1
|
Wu Y, Liu Y, Feng Y, Li X, Lu Z, Gu H, Li W, Hill LJ, Ou S. Evolution of therapeutic strategy based on oxidant-antioxidant balance for fuchs endothelial corneal dystrophy. Ocul Surf 2024; 34:247-261. [PMID: 39111696 DOI: 10.1016/j.jtos.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024]
Abstract
Fuchs endothelial corneal dystrophy (FECD) stands as the most prevalent primary corneal endothelial dystrophy worldwide, posing a significant risk to corneal homeostasis and clarity. Corneal endothelial cells exhibit susceptibility to oxidative stress, suggesting a nuanced relationship between oxidant-antioxidant imbalance and FECD pathogenesis, irrespective of FECD genotype. Given the constrained availability of corneal transplants, exploration into non-surgical interventions becomes crucial. This encompasses traditional antioxidants, small molecule compounds, biologics, and diverse non-drug therapies, such as gene-related therapy, hydrogen therapy and near infrared light therapy. This review concentrates on elucidating the mechanisms behind oxidant-antioxidant imbalance and the evolution of strategies to restore oxidant-antioxidant balance in FECD. It provides a comprehensive overview of both conventional and emerging therapeutic approaches, offering valuable insights for the advancement of non-surgical treatment modalities. The findings herein might establish a robust foundation for future research and the therapeutic strategy of FECD.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanbo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuchong Feng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoshuang Li
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Zhaoxiang Lu
- Institute of Microbiology and Infection, Department of Microbes, Infections and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK
| | - Hao Gu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wei Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Medical Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lisa J Hill
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, B15 2TT, UK.
| | - Shangkun Ou
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550025, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
2
|
Song D, Yang Q, Li X, Chen K, Tong J, Shen Y. The role of the JAK/STAT3 signaling pathway in acquired corneal diseases. Exp Eye Res 2024; 238:109748. [PMID: 38081573 DOI: 10.1016/j.exer.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Acquired corneal diseases such as dry eye disease (DED), keratitis and corneal alkali burns are significant contributors to vision impairment worldwide, and more effective and innovative therapies are urgently needed. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway plays an indispensable role in cell metabolism, inflammation and the immune response. Studies have shown that regulators of this pathway are extensively expressed in the cornea, inducing significant activation of JAK/STAT3 signaling in specific acquired corneal diseases. The activation of JAK/STAT3 signaling contributes to various pathophysiological processes in the cornea, including inflammation, neovascularization, fibrosis, and wound healing. In the context of DED, the hypertonic environment activates JAK/STAT3 signaling to stimulate corneal inflammation. Inflammation and injury progression in infectious keratitis can also be modulated by JAK/STAT3 signaling. Furthermore, JAK/STAT3 signaling is involved in every stage of corneal repair after alkali burns, including acute inflammation, angiogenesis and fibrosis. Treatments modulating JAK/STAT3 signaling have shown promising results in attenuating corneal damage, indicating its potential as a novel therapeutic target. Thus, this review emphasizes the multiple roles of the JAK/STAT3 signaling pathway in common acquired corneal disorders and summarizes the current achievements of JAK/STAT3-targeting therapy to provide new insights into future applications.
Collapse
Affiliation(s)
- Dongjie Song
- Department of Ophthalmology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Activity-Dependent Neuroprotective Protein (ADNP): An Overview of Its Role in the Eye. Int J Mol Sci 2022; 23:ijms232113654. [PMID: 36362439 PMCID: PMC9658893 DOI: 10.3390/ijms232113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Vision is one of the dominant senses in humans and eye health is essential to ensure a good quality of life. Therefore, there is an urgent necessity to identify effective therapeutic candidates to reverse the progression of different ocular pathologies. Activity-dependent neuroprotective protein (ADNP) is a protein involved in the physio-pathological processes of the eye. Noteworthy, is the small peptide derived from ADNP, known as NAP, which shows protective, antioxidant, and anti-apoptotic properties. Herein, we review the current state of knowledge concerning the role of ADNP in ocular pathologies, while providing an overview of eye anatomy.
