedback inhibition to rod bipolar cells. Whereas Ca(2+)-permeable AMPA receptors mediate input from rod bipolar cells to both AII and A17 amacrines, diabetes changes the synaptic receptors on A17, but not AII amacrine cells. This was expressed as a change in pharmacological properties and single-channel conductance of the synaptic receptors, consistent with an upregulation of the AMPA receptor GluA2 subunit and reduced Ca(2+) permeability. In addition, two-photon imaging revealed reduced agonist-evoked influx of Ca(2+) in dendritic varicosities of A17 amacrine cells from diabetic compared with normal animals. Because Ca(2+)-permeable receptors in A17 amacrine cells mediate synaptic release of GABA, the reduced Ca(2+) permeability of these receptors in diabetic animals leads to reduced release of GABA, followed by disinhibition and increased release of glutamate from rod bipolar cells. This perturbation of neuron and microcircuit dynamics can explain the decreased dynamic range and sensitivity of scotopic vision that has been observed in diabetes.
Collapse
|
25
|
Pardue MT, Barnes CS, Kim MK, Aung MH, Amarnath R, Olson DE, Thulé PM. Rodent Hyperglycemia-Induced Inner Retinal Deficits are Mirrored in Human Diabetes. Transl Vis Sci Technol 2014; 3:6. [PMID: 24959388 DOI: 10.1167/tvst.3.3.6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/28/2014] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To evaluate the utility of low luminance stimuli to functionally probe inner retinal rod pathways in the context of diabetes mellitus in both rat and human subjects. METHODS Inner retinal dysfunction was assessed using oscillatory potential (OP) delays in diabetic rats. Scotopic electroretinograms (ERGs) in response to a series of increasing flash luminances were recorded from streptozotocin (STZ)-treated and control Sprague-Dawley rats after 7, 14, 20, and 29 weeks of hyperglycemia. We then evaluated OP delays in human diabetic subjects with (DR) and without (DM) diabetic retinopathy using the International Society for Clinical Electrophysiology in Vision (ISCEV) standard scotopic protocol and two additional dim test flashes. RESULTS Beginning 7 weeks after STZ, OP implicit times in diabetic rats were progressively delayed in response to dim, but not bright stimuli. In many diabetic subjects the standard ISCEV dim flash failed to illicit measureable OPs. However, OPs became measurable using a brighter, nonstandard dim flash (Test Flash 1, -1.43 log cd s/m2), and exhibited prolonged implicit times in the DM group compared with control subjects (CTRL). CONCLUSIONS Delays in scotopic OP implicit times are an early response to hyperglycemia in diabetic rats. A similar, inner retinal, rod-driven response was detected in diabetic human subjects without diabetic retinopathy, only when a nonstandard ISCEV flash intensity was employed during ERG testing. TRANSLATIONAL RELEVANCE The addition of a dim stimulus to standard ISCEV flashes with assessment of OP latency during ERG testing may provide a detection method for early retinal dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Machelle T Pardue
- Rehab R&D Center of Excellence, Veterans Affairs Medical Center, Decatur, GA ; Department of Ophthalmology, Emory University, Atlanta, GA ; Neuroscience Program, Emory University, Atlanta, GA
| | - Claire S Barnes
- Rehab R&D Center of Excellence, Veterans Affairs Medical Center, Decatur, GA ; Department of Ophthalmology, Emory University, Atlanta, GA
| | - Moon K Kim
- Rehab R&D Center of Excellence, Veterans Affairs Medical Center, Decatur, GA ; Department of Ophthalmology, Emory University, Atlanta, GA
| | - Moe H Aung
- Neuroscience Program, Emory University, Atlanta, GA
| | - Raj Amarnath
- Rehab R&D Center of Excellence, Veterans Affairs Medical Center, Decatur, GA
| | - Darin E Olson
- Medical Service, Veterans Affairs Medical Center, Decatur, GA ; Division of Endocrinology, Metabolism, & Lipids, Emory University, Atlanta, GA
| | - Peter M Thulé
- Medical Service, Veterans Affairs Medical Center, Decatur, GA ; Division of Endocrinology, Metabolism, & Lipids, Emory University, Atlanta, GA
| |
Collapse
|
26
|
Identifying cell class specific losses from serially generated electroretinogram components. BIOMED RESEARCH INTERNATIONAL 2013; 2013:796362. [PMID: 24089688 PMCID: PMC3781995 DOI: 10.1155/2013/796362] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
Abstract
Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from “upstream” neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships. Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease. Results. The PIIIamp to PIIamp gain is unity whereas the PIIamp to pSTRamp and PIIamp to nSTRamp gains are greater than unity, indicating “amplification” (P < 0.05). Timing relationships show amplification between PIIIit to PIIit and compression for PIIit to pSTRit and PIIit to nSTRit, (P < 0.05). Application of these gains to ω-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P < 0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P < 0.05). Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals.
