1
|
Zhang Q, Wu Y, Li W, Wang J, Zhou H, Zhang L, Liu Q, Ying L, Yan H. Retinal development and the expression profiles of opsin genes during larval development in Takifugu rubripes. JOURNAL OF FISH BIOLOGY 2023; 102:380-394. [PMID: 36371656 DOI: 10.1111/jfb.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The light-sensitive capacity of fish larvae is determined by the structure of the retina and the opsins expressed in the retinal and nonretinal photoreceptors. In this study, the retinal structure and expression of opsin genes during the early developmental stage of Takifugu rubripes larvae were investigated. Histological examination showed that at 1 days after hatching (dah), seven layers were observed in the retina of T. rubripes larva, including the pigment epithelial layer [retinal pigment epithelium layer (RPE)], photoreceptor layer (PRos/is), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). At 2 dah, optic fibre layer (OFL) can be observed, and all eight layers were visible in the retina. By measuring the thickness of each layer, opposing developmental trends were found in the thickness of ONL, OPL, INL, IPL, GCL and OFL. The nuclear density of ONL, INL and GCL and the ratios of ONL/INL, ONL/GCL and INL/GCL were also measured and the ratio of ONL/GCL ranged from 1.9 at 2 dah to 3.4 at 8 dah and no significant difference was observed between the different developmental stages (P > 0.05). No significant difference was observed for the INL/GCL ratio between the different developmental stages, which ranged from 1.2 at 2 dah to 2.0 at 18 dah (P > 0.05). The results of quantitative real-time polymerase chain reaction (PCR) showed that the expression of RH1, LWS, RH2-1, RH2-2, SWS2, rod opsin, opsin3 and opsin5 could be detected from 1 dah. These results suggest that the well-developed retina and early expression of the opsins of T. rubripes during the period of transition from endogenous to mixed feeding might be critical for vision-based survival skills during the early life stages after hatching.
Collapse
Affiliation(s)
- Qi Zhang
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Yumeng Wu
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Weiyuan Li
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Jia Wang
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Huiting Zhou
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Lei Zhang
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Qi Liu
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Liu Ying
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Hongwei Yan
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| |
Collapse
|
2
|
Rodríguez-Arrizabalaga M, Hernández-Núñez I, Candal E, Barreiro-Iglesias A. Use of vivo-morpholinos for gene knockdown in the postnatal shark retina. Exp Eye Res 2023; 226:109333. [PMID: 36436570 DOI: 10.1016/j.exer.2022.109333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Work in the catshark Scyliorhinus canicula has shown that the evolutionary origin of postnatal neurogenesis in vertebrates is earlier than previously thought. Thus, the catshark can serve as a model of interest to understand postnatal neurogenic processes and their evolution in vertebrates. One of the best characterized neurogenic niches of the catshark CNS is found in the peripheral region of the retina. Unfortunately, the lack of genetic tools in sharks limits the possibilities to deepen in the study of genes involved in the neurogenic process. Here, we report a method for gene knockdown in the juvenile catshark retina based on the use of Vivo-Morpholinos. To establish the method, we designed Vivo-Morpholinos against the proliferation marker PCNA. We first evaluated the possible toxicity of 3 different intraocular administration regimes. After this optimization step, we show that a single intraocular injection of the PCNA Vivo-Morpholino decreases the expression of PCNA in the peripheral retina, which leads to reduced mitotic activity in this region. This method will help in deciphering the role of other genes potentially involved in postnatal neurogenesis in this animal model.