Collapse
|
4
|
Gu S, Peng R, Xiao G, Hong J. Severe Corneal Edema Increases ECL From Grafts After DSAEK-Corneal Edema and ECL After DSAEK. Eye Contact Lens 2022; 48:250-255. [PMID: 34739409 PMCID: PMC9119398 DOI: 10.1097/icl.0000000000000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine the relationship between the preoperative degree of corneal edema in the recipient and the endothelial cell density in grafts after Descemet stripping automated endothelial keratoplasty (DSAEK). METHODS This retrospective case series enrolled 111 eyes of 107 patients who underwent DSAEK. The preoperative and postoperative central corneal thickness (CCT) was measured by anterior-segment optical coherence tomography. Eyes were divided into three groups according to the preoperative recipient CCT: group A (mild edema): 550 μm RESULTS The recipient CCT (all groups combined) was 805.99±132.70 μm preoperatively and decreased to 656.31±105.02 μm at 1 month, decreased to 626.08±81.40 μm at 6 months, and remained stable between 12 (P=0.144) and 24 months (P=0.485) postoperatively. The mean ECL was 27.34±15.43%, 33.56±17.13%, 39.18±16.71%, and 45.87±14.27% at 1, 6, 12, and 24 months, respectively. The percentage of ECL in group C was higher than that in the other 2 groups through the 24-month follow-up. The difference in ECL between groups A and C was significant at 24 months (group A: 42.45±14.47%; group C: 52.49±10.65%; P=0.019). CONCLUSIONS The degree of corneal edema in the recipient was associated with implant ECL. Compared with mild and moderate corneal edema, the severe corneal edema may cause greater ECL after DSAEK.
Collapse
Affiliation(s)
- Shaofeng Gu
- Department of Ophthalmology (S.G., R.P., G.X., J.H.), Peking University Third Hospital, Beijing, China; and Beijing Key Laboratory of Restoration of Damaged Ocular Nerve (S.G., R.P., G.X., J.H.), Peking University Third Hospital, Beijing, China.
| | - Rongmei Peng
- Department of Ophthalmology (S.G., R.P., G.X., J.H.), Peking University Third Hospital, Beijing, China; and Beijing Key Laboratory of Restoration of Damaged Ocular Nerve (S.G., R.P., G.X., J.H.), Peking University Third Hospital, Beijing, China.
| | - Gege Xiao
- Department of Ophthalmology (S.G., R.P., G.X., J.H.), Peking University Third Hospital, Beijing, China; and Beijing Key Laboratory of Restoration of Damaged Ocular Nerve (S.G., R.P., G.X., J.H.), Peking University Third Hospital, Beijing, China.
| | - Jing Hong
- Department of Ophthalmology (S.G., R.P., G.X., J.H.), Peking University Third Hospital, Beijing, China; and Beijing Key Laboratory of Restoration of Damaged Ocular Nerve (S.G., R.P., G.X., J.H.), Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Tear film and ocular surface neuropeptides: Characteristics, synthesis, signaling and implications for ocular surface and systemic diseases. Exp Eye Res 2022; 218:108973. [PMID: 35149082 DOI: 10.1016/j.exer.2022.108973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 01/13/2023]
Abstract
Ocular surface neuropeptides are vital molecules primarily involved in maintaining ocular surface integrity and homeostasis. They also serve as communication channels between the nervous system and the immune system, maintaining the homeostasis of the ocular surface. Tear film and ocular surface neuropeptides have a role in disease often due to abnormalities in their synthesis (either high or low production), signaling through defective receptors, or both. This creates imbalances in otherwise normal physiological processes. They have been observed to be altered in many ocular surface and systemic diseases including dry eye disease, ocular allergy, keratoconus, LASIK-induced dry eye, pterygium, neurotrophic keratitis, corneal graft rejection, microbial keratitis, headaches and diabetes. This review examines the characteristics of neuropeptides, their synthesis and their signaling through G-protein coupled receptors. The review also explores the types of neuropeptides within the tears and ocular surface, and how they change in ocular and systemic diseases.