Collapse
|
27
|
Aung MH, Kim MK, Olson DE, Thule PM, Pardue MT. Early visual deficits in streptozotocin-induced diabetic long evans rats. Invest Ophthalmol Vis Sci 2013; 54:1370-7. [PMID: 23372054 DOI: 10.1167/iovs.12-10927] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Although diabetic retinopathy (DR) is clinically diagnosed based on vascular pathology, diabetic patients with angiographically normal retinas have been found to exhibit subtle defects in vision. This has led to the theory that diabetes-associated metabolic abnormalities directly impair neural retinal function before the development of vasculopathy, thereby resulting in visual deficits. In this study, we sought to delineate the temporal relationship between retinal dysfunction and visual deficits in a rat model of Type 1 diabetes. Moreover, we investigated the relative contribution of retinal dysfunction versus diabetes-induced lens opacity, to the visual deficits found in early-stage DR. METHODS Pigmented Long Evans rats were rendered diabetic with streptozotocin (STZ). Control and diabetic rats were assessed across 12 weeks of hyperglycemia for visual function with optokinetic tracking weekly visual acuity and monthly contrast sensitivity, retinal function with dark-adapted electroretinograms (monthly electroretinograms [ERGs]), and cataract formation with slit lamp exam (biweekly). RESULTS Diabetic rats exhibited significantly reduced visual function and delayed ERG responses by 1 month post-STZ. Significant cataracts did not develop until 6 weeks post-STZ. Moreover, increases in lens opacity (r = -0.728) and ERG implicit times (r = -0.615 for rod-dominated response and r = -0.322 for rod/cone mixed response) showed significant correlations with reductions in visual acuity in diabetic rats. CONCLUSIONS STZ-induced hyperglycemia reduces visual function, affecting both visual acuity and contrast sensitivity. The data suggest that visual defects found in early-stage DR may initially involve abnormalities of the neural retina and worsen with later development of cataracts.
Collapse
Affiliation(s)
- Moe H Aung
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
28
|
Robust photoregulation of GABA(A) receptors by allosteric modulation with a propofol analogue. Nat Commun 2013; 3:1095. [PMID: 23033071 PMCID: PMC4023869 DOI: 10.1038/ncomms2094] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/29/2012] [Indexed: 01/09/2023] Open
Abstract
Photochemical switches represent a powerful method for improving pharmacological therapies and controlling cellular physiology. Here we report the photo-regulation of GABAA receptors (GABAARs) by a derivative of propofol (2,6-diisopropylphenol), a GABAAR allosteric modulator, that we have modified to contain photo-isomerizable azobenzene. Using α1β2γ2 GABAARs expressed in Xenopus laevis oocytes and native GABAARs of isolated retinal ganglion cells, we show that the trans-azobenzene isomer of the new compound (trans-MPC088), generated by visible light (wavelengths ~440 nm), potentiates the GABA-elicited response and at higher concentrations directly activates the receptors. cis-MPC088, generated from trans-MPC088 by UV light (~365 nm), produces little if any receptor potentiation/activation. In cerebellar slices, MPC088 co-applied with GABA affords bidirectional photo-modulation of Purkinje cell membrane current and spike-firing rate. The findings demonstrate photo-control of GABAARs by an allosteric ligand and open new avenues for fundamental and clinically oriented research on GABAARs, a major class of neurotransmitter receptors in the central nervous system.
