1
|
Woronkowicz M, Roberts H, Skopiński P. The Role of Insulin-like Growth Factor (IGF) System in the Corneal Epithelium Homeostasis-From Limbal Epithelial Stem Cells to Therapeutic Applications. BIOLOGY 2024; 13:144. [PMID: 38534414 DOI: 10.3390/biology13030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
The corneal epithelium, comprising three layers of cells, represents the outermost portion of the eye and functions as a vital protective barrier while concurrently serving as a critical refractive structure. Maintaining its homeostasis involves a complex regenerative process facilitated by the functions of the lacrimal gland, tear film, and corneal nerves. Crucially, limbal epithelial stem cells located in the limbus (transitional zone between the cornea and the conjunctiva) are instrumental for the corneal epithelium integrity by replenishing and renewing cells. Re-epithelialization failure results in persistent defects, often associated with various ocular conditions including diabetic keratopathy. The insulin-like growth factor (IGF) system is a sophisticated network of insulin and other proteins essential for numerous physiological processes. This review examines its role in maintaining the corneal epithelium homeostasis, with a special focus on the interplay with corneal limbal stem cells and the potential therapeutic applications of the system components.
Collapse
Affiliation(s)
- Małgorzata Woronkowicz
- NDDH, Royal Devon University Healthcare NHS Foundation Trust, Barnstaple EX31 4JB, UK
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Harry Roberts
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- University of Exeter Medical School, Exeter EX1 2HZ, UK
| | - Piotr Skopiński
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, 00-576 Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Stuard WL, Titone R, Robertson DM. IGFBP-3 functions as a molecular switch that mediates mitochondrial and metabolic homeostasis. FASEB J 2022; 36:e22062. [PMID: 34918377 PMCID: PMC9060658 DOI: 10.1096/fj.202100710rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
Mitochondrial dysfunction or loss of homeostasis is a central hallmark of many human diseases. Mitochondrial homeostasis is mediated by multiple quality control mechanisms including mitophagy, a form of selective autophagy that recycles terminally ill or dysfunctional mitochondria in order to preserve mitochondrial integrity. Our prior studies have shown that members of the insulin-like growth factor (IGF) family localize to the mitochondria and may play important roles in mediating mitochondrial health in the corneal epithelium, an integral tissue that is required for the maintenance of optical transparency and vision. Importantly, the IGF-binding protein-3, IGFBP-3, is secreted by corneal epithelial cells in response to stress and functions to mediate intracellular receptor trafficking in this cell type. In this study, we demonstrate a novel role for IGFBP-3 in mitochondrial homeostasis through regulation of the short isoform (s)BNIP3L/NIX mitophagy receptor in corneal epithelial cells and extend this finding to non-ocular epithelial cells. We further show that IGFBP-3-mediated control of mitochondrial homeostasis is associated with alterations in lamellar cristae morphology and mitochondrial dynamics. Interestingly, both loss and gain of function of IGFBP-3 drive an increase in mitochondrial respiration. This increase in respiration is associated with nuclear accumulation of IGFBP-3. Taken together, these findings support a novel role for IGFBP-3 as a key mediator of mitochondrial health in mucosal epithelia through the regulation of mitophagy and mitochondrial morphology.