Collapse
|
6
|
In Vivo Confocal Microscopy Shows Alterations in Nerve Density and Dendritiform Cell Density in Fuchs' Endothelial Corneal Dystrophy. Am J Ophthalmol 2018; 196:136-144. [PMID: 30194928 DOI: 10.1016/j.ajo.2018.08.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE To evaluate corneal nerve and immune cell alterations in Fuchs' endothelial corneal dystrophy (FECD) and pseudophakic bullous keratopathy (PBK) by laser in vivo confocal microscopy (IVCM) as correlated to corneal sensation and endothelial cell loss. DESIGN Prospective, cross-sectional, controlled study. METHODS Thirty-three eyes with FECD were compared to 13 eyes with PBK and 17 normal age-matched control eyes at a tertiary referral center. FECD was classified into early (without edema) and late stage (with edema). Corneal IVCM and esthesiometry were performed. Corneal nerve and immune dendritiform cell (DC) alterations were evaluated and correlated to clinical parameters. RESULTS FECD and PBK eyes showed significantly (P = .001) diminished total nerve length (11.5 ± 1.3 and 2.9 ± 0.7 mm/mm2) and number (8.8 ± 1.1 and 2.2 ± 0.4 n/frame), compared to controls (23.3 ± 8.1 mm/mm2 and 25.9 ± 1.3 n/frame). Decreased nerves corresponded to diminished sensation in FECD (4.9 ± 0.2 cm; R = 0.32; P = .045), compared to controls (5.9 ± 0.04 cm). Early- and late-stage FECD showed significantly reduced total nerve length (13.1 ± 1.4 and 9.9 ± 1.2 mm/mm2, respectively) and number (8.2 ± 2.5 and 6.5 ± 2.1 n/frame), compared to controls (P < .001). DC density was significantly increased in FECD (57.8 ± 10.4 cells/mm2; P = .01), but not in PBK (47.7 ± 11.6 cells/mm2; P = .60) compared to controls (22.5 ± 4.5 cells/mm2). A subset of early FECD patients (7/22) demonstrated very high DC density (>100/mm2). CONCLUSION IVCM demonstrates profound diminishment of subbasal corneal nerves in early- and late-stage FECD and in PBK, correlating to decreased sensation. Increased DC density in early FECD demonstrates potential subclinical inflammation. The data suggest that reduction in subbasal nerves and increased immune activation may play a role in the pathophysiology of FECD.
Collapse
|
7
|
Satitpitakul V, Sun Z, Suri K, Amouzegar A, Katikireddy KR, Jurkunas UV, Kheirkhah A, Dana R. Vasoactive Intestinal Peptide Promotes Corneal Allograft Survival. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2016-2024. [PMID: 30097165 DOI: 10.1016/j.ajpath.2018.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
Corneal transplantation is the most prevalent form of tissue transplantation. The success of corneal transplantation mainly relies on the integrity of corneal endothelial cells (CEnCs), which maintain graft transparency. CEnC density decreases significantly after corneal transplantation even in the absence of graft rejection. To date, different strategies have been used to enhance CEnC survival. The neuropeptide vasoactive intestinal peptide (VIP) improves CEnC integrity during donor cornea tissue storage and protects CEnCs against oxidative stress-induced apoptosis. However, little is known about the effect of exogenous administration of VIP on corneal transplant outcomes. We found that VIP significantly accelerates endothelial wound closure and suppresses interferon-γ- and tumor necrosis factor-α-induced CEnC apoptosis in vitro in a dose-dependent manner. In addition, we found that intracameral administration of VIP to mice undergoing syngeneic corneal transplantation with endothelial injury increases CEnC density and decreases graft opacity scores. Finally, using a mouse model of allogeneic corneal transplantation, we found for the first time that treatment with VIP significantly suppresses posttransplantation CEnC loss and improves corneal allograft survival.