Collapse
|
29
|
El-Sayyad HIH, El-Sherbiny MA, Sobh MA, Abou-El-Naga AM, Ibrahim MAN, Mousa SA. Protective effects of Morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats. Int J Biol Sci 2011; 7:715-28. [PMID: 21697998 PMCID: PMC3119844 DOI: 10.7150/ijbs.7.715] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 05/18/2011] [Indexed: 01/21/2023] Open
Abstract
Phytotherapy is frequently considered to be less toxic and free from side effects than synthetic drugs. Hence, the present study was designed to investigate the protective use of crude water extract of Morus alba leaves on ocular functions including cataractogenesis, biochemical diabetic and hypercholesterolemic markers, retinal neurotransmitters and retinopathy of rat pups maternally subjected to either diabetes and/or hypercholesterolemia. Application of crude water extract of Morus alba resulted in amelioration of the alterations of maternal serum glucose, LDL, HDL, total cholesterol and creatine phosphokinase activity as well as retinal neurotransmitters including acetylcholine (ACE), adrenaline (AD), nor-adrenaline (NAD), serotonin (5-HT), histamine (HS), dopamine (DA) and gamma amino butyric acid (GABA). The retina of pups of either diabetic and/or hypercholesterolemia mothers exhibited massive alterations of retinal neurotransmitters. The alterations of retinal neurotransmitters were correlated with the observed pathological alterations of retinal pigmented epithelium, photoreceptor inner segment and ganglion cells and increased incidence of DNA fragmentation and apoptosis cell death. However, protection with Morus alba extract led to amelioration of the pathological alterations of retinal neurons and estimated neurotransmitters. Furthermore, a striking incidence of cataract was detected in pups of either diabetic and/or hypercholesterolemic mothers. Highest cataractogenesis was observed in pups of combined -treated groups. Our data indicate that experimental maternal diabetes alone or in combination with hypercholesterolemia led to alteration in the ocular structures of their pups, with an increasing incidence of cataract and retinopathy, and the effects of the extract might be attributed to the hypoglycaemic, antihypercholesterolemic and anti-oxidative potential of flavonoids, the major components of the plant extract.
Collapse
Affiliation(s)
- H I H El-Sayyad
- Laboratory of Experimental Embryology, Zoology Department, Mansoura University, Egypt & El-Kuwait.
| | | | | | | | | | | |
Collapse
|
30
|
Yue L, Xie A, Bruzik KS, Frølund B, Qian H, Pepperberg DR. Potentiating action of propofol at GABAA receptors of retinal bipolar cells. Invest Ophthalmol Vis Sci 2011; 52:2497-509. [PMID: 21071744 DOI: 10.1167/iovs.10-5991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Propofol (2,6-diisopropyl phenol), a widely used systemic anesthetic, is known to potentiate GABA(A) receptor activity in a number of CNS neurons and to produce changes in electroretinographically recorded responses of the retina. However, little is known about propofol's effects on specific retinal neurons. The authors investigated the action of propofol on GABA-elicited membrane current responses of retinal bipolar cells, which have both GABA(A) and GABA(C) receptors. METHODS Single, enzymatically dissociated bipolar cells obtained from rat retina were treated with propofol delivered by brief application in combination with GABA or other pharmacologic agents or as a component of the superfusing medium. RESULTS When applied with GABA at subsaturating concentrations and with TPMPA (a known GABA(C) antagonist), propofol markedly increased the peak amplitude and altered the kinetics of the response. Propofol increased the response elicited by THIP (a GABA(A)-selective agonist), and the response was reduced by bicuculline (a GABA(A) antagonist). The response to 5-methyl I4AA, a GABA(C)-selective agonist, was not enhanced by propofol. Serial brief applications of (GABA + TPMPA + propofol) led to a progressive increase in peak response amplitude and, at higher propofol concentrations, additional changes that included a prolonged time course of response recovery. Pre-exposure of the cell to perfusing propofol typically enhanced the rate of development of potentiation produced by (GABA + TPMPA + propofol) applications. CONCLUSIONS Propofol exerts a marked and selective potentiation on GABA(A) receptors of retinal bipolar cells. The data encourage the use of propofol in future studies of bipolar cell function.