Collapse
Affiliation(s)
- Whitney L Stuard
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rossella Titone
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Targeted Gene Candidates for Treatment and Early Diagnosis of Age-Related Macular Degeneration. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6620900. [PMID: 33604378 PMCID: PMC7872763 DOI: 10.1155/2021/6620900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Abstract
Age-related macular degeneration (AMD) is an eye disease that impairs the sharp and central vision need for daily activities. Recent advances in molecular biology research not only lead to a better understanding of the genetics and pathophysiology of AMD but also to the development of applications based on targeted gene expressions to treat the disease. Clarification of molecular pathways that causing to development and progression in dry and wet types of AMD needs comprehensive and comparative investigations in particular precious biopsies involving peripheral blood samples from the patients. Therefore, in this investigation, dry and wet types of AMD patients and healthy individuals were aimed at investigating in regard to targeted gene candidates by using gene expression analysis for the first time. 13 most potent candidate genes involved in neurodegeneration were selected via in silico approach and investigated through gene expression analysis to suggest new targets for disease therapy. For the analyses, 30 individuals (10 dry and 10 wet types AMD patients and 10 healthy people) were involved in the study. SYBR-Green based Real-Time PCR analysis was performed on isolated peripheral blood mononuclear cells (PBMCs) to analyze differentially expressed genes related to these cases. According to the investigations, only the CRP gene was found to be upregulated for both dry and wet disease types. When the downregulated genes were analyzed, it was found that 11 genes were commonly decreased for both dry and wet types in the aspect of expression pattern. From these genes, CFH, CX3CR1, FLT1, and TIMP3 were found to have the most downregulated gene expression properties for both diseases. From these results, it might be concluded that these common upregulated and downregulated genes could be used as targets for early diagnosis and treatment for AMD.
Collapse
|
4
|
Tear Levels of IGFBP-3: A Potential Biomarker for Diabetic Nerve Changes in the Cornea. Eye Contact Lens 2020; 46:319-325. [DOI: 10.1097/icl.0000000000000700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Rao P, Suvas PK, Jerome AD, Steinle JJ, Suvas S. Role of Insulin-Like Growth Factor Binding Protein-3 in the Pathogenesis of Herpes Stromal Keratitis. Invest Ophthalmol Vis Sci 2020; 61:46. [PMID: 32106295 PMCID: PMC7329945 DOI: 10.1167/iovs.61.2.46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose The goal of this study was to determine the role of insulin-like growth factor-binding protein-3 (IGFBP-3) in the pathogenesis of herpes stromal keratitis (HSK). Methods In an unbiased approach, a membrane-based protein array was carried out to determine the level of expression of pro- and anti-angiogenic molecules in uninfected and HSV-1 infected corneas. Quantitative RT-PCR and ELISA assays were performed to measure the amounts of IGFBP-3 at mRNA and protein levels. Confocal microscopy documented the localization of IGFBP-3 in uninfected and infected corneal tissue. Flow cytometry assay showed the frequency of immune cell types in infected corneas from C57BL/6J (B6) and IGFBP-3 knockout (IGFBP-3-/-) mice. Slit-lamp microscopy was used to quantitate the development of opacity and neovascularization in infected corneas from both groups of mice. Results Quantitation of protein array dot blot showed an increased level of IGFBP-3 protein in HSV-1 infected than uninfected corneas and was confirmed with ELISA and quantitative RT-PCR assays. Cytosolic and nuclear localization of IGFBP-3 were detected in the cells of corneal epithelium, whereas scattered IGFBP-3 staining was evident in the stroma of HSK developing corneas. Increased opacity and hemangiogenesis were noted in the corneas of IGFBP-3-/- than B6 mice during the clinical period of HSK. Furthermore, an increased number of leukocytes comprising of neutrophils and CD4 T cells were found in HSK developing corneas of IGFBP-3-/- than B6 mice. Conclusions Our data showed that lack of IGFBP-3 exacerbates HSK, suggesting the protective effect of IGFBP-3 protein in regulating the severity of HSK.
Collapse
|
6
|
Zhu L, Titone R, Robertson DM. The impact of hyperglycemia on the corneal epithelium: Molecular mechanisms and insight. Ocul Surf 2019; 17:644-654. [PMID: 31238114 DOI: 10.1016/j.jtos.2019.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is reaching epidemic levels worldwide and with it, there is a significant increase in complications associated with the disease. T2DM affects virtually all organ systems including the eye. While frequently overlooked, diabetic keratopathy is the most common ocular complication of diabetes and can manifest in mild to severe forms, the latter of which poses a major threat to vision. As the initial barrier between the environment and the eye, the corneal epithelium functions in innate immune defense. Compromise of this barrier may predispose the cornea to infection and can hinder the refractive capabilities of the eye. The clinical burden in patients with diabetic keratopathy lies primarily in the inability of the corneal epithelium to repair damage and maintain its tight barrier function. Current therapies for diabetic keratopathy are supportive, centering on the prevention of infection and promotion of an optimal healing environment. With no clear disease-modifying agent identified as of yet, a thorough understanding of the pathophysiology that underlies the development of diabetic keratopathy at the cellular level is critical to identify and develop potential therapeutic agents capable of promoting corneal re-epithelialization to accelerate the wound healing process. The focus of this review is to examine what is known regarding the cellular and molecular mechanisms needed to maintain epithelial homeostasis and how it goes awry in diabetes.