Collapse
Affiliation(s)
- Vannarut Satitpitakul
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Zhongmou Sun
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Kunal Suri
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Kishore R Katikireddy
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ula V Jurkunas
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ahmad Kheirkhah
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Hypoxia and the Prolyl Hydroxylase Inhibitor FG-4592 Protect Corneal Endothelial Cells From Mechanical and Perioperative Surgical Stress. Cornea 2018; 37:501-507. [PMID: 29504956 DOI: 10.1097/ico.0000000000001430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine whether hypoxia preconditioning can protect corneal endothelial cells from mechanical stress and perioperative procedures mimicking Descemet stripping automated endothelial keratoplasty (DSAEK). METHODS Preconditioning was delivered by 2 hours of 0.5% oxygen incubation in a hypoxia chamber or by exposure to the prolyl hydroxylase inhibitor FG-4592, which prevents hypoxia-inducible factor-1 alpha degradation. Damage to whole corneas was produced by brief sonication. To mimic use with DSAEK, FG-4592-preconditioned and control donor corneas were dissected with a microkeratome, and the posterior donor button was pulled through a transplant insertion device (Busin glide). The area of endothelial damage was determined by trypan blue staining. RESULTS In all cases, hypoxia preconditioning or incubation with FG-4592 protected corneal endothelial cells from death by mechanical stress. Hypoxia-preconditioned human and rabbit corneas showed 19% and 29% less cell loss, respectively, relative to controls, which were both significant at P < 0.05. FG-4592 preconditioning reduced endothelial cell loss associated with preparation and insertion of DSAEK grafts by 23% relative to the control (P < 0.01). CONCLUSIONS These results support the hypothesis that preconditioning by hypoxia or exposure to FG-4592 improves corneal endothelial cell survival and may also provide protection during surgical trauma.
Collapse
|
9
|
Maugeri G, Longo A, D'Amico AG, Rasà DM, Reibaldi M, Russo A, Bonfiglio V, Avitabile T, D'Agata V. Trophic effect of PACAP on human corneal endothelium. Peptides 2018; 99:20-26. [PMID: 29126993 DOI: 10.1016/j.peptides.2017.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Cornea's posterior surface includes endothelium maintaining stromal hydration and clarity. Due to their limited proliferative capability, the loss of endothelial cells can outcome in permanent opacity. In the last years, different studies have demonstrated the protective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in different ocular diseases. However, its role on human corneal endothelial cells (HCECs) has not been investigated, yet. Here, we have developed a culture protocol to differentiate HCECs from donor's cornea. PACAP treatment prevented damage induced by growth factors deprivation of cells grown on transwell supports as revealed by TERR measurements. Moreover, this peptide significantly increased tight junction proteins expression by conferring resistance to endothelial barrier. This effect is also related to promotion of cell viability as demonstrated by MTT assay. Furthermore, PACAP stimulated repairing of corneal endothelium lesion as shown by wound healing analysis. In conclusion, our data suggest that this peptide could represent an important trophic factor in maintaining functionality of human corneal endothelium.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Agata Grazia D'Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Italy
| | - Daniela Maria Rasà
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Andrea Russo