Collapse
Affiliation(s)
- Lan Yue
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
31
|
Neurovascular interaction and the pathophysiology of diabetic retinopathy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:693426. [PMID: 21747832 PMCID: PMC3124285 DOI: 10.1155/2011/693426] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/11/2011] [Accepted: 01/25/2011] [Indexed: 01/08/2023]
Abstract
Diabetic retinopathy (DR) is the most severe of the several ocular complications of diabetes, and in the United States it is the leading cause of blindness among adults 20 to 74 years of age. Despite recent advances in our understanding of the pathogenesis of DR, there is a pressing need to develop novel therapeutic treatments that are both safe and efficacious. In the present paper, we identify a key mechanism involved in the development of the disease, namely, the interaction between neuronal and vascular activities. Numerous pathological conditions in the CNS have been linked to abnormalities in the relationship between these systems. We suggest that a similar situation arises in the diabetic retina, and we propose a logical strategy aimed at therapeutic intervention.
Collapse
|
32
|
Baptista FI, Gaspar JM, Cristóvão A, Santos PF, Köfalvi A, Ambrósio AF. Diabetes induces early transient changes in the content of vesicular transporters and no major effects in neurotransmitter release in hippocampus and retina. Brain Res 2011; 1383:257-69. [PMID: 21281613 DOI: 10.1016/j.brainres.2011.01.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Diabetes induces changes in neurotransmitter release in central nervous system, which depend on the type of neurotransmitter and region studied. In this study, we evaluated the effect of diabetes (two and eight weeks duration) on basal and evoked release of [(14)C]glutamate and [(3)H]GABA in hippocampal and retinal synaptosomes. We also analyzed the effect of diabetes on the protein content of vesicular glutamate and GABA transporters, VGluT-1, VGluT-2 and VGAT, and on the α(1A) subunit of P/Q type calcium channels, which are abundant in nerve terminals. The protein content of vesicular glutamate and GABA transporters, and of the α(1A) subunit, was differently affected by diabetes in hippocampal and retinal synaptosomes. The changes were more pronounced in the retina than in hippocampus. VGluT-1 and VGluT-2 content was not affected in hippocampus. Moreover, changes occurred early, at two weeks of diabetes, but after eight weeks almost no changes were detected, with the exception of VGAT in the retina. Regarding neurotransmitter release, no major changes were detected. After two weeks of diabetes, neurotransmitter release was similar to controls. After eight weeks of diabetes, the basal release of glutamate slightly increased in hippocampus and the evoked GABA release decreased in retina. In conclusion, diabetes induces early transient changes in the content of glutamate and/or GABA vesicular transporters, and on calcium channels subunit, in retinal or hippocampal synaptosomes, but only minor changes in the release of glutamate or GABA. These results point to the importance of diabetes-induced changes in neural tissues at the presynaptic level, which may underlie alterations in synaptic transmission, particularly if they become permanent during the later stages of the disease.