Collapse
Affiliation(s)
- Luke Zhu
- Department of Ophthalmology, University of Texas Southwestern Medical Center, United States
| | - Rossella Titone
- Department of Ophthalmology, University of Texas Southwestern Medical Center, United States
| | - Danielle M Robertson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, United States.
| |
Collapse
|
7
|
Park M, Mazalo J, Di Girolamo N. Insulin-like growth factor binding protein-7: A marker of conjunctivalization in an animal model of limbal stem cell deficiency. Ocul Surf 2019; 17:447-457. [PMID: 31125784 DOI: 10.1016/j.jtos.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Limbal stem cell deficiency (LSCD) is characterized by the loss of limbal epithelial stem cells, resulting in a pathological process termed 'conjunctivalization' which compromises corneal transparency, leading to blindness. Current diagnosis for LSCD is limited because reliable conjunctiva-specific biomarkers are lacking. This study sought to address this shortcoming through the serendipitous discovery of insulin-like growth factor binding protein (IGFBP)-7. METHODS IGFBP-7 expression was determined in normal (n=83) and conjunctivalized (n=52) mouse corneas with experimentally-induced LSCD, and in cadaveric normal human corneas (n=7) and human pterygia (n=15); a disease characterized by the invasion of a conjunctivalized, fibrovascular pannus. Clinical assessments including slit-lamp microscopy, fluorescein staining and impression cytology, and biochemical, molecular and immunological assays were also conducted. RESULTS Mass spectrometry of conditioned media from mouse limbal explant-derived cells revealed the presence of IGFBP-7. This factor was expressed in normal limbal and conjunctival epithelium and conjunctivalized corneas from mice with LSCD, and in human pterygium epithelium but not in normal mouse or human corneal epithelium. Four weeks after inducing LSCD, IGFBP-7 staining was increased by 2.9-fold in mouse corneas compared to steady-state, and by 1.6-fold in impression cytology specimens derived from the same mice. Notably, IGFBP-7 was detected approximately 2-weeks earlier than Muc5AC. CONCLUSIONS This study provides novel insights into the specificity of IGFBP-7 for the mammalian conjunctival epithelium in health and disease. A point-of-care test for IGFBP-7 could be developed to assist clinicians in early diagnosis, and in monitoring disease progression, severity and therapeutic outcomes in patients with LSCD.
Collapse
Affiliation(s)
- Mijeong Park
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Jessica Mazalo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Titone R, Zhu M, Robertson DM. Mutual regulation between IGF-1R and IGFBP-3 in human corneal epithelial cells. J Cell Physiol 2018; 234:1426-1441. [PMID: 30078228 DOI: 10.1002/jcp.26948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) is part of the receptor tyrosine kinase superfamily. The activation of IGF-1R regulates several key signaling pathways responsible for maintaining cellular homeostasis, including survival, growth, and proliferation. In addition to mediating signal transduction at the plasma membrane, in serum-based models, IGF-1R undergoes SUMOylation by SUMO 1 and translocates to the nucleus in response to IGF-1. In corneal epithelial cells grown in serum-free culture, however, IGF-1R has been shown to accumulate in the nucleus independent of IGF-1. In this study, we report that the insulin-like growth factor binding protein-3 (IGFBP-3) mediates nuclear translocation of IGF-1R in response to growth factor withdrawal. This occurs via SUMOylation by SUMO 2/3. Further, IGF-1R and IGFBP-3 undergo reciprocal regulation independent of PI3k/Akt signaling. Thus, under healthy growth conditions, IGFBP-3 functions as a gatekeeper to arrest the cell cycle in G0/G1, but does not alter mitochondrial respiration in cultured cells. When stressed, IGFBP-3 functions as a caretaker to maintain levels of IGF-1R in the nucleus. These results demonstrate mutual regulation between IGF-1R and IGFBP-3 to maintain cell survival under stress. This is the first study to show a direct relationship between IGF-1R and IGFBP-3 in the maintenance of corneal epithelial homeostasis.