- Eye Clinic, University of Catania, Catania, Italy
| | | | | | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
10
|
Corneal Endothelial Cell Integrity in Precut Human Donor Corneas Enhanced by Autocrine Vasoactive Intestinal Peptide. Cornea 2017; 36:476-483. [PMID: 28181929 PMCID: PMC5334175 DOI: 10.1097/ico.0000000000001136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To demonstrate that vasoactive intestinal peptide (VIP), a corneal endothelial (CE) cell autocrine factor, maintains the integrity of corneal endothelium in human donor corneoscleral explants precut for endothelial keratoplasty. METHODS Twelve paired human donor corneoscleral explants used as control versus VIP-treated explants (10 nM, 30 minutes, 37°C) were shipped (4°C) to the Lions Eye Institute for Transplantation and Research for precutting (Moria CBM-ALTK Keratome), shipped back to the laboratory, and cultured in ciliary neurotrophic factor (CNTF, 0.83 nM, 37°C, 24 hours). Trephined endothelial discs (8-8.5 mm) were analyzed for differentiation markers (N-cadherin, CNTF receptor α subunit [CNTFRα], and connexin 43) by Western blot after a quarter of the discs from 4 paired explants were cut away and stained with alizarin red S for microscopic damage analysis. Two additional paired explants (6 days in culture) were stained for panoramic view of central CE damage. RESULTS VIP treatment increased N-cadherin and CNTFRα levels (mean ± SEM) to 1.38 ± 0.11-fold (P = 0.003) and 1.46 ± 0.22-fold (P = 0.03) of paired controls, respectively, whereas CE cell CNTF responsiveness in upregulation of connexin 43 increased to 2.02 ± 0.5 (mean ± SEM)-fold of the controls (P = 0.04). CE damage decreased from (mean ± SEM) 10.0% ± 1.2% to 1.6% ± 0.3% (P < 0.0001) and 9.1% ± 1.1% to 2.4% ± 1.0% (P = 0.0006). After 6 days in culture, the damage in whole CE discs decreased from 20.0% (control) to 5.5% (VIP treated). CONCLUSIONS VIP treatment before precut enhanced the preservation of corneal endothelium.
Collapse
|
11
|
Patients With Dry Eye Disease and Low Subbasal Nerve Density Are at High Risk for Accelerated Corneal Endothelial Cell Loss. Cornea 2017; 36:196-201. [PMID: 28060067 DOI: 10.1097/ico.0000000000001057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To evaluate changes in corneal endothelial cell density over time in patients with dry eye disease (DED) and to correlate endothelial cell loss with corneal subbasal nerve density. METHODS This retrospective study included 40 eyes of 20 patients with DED. Laser in vivo confocal microscopy had been performed in the central cornea of both eyes at an initial visit and repeated after a mean follow-up of 33.2 ± 10.2 months. The densities of corneal endothelial cells and subbasal nerves were measured in both visits and compared with 13 eyes of 13 normal age-matched controls. RESULTS At the initial visit, the DED group had lower densities of corneal endothelial cells (2620 ± 386 cells/mm) and subbasal nerves (17.8 ± 7.5 mm/mm) compared with the control group (2861 ± 292 cells/mm and 22.8 ± 3.0 mm/mm, with P = 0.08 and P = 0.01, respectively). At the end of follow-up, although there was no significant change in subbasal nerve density (16.7 ± 7.2 mm/mm, P = 0.43), the mean corneal endothelial cell density significantly decreased to 2465 ± 391 cells/mm (P = 0.01), with a mean corneal endothelial cell loss of 2.1 ± 3.6% per year. The endothelial cell loss showed a statistically significant negative correlation with the initial subbasal nerve density (Rs = -0.55, P = 0.02). CONCLUSIONS Patients with DED have an accelerated corneal endothelial cell loss compared with that reported in the literature for normal aging. Those with lower subbasal nerve density, in particular, are at a higher risk for endothelial cell loss over time.