Collapse
Affiliation(s)
- Mariña Rodríguez-Arrizabalaga
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ismael Hernández-Núñez
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva Candal
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Hernández-Núñez I, Vivero-Lopez M, Quelle-Regaldie A, DeGrip WJ, Sánchez L, Concheiro A, Alvarez-Lorenzo C, Candal E, Barreiro-Iglesias A. Embryonic nutritional hyperglycemia decreases cell proliferation in the zebrafish retina. Histochem Cell Biol 2022; 158:401-409. [PMID: 35779079 DOI: 10.1007/s00418-022-02127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. While there is a major focus on the study of juvenile/adult DR, the effects of hyperglycemia during early retinal development are less well studied. Recent studies in embryonic zebrafish models of nutritional hyperglycemia (high-glucose exposure) have revealed that hyperglycemia leads to decreased cell numbers of mature retinal cell types, which has been related to a modest increase in apoptotic cell death and altered cell differentiation. However, how embryonic hyperglycemia impacts cell proliferation in developing retinas still remains unknown. Here, we exposed zebrafish embryos to 50 mM glucose from 10 h postfertilization (hpf) to 5 days postfertilization (dpf). First, we confirmed that hyperglycemia increases apoptotic death and decreases the rod and Müller glia population in the retina of 5-dpf zebrafish. Interestingly, the increase in cell death was mainly observed in the ciliary marginal zone (CMZ), where most of the proliferating cells are located. To analyze the impact of hyperglycemia in cell proliferation, mitotic activity was first quantified using pH3 immunolabeling, which revealed a significant decrease in mitotic cells in the retina (mainly in the CMZ) at 5 dpf. A significant decrease in cell proliferation in the outer nuclear and ganglion cell layers of the central retina in hyperglycemic animals was also detected using the proliferation marker PCNA. Overall, our results show that nutritional hyperglycemia decreases cellular proliferation in the developing retina, which could significantly contribute to the decline in the number of mature retinal cells.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002, Lugo, Spain.,Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Eva Candal
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain.
| |
Collapse
|
4
|
Álvarez-Hernán G, de Mera-Rodríguez JA, de la Gándara F, Ortega A, Barros-Gata I, Romero-Rodríguez JA, Blasco M, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Histogenesis and cell differentiation in the retina of Thunnus thynnus: A morphological and immunohistochemical study. Tissue Cell 2022; 76:101809. [DOI: 10.1016/j.tice.2022.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
5
|
Decline in Constitutive Proliferative Activity in the Zebrafish Retina with Ageing. Int J Mol Sci 2021; 22:ijms222111715. [PMID: 34769146 PMCID: PMC8583983 DOI: 10.3390/ijms222111715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023] Open
Abstract
It is largely assumed that the teleost retina shows continuous and active proliferative and neurogenic activity throughout life. However, when delving into the teleost literature, one finds that assumptions about a highly active and continuous proliferation in the adult retina are based on studies in which proliferation was not quantified in a comparative way at the different life stages or was mainly studied in juveniles/young adults. Here, we performed a systematic and comparative study of the constitutive proliferative activity of the retina from early developing (2 days post-fertilisation) to aged (up to 3–4 years post-fertilisation) zebrafish. The mitotic activity and cell cycle progression were analysed by using immunofluorescence against pH3 and PCNA, respectively. We observed a decline in the cell proliferation in the retina with ageing despite the occurrence of a wave of secondary proliferation during sexual maturation. During this wave of secondary proliferation, the distribution of proliferating and mitotic cells changes from the inner to the outer nuclear layer in the central retina. Importantly, in aged zebrafish, there is a virtual disappearance of mitotic activity. Our results showing a decline in the proliferative activity of the zebrafish retina with ageing are of crucial importance since it is generally assumed that the fish retina has continuous proliferative activity throughout life.
Collapse
|
6
|
Retinal differentiation in syngnathids: comparison in the developmental rate and acquisition of retinal structures in altricial and precocial fish species. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00447-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Boije H, Shirazi Fard S, Edqvist PH, Hallböök F. Horizontal Cells, the Odd Ones Out in the Retina, Give Insights into Development and Disease. Front Neuroanat 2016; 10:77. [PMID: 27486389 PMCID: PMC4949263 DOI: 10.3389/fnana.2016.00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023] Open
Abstract
Thorough investigation of a neuronal population can help reveal key aspects regarding the nervous system and its development. The retinal horizontal cells have several extraordinary features making them particularly interesting for addressing questions regarding fate assignment and subtype specification. In this review we discuss and summarize data concerning the formation and diversity of horizontal cells, how morphology is correlated to molecular markers, and how fate assignment separates the horizontal lineage from the lineages of other retinal cell types. We discuss the novel and unique features of the final cell cycle of horizontal cell progenitors and how they may relate to retinoblastoma carcinogenesis.