Collapse
Affiliation(s)
- Filipa I Baptista
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
33
|
Zheng W, Zhao X, Wang J, Lu L. Retinal vascular leakage occurring in GABA Rho-1 subunit deficient mice. Exp Eye Res 2010; 90:634-40. [PMID: 20193681 DOI: 10.1016/j.exer.2010.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/11/2010] [Accepted: 02/22/2010] [Indexed: 11/18/2022]
Abstract
Recent studies demonstrate that GABAergic activity elicits relaxation of retinal arterioles leading to an increase in blood flow. It has also been found that GABAnergic activity in the retina of mice with diabetic retinopathy is suppressed. In this study, we provide further evidence that lack of GABAergic activity significantly alters vasculature development as well as the hypoxia-induced angiogenic response. Using GABA(C) receptor rho(1) subunit-knockout mice (rho-1(-/-)), our results demonstrate that in hypoxia-induced retinas a severe vascular leakage occurred in 2 week-old rho-1(-/-) mice compared with their wildtype counterparts. In addition, our results also showed that all of the rho-1(-/-) mice developed significant retinal vascular leakages by 48 weeks-of-age. Microarray and real-time PCR experiments revealed a unique angiogenesis-related gene expression pattern. This suggests that retinal vascular disorders of rho-1(-/-) mice results from significant up-regulation of angiogenic genes and concomitant down-regulation of anti-angiogenic genes. The study results are consistent with the pathological changes of the retinal vascular leakage seen in diabetic retinopathy. Our data indicate that the GABA(C) rho(1) subunit plays a role in maintaining both homeostasis and balance of retinal neurotransmitter function. Knockout of the retinal GABA(C) rho(1)-subunit leads to changes in vascular permeability similar to the pathological changes induced by retinal hypoxic conditions.
Collapse
Affiliation(s)
- Wei Zheng
- Division of Molecular Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA 90502, USA
| | | | | | | |
Collapse
|
34
|
Pereira TDOS, da Costa GNF, Santiago ARS, Ambrósio AF, dos Santos PFM. High glucose enhances intracellular Ca2+ responses triggered by purinergic stimulation in retinal neurons and microglia. Brain Res 2010; 1316:129-38. [DOI: 10.1016/j.brainres.2009.12.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/11/2009] [Accepted: 12/12/2009] [Indexed: 01/06/2023]
|
35
|
VanGuilder HD, Brucklacher RM, Patel K, Ellis RW, Freeman WM, Barber AJ. Diabetes downregulates presynaptic proteins and reduces basal synapsin I phosphorylation in rat retina. Eur J Neurosci 2008; 28:1-11. [DOI: 10.1111/j.1460-9568.2008.06322.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Xie A, Song X, Ripps H, Qian H. Cyclothiazide: a subunit-specific inhibitor of GABAC receptors. J Physiol 2008; 586:2743-52. [PMID: 18420703 DOI: 10.1113/jphysiol.2008.153346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We tested the effects of cyclothiazide (CTZ), an agent used to block desensitization of AMPA-type glutamate receptors, on heterologously expressed GABA(C) receptors formed by homomeric rho subunits. CTZ inhibition of GABA(C) receptors was subunit specific; it produced a dose-dependent reduction of the GABA-elicited current on homomeric rho2 receptors with an IC(50) of about 12 microm, but had no significant effect on homomeric rho1 receptors. This differential sensitivity was attributable to a single amino acid located on the second transmembrane domain of the rho subunits. Mutating the residue at this position from serine to proline on the rho2 subunit eliminated CTZ sensitivity, whereas switching proline to serine on the rho1 subunit made the receptor CTZ sensitive. The inhibitory properties of CTZ were consistent with its action as a channel blocker on the receptors formed by rho2 subunits. The effect showed a small degree of voltage dependence, and was due mainly to a non-competitive mechanism that reduced the maximum response elicited by GABA. In addition, the prominent membrane current rebound when co-application of GABA and CTZ was terminated suggests that the binding site for CTZ on the GABA(C) receptor is distinct from that for GABA, and that CTZ acts as a non-competitive antagonist on the GABA(C) receptor. CTZ inhibited the open channel of the GABA(C) receptor with a time constant of about 0.4 s, but the kinetics were approximately 10-fold slower when GABA is absent. The ability of CTZ to interact with various types of neurotransmitter receptors indicates that the drug has multiple actions in the CNS.
Collapse
Affiliation(s)
- An Xie
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|