Collapse
|
12
|
Müller RT, Pourmirzaie R, Pavan-Langston D, Cavalcanti BM, Aggarwal S, Colón C, Jamali A, Cruzat A, Hamrah P. In Vivo Confocal Microscopy Demonstrates Bilateral Loss of Endothelial Cells in Unilateral Herpes Simplex Keratitis. Invest Ophthalmol Vis Sci 2015. [PMID: 26225629 DOI: 10.1167/iovs.15-16527] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To report bilateral corneal endothelial cell density (ECD), as well as its correlation with subbasal nerve changes, in patients with unilateral herpes simplex keratitis (HSK). METHODS Thirty-six eyes of 36 patients with corneal scarring caused by HSK, as well as their respective contralateral clinically unaffected eyes, were prospectively studied and compared with 26 eyes of 26 healthy volunteers. In vivo confocal microscopy and corneal sensation of the central cornea were performed bilaterally in all patients and in one random eye of controls. The ECD and subbasal corneal nerve density, including the lengths of total nerves, main trunks, and branches were evaluated and correlated to central corneal sensation. RESULTS The ECD was significantly lower in eyes affected with HSK than in controls (2304 ± 578 vs. 2940 ± 370 cells/mm(2), P < 0.0001). Surprisingly, lower ECD was also detected in contralateral clinically unaffected eyes (2548 ± 423), compared to controls (P = 0.02). Both affected and contralateral eyes showed decrease in total nerve length, compared to controls (10.0 ± 6.3 vs. 17.6 ± 6.3 vs. 21.9 ± 4.3 mm/mm2, respectively; P < 0.05 for all). The ECD correlated positively with total nerve length (r = 0.39, P = 0.0009) and with corneal sensation (r = 0.31, P = 0.009). CONCLUSIONS In vivo confocal microscopy findings demonstrated alterations in corneal ECD in both affected and clinically unaffected contralateral eyes of patients with unilateral HSK. Moreover, the positive significant correlation between the ECD and the subbasal nerve density may suggest a potential link between corneal innervation and corneal endothelial cell homeostasis.
Collapse
Affiliation(s)
- Rodrigo T Müller
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Roxanna Pourmirzaie
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Deborah Pavan-Langston
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Bernardo M Cavalcanti
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Shruti Aggarwal
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Clara Colón
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Arsia Jamali
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Andrea Cruzat
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Pedram Hamrah
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States 2Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medic
| |
Collapse
|
13
|
D'hondt C, Iyyathurai J, Himpens B, Leybaert L, Bultynck G. Cx43-hemichannel function and regulation in physiology and pathophysiology: insights from the bovine corneal endothelial cell system and beyond. Front Physiol 2014; 5:348. [PMID: 25309448 PMCID: PMC4162354 DOI: 10.3389/fphys.2014.00348] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
Intercellular communication in primary bovine corneal endothelial cells (BCECs) is mainly driven by the release of extracellular ATP through Cx43 hemichannels. Studying the characteristics of Ca2+-wave propagation in BCECs, an important form of intercellular communication, in response to physiological signaling events has led to the discovery of important insights in the functional properties and regulation of native Cx43 hemichannels. Together with ectopic expression models for Cx43 hemichannels and truncated/mutated Cx43 versions, it became very clear that loop/tail interactions play a key role in controlling the activity of Cx43 hemichannels. Interestingly, the negative regulation of Cx43 hemichannels by enhanced actin/myosin contractility seems to impinge upon loss of these loop/tail interactions essential for opening Cx43 hemichannels. Finally, these molecular insights have spurred the development of novel peptide tools that can selectively inhibit Cx43 hemichannels, but neither Cx43 gap junctions nor hemichannels formed by other Cx isoforms. These tools now set the stage to hunt for novel physiological functions for Cx43 hemichannels in primary cells and tissues and to tackle disease conditions associated with excessive, pathological Cx43-hemichannel openings.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Belgium
| | - Jegan Iyyathurai
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Belgium
| | - Bernard Himpens
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University Ghent, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Belgium
| |
Collapse
|
14
|