Collapse
Affiliation(s)
- Henrik Boije
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| | | | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Uppsala University Uppsala, Sweden
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| |
Collapse
|
8
|
Pavón-Muñoz T, Bejarano-Escobar R, Blasco M, Martín-Partido G, Francisco-Morcillo J. Retinal development in the gilthead seabream Sparus aurata. JOURNAL OF FISH BIOLOGY 2016; 88:492-507. [PMID: 26507100 DOI: 10.1111/jfb.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The retinal development of the gilthead seabream Sparus aurata has been analysed from late embryonic development to juvenile stages using classical histological and immunohistological methods. Five significant phases were established. Phases 1 and 2 comprise the late embryonic and hatching stages, respectively. The results indicate that during these early stages the retina is composed of a single neuroblastic layer that consists of undifferentiated retinal progenitor cells. Phase 3 (late prolarval stage) is characterized by the emergence of the retinal layers and the appearance of neurochemical profiles in differentiating photoreceptors, amacrine and ganglion cells. Phases 4 and 5 comprise the late larval and juvenile stages. In these stages, all the retinal cell types can be detected immunohistochemically. All the maturational events described are first detected in the central retina and, as development progresses, spread to the rest of the retina following a central-to-peripheral gradient. The results of this study suggest that S. aurata is an altricial teleost species that hatches with a morphologically undifferentiated retina. The most relevant processes involved in retinogenesis occur during the late prolarval stage (phase 3).
Collapse
Affiliation(s)
- T Pavón-Muñoz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - R Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - M Blasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - G Martín-Partido
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - J Francisco-Morcillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| |
Collapse
|
9
|
Sánchez-Farías N, Candal E. Doublecortin is widely expressed in the developing and adult retina of sharks. Exp Eye Res 2015; 134:90-100. [PMID: 25849205 DOI: 10.1016/j.exer.2015.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 01/08/2023]
Abstract
Doublecortin (DCX) is a microtubule-associated protein that has been considered a marker for neuronal precursors and young migrating neurons during the development of the central nervous system and in adult neurogenic niches. The retina of fishes represents an accessible, continuously growing and highly structured (layered) part of the central nervous system and, therefore, offers an exceptional model to extend our knowledge on the possible role of DCX in promoting neurogenesis and migration to appropriate layers. We have analyzed the distribution of DCX in the embryonic and postembryonic retina of a small shark, the lesser spotted dogfish Scyliorhinus canicula, by means of immunohistochemistry. We investigated the relationship between DCX expression and the neurogenic state of DCX-labeled cells by exploring its co-localization with the proliferation marker PCNA (proliferating cell nuclear antigen) and the marker of neuronal differentiation HuC/D. Since radially migrating neurons use radial glial fibers as substrate, we explored the possible correlation between DCX expression and cell migration along radial glia by comparing its expression with that of the glial marker GFAP (glial fibrillary acidic protein). Additionally, we characterized DCX-expressing cells by double immunocytochemistry using antibodies against Calbindin (a marker for mature bipolar and horizontal cells in this species) and Pax6, which has been proposed as a regulator of cell proliferation, cell differentiation, and neuron diversification in the neural retina of sharks. Strong DCX immunoreactivity was observed in immature cells and cell processes, at a time when retinal cells were not yet organized into different laminae. DCX was also found in subsets of mature ganglion, amacrine, bipolar and horizontal cells long after they had exited the cell cycle, a pattern that was maintained in juveniles and adults. Our results on DCX expression in the retina are compatible with a role for DCX in cell migration within the immature retina, and in dynamic neuronal plasticity in the mature retina. We also provide evidence of DCX expression in discrete cells in the retinal pigment epithelium of prehatching embryos and juveniles, which suggest that retinal pigmented epithelial cells in sharks, as in mammals, have an intrinsic capacity to proliferate and differentiate into cells with neural identity.