Collapse
Affiliation(s)
- Rossella Titone
- The Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Meifang Zhu
- The Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Danielle M Robertson
- The Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
9
|
Short-term uvb-irradiation leads to putative limbal stem cell damage and niche cell-mediated upregulation of macrophage recruiting cytokines. Stem Cell Res 2015; 15:643-654. [DOI: 10.1016/j.scr.2015.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 01/17/2023] Open
|
10
|
Wu YC, Buckner BR, Zhu M, Cavanagh HD, Robertson DM. Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium. Ocul Surf 2012; 10:100-7. [PMID: 22482470 DOI: 10.1016/j.jtos.2012.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 12/30/2022]
Abstract
To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real-time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (P<0.001) following culture of hTCEpi cells under elevated glucose conditions in vitro. Treatment with glucose and the mannitol control reduced IGFBP3 mRNA (P<0.001). Total IGF-1R levels were unchanged. The increase in the IGFBP3:IGF-1 ratio detected in diabetic tears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (P<0.001) when tested in vitro. Taken together, these in vivo and confirmatory in vitro findings suggest that the observed increase in IGFBP3 found in human tears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes.
Collapse
Affiliation(s)
- Yu-Chieh Wu
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| | | | | | | | | |
Collapse
|
11
|
Robertson DM, Ho SI, Cavanagh HD. C-terminal cleavage of DeltaNp63alpha is associated with TSA-induced apoptosis in immortalized corneal epithelial cells. Invest Ophthalmol Vis Sci 2010; 51:3977-85. [PMID: 20375332 DOI: 10.1167/iovs.09-4919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In the central human corneal epithelium, loss of DeltaNp63 occurs in all surface epithelial cells preparing to undergo desquamation, suggesting a potential role for DeltaNp63 isoforms in mediating surface cell apoptotic shedding. In this study, the authors investigated a role for DeltaNp63 isoforms in caspase-mediated apoptosis in a telomerase-immortalized corneal epithelial cell line. METHODS For in vitro studies, hTCEpi cells were cultured in KGM-2 serum-free culture media containing 0.15 mM calcium. To assess dynamic protein interactions among individual DeltaNp63 isoforms, DeltaNp63-EGFP expression plasmids were transiently expressed in hTCEpi cells and evaluated by FRAP. Trichostatin-A (TSA; 3.31 muM) was used to induce cell death as measured by caspase activity. Cleavage and loss of endogenous DeltaNp63alpha, DeltaNp63-EGFP expression plasmids, and p53 were assessed after treatment with TSA and siRNA. RESULTS Transient expression of DeltaNp63-EGFP alpha and beta isoforms resulted in the formation of a smaller isoform similar in size to DeltaNp63gamma-EGFP. FRAP demonstrated that DeltaNp63alpha-EGFP has greater immobile fraction than beta or gamma. TSA induced caspase-mediated apoptotic pathways; caspase induction was accompanied by a decrease in endogenous DeltaNp63alpha and p53. TSA upregulated DeltaNp63-EGFP plasmid expression; this was accompanied by a selective increase in cleavage of DeltaNp63alpha-EGFP. siRNA knockdown of DeltaNp63alpha correlated with a reduction in p53 independently of TSA. CONCLUSIONS DeltaNp63alpha is the dominant active isoform in corneal epithelial cell nuclei. Loss of DeltaNp63alpha occurs during apoptotic signaling by cleavage at the C terminus. The corresponding loss of p53 suggests that a significant relationship appears to exist between these two regulatory proteins.
Collapse
Affiliation(s)
- Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9057, USA.
| | | | | |
Collapse
|