Zhao X, Huang Y, Wang Y, Chen P, Yu Y, Song Z. MicroRNA profile comparison of the corneal endothelia of young and old mice: implications for senescence of the corneal endothelium. Mol Vis 2013; 19:1815-25. [PMID: 23946636 PMCID: PMC3742134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To identify critical microRNAs (miRNAs) that play important roles in regulating the aging of corneal endothelial cells in mice aged 10-13 weeks and 2 years. METHODS We collected the corneal endothelia from 30 mice aged 10-13 weeks and 30 mice aged 2 years. The samples were pooled into six groups (Y1, Y2, Y3 and S1, S2, S3). Each group comprised corneal endothelia from 10 mice, and these six groups were used for a genome-wide miRNA microarray study. The expression levels of eight selected miRNAs were further validated independently by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Target genes were predicted using a computational approach due to their base-pairing rules between miRNA and messenger RNA target sites. The locations of binding sequences were within the target's 3' untranslated regions (UTR), and the conservation of target binding sequences occurred within related genomes. Additional gene ontology and signaling pathway analyses were performed using bioinformatics tools. RESULTS Twenty-seven miRNAs (7 upregulated and 20 downregulated) were found to be differentially expressed (fold change >2, p value <0.05) in the corneal endothelia of adult and old mice. The qRT-PCR results confirmed the differential expression of eight miRNAs between the corneal endothelia of adult and old mice. A computational approach demonstrated that the target genes of the differentially expressed miRNAs might be involved in several signaling pathways, including the glutamatergic synapse pathway (p=0.000313), the phosphatidylinositol signaling pathway (p=0.00197), the neurotrophin signaling pathway (p=0.00687), the transforming growth factor-beta signaling pathway (p=0.0143), and oxidative phosphorylation (p=0.0223). CONCLUSIONS Our study identified miRNAs that are differentially expressed in the corneal endothelium during aging for the first time. We also identified fluctuations in the expression of these specific miRNAs that may be related to age-specific changes. Understanding miRNA expression and interactions in tissues such as the cornea may aid in the understanding of the basic and pathophysiological processes of age-related ocular pathologies.
Collapse
|
15
|
Schrödl F, Trost A, Strohmaier C, Bogner B, Runge C, Kaser-Eichberger A, Eberhard N, Santic R, Kofler B, Reitsamer HA. Distribution of the regulatory peptide alarin in the eye of various species. Exp Eye Res 2013. [DOI: 10.1016/j.exer.2012.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Liu T, Wang Y, Duan HY, Qu ML, Yang LL, Xu YY, Zang XJ, Zhou QJ. Effects of preservation time on proliferative potential of human limbal stem/progenitor cells. Int J Ophthalmol 2012; 5:549-54. [PMID: 23166863 DOI: 10.3980/j.issn.2222-3959.2012.05.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/18/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To determine the proliferative potential and the maintenance of stem cell activity in stored human limbal tissues, and correlate this with the preservation time, cell viability and the expression of stem cell markers. METHODS Thirty limbal rims were split into 4 parts and stored in corneal preservation medium at 4°C for 0, 1, 4, or 7 days. The limbal stem cell and mitotic markers P63, CK19, proliferating cell nuclear antigen (PCNA), and Ki67 were determined by immunohistochemical staining. The proliferative potential of limbal epithelial cells was assessed by cell viability, the ability of generating stratified epithelium, and colony forming assay. RESULTS The stored tissues maintained limbal stratified structure to 7 days and exhibited comparable expression level of stem cell and mitotic markers. The proportion of viable cells decreased with the prolonged preservation time, while colony forming efficiency decreased from the 1(st) day and disappeared at the 4(th) day. When inoculated on amniotic membrane, the cells preserved for 1 day formed a stratified epithelium, while the cells from 4 days' preservation formed a discontinuous layer. CONCLUSION The colony forming efficiency of limbal epithelial stem/progenitor cells decreased rapidly with the increasing preservation time, while the expression level of markers and capacity of forming epithelial monolayer on amniotic membrane decreased gradually. The limbal epithelial stem cells lost their function earlier than the lost expression level of stem cell markers. This may help us to better choose the appropriate preservation grafts for future limbal stem cell transplantation.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | | | | | | | | | | | | | | |
Collapse
|