Collapse
Affiliation(s)
- Nuria Sánchez-Farías
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Eva Candal
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Bejarano-Escobar R, Blasco M, Durán AC, Martín-Partido G, Francisco-Morcillo J. Chronotopographical distribution patterns of cell death and of lectin-positive macrophages/microglial cells during the visual system ontogeny of the small-spotted catshark Scyliorhinus canicula. J Anat 2013; 223:171-84. [PMID: 23758763 DOI: 10.1111/joa.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 01/15/2023] Open
Abstract
The patterns of distribution of TUNEL-positive bodies and of lectin-positive phagocytes were investigated in the developing visual system of the small-spotted catshark Scyliorhinus canicula, from the optic vesicle stage to adulthood. During early stages of development, TUNEL-staining was mainly found in the protruding dorsal part of the optic cup and in the presumptive optic chiasm. Furthermore, TUNEL-positive bodies were also detected during detachment of the embryonic lens. Coinciding with the developmental period during which ganglion cells began to differentiate, an area of programmed cell death occurred in the distal optic stalk and in the retinal pigment epithelium that surrounds the optic nerve head. The topographical distribution of TUNEL-positive bodies in the differentiating retina recapitulated the sequence of maturation of the various layers and cell types following a vitreal-to-scleral gradient. Lectin-positive cells apparently entered the retina by the optic nerve head when the retinal layering was almost complete. As development proceeded, these labelled cells migrated parallel to the axon fascicles of the optic fiber layer and then reached more external layers by radial migration. In the mature retina, lectin-positive cells were confined to the optic fiber layer, ganglion cell layer and inner plexiform layer. No evident correlation was found between the chronotopographical pattern of distribution of TUNEL-positive bodies and the pattern of distribution of lectin-labelled macrophages/microglial cells during the shark's visual system ontogeny.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
11
|
Ferreiro-Galve S, Rodríguez-Moldes I, Candal E. Pax6 expression during retinogenesis in sharks: comparison with markers of cell proliferation and neuronal differentiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:91-108. [DOI: 10.1002/jezb.21448] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Bejarano-Escobar R, Blasco M, Durán AC, Rodríguez C, Martín-Partido G, Francisco-Morcillo J. Retinal histogenesis and cell differentiation in an elasmobranch species, the small-spotted catshark Scyliorhinus canicula. J Anat 2012; 220:318-35. [PMID: 22332849 DOI: 10.1111/j.1469-7580.2012.01480.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Here we present a detailed study of the major events in the retinal histogenesis in a slow-developing elasmobranch species, the small-spotted catshark, during embryonic, postnatal and adult stages using classical histological and immunohistological methods, providing a complete neurochemical characterization of retinal cells. We found that the retina of the small-spotted catshark was fully differentiated prior to birth. The major developmental events in retinal cell differentiation occurred during the second third of the embryonic period. Maturational features described in the present study were first detected in the central retina and, as development progressed, they spread to the rest of the retina following a central-to-peripheral gradient. While the formation of both plexiform layers occurs simultaneously in the retina of the most common fish models, in the small-spotted catshark retina the emergence of the outer plexiform layer was delayed with respect to the inner plexiform layer. According to the expression of the markers used, retinal cell differentiation followed a vitreal-to-scleral gradient, with the exception of Müller cells that were the last cell type generated during retinogenesis. This vitreal-to-scleral progression of neural differentiation seems to be specific to slow-developing fish species.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Rodríguez-Moldes I, Carrera I, Pose-Méndez S, Quintana-Urzainqui I, Candal E, Anadón R, Mazan S, Ferreiro-Galve S. Regionalization of the shark hindbrain: a survey of an ancestral organization. Front Neuroanat 2011; 5:16. [PMID: 21519383 PMCID: PMC3077972 DOI: 10.3389/fnana.2011.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/18/2011] [Indexed: 11/21/2022] Open
Abstract
Cartilaginous fishes (chondrichthyans) represent an ancient radiation of vertebrates currently considered the sister group of the group of gnathostomes with a bony skeleton that gave rise to land vertebrates. This out-group position makes chondrichthyans essential in assessing the ancestral organization of the brain of jawed vertebrates. To gain knowledge about hindbrain evolution we have studied its development in a shark, the lesser spotted dogfish Scyliorhinus canicula by analyzing the expression of some developmental genes and the origin and distribution of specific neuronal populations, which may help to identify hindbrain subdivisions and boundaries and the topology of specific cell groups. We have characterized three developmental periods that will serve as a framework to compare the development of different neuronal systems and may represent a suitable tool for comparing the absolute chronology of development among vertebrates. The expression patterns of Pax6, Wnt8, and HoxA2 genes in early embryos of S. canicula showed close correspondence to what has been described in other vertebrates and helped to identify the anterior rhombomeres. Also in these early embryos, the combination of Pax6 with protein markers of migrating neuroblasts (DCX) and early differentiating neurons (general: HuC/D; neuron type specific: GAD, the GABA synthesizing enzyme) revealed the organization of S. canicula hindbrain in both transverse segmental units corresponding to visible rhombomeres and longitudinal columns. Later in development, when the interrhombomeric boundaries fade away, accurate information about S. canicula hindbrain subdivisions was achieved by comparing the expression patterns of Pax6 and GAD, serotonin (serotoninergic neurons), tyrosine hydroxylase (catecholaminergic neurons), choline acetyltransferase (cholinergic neurons), and calretinin (a calcium-binding protein). The patterns observed revealed many topological correspondences with other vertebrates and led to reconsideration of the current view of the elasmobranch hindbrain segmentation as peculiar among vertebrates.
Collapse
Affiliation(s)
- Isabel Rodríguez-Moldes
- Department of Cell Biology and Ecology, University of Santiago de Compostela Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|