1
|
Wang X, Sun Y, Luan C, Yang S, Wang K, Zhang X, Hao R, Zhang W. Effect of hydrogen-rich saline on melanopsin after acute blue light-induced retinal damage in rats. Photochem Photobiol 2025; 101:106-115. [PMID: 38634423 DOI: 10.1111/php.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Excessive exposure to blue light can cause retinal damage. Hydrogen-rich saline (HRS), one of the hydrogen therapies, has been demonstrated to be effective in eye photodamage, but the effect on the expression of melanopsin in intrinsically photosensitive retinal ganglion cells (ipRGCs) is unknown. In this study, we used a rat model of light-induced retinal injury to observe the expression of melanopsin after HRS treatment and to determine the effect of HRS on retinal ganglion cell protection. Adult SD rats were exposed to blue light (48 h) and treated with HRS for 0, 3, 7, and 14 days. Real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) were performed to find the expression of genes and proteins, respectively. The function of retinal ipRGCs was measured by pattern-evoked electroretinography (pERG). The number and morphological changes of melanopsin-positive ganglion cells in the retina were observed by immunofluorescence (IF). Acute blue light exposure caused a decrease in ipRGC function, decreased expression of melanopsin protein and the melanopsin-positive RGCs, and diminished immunoreactivity in dendrites. However, over time, melanopsin showed a tendency to self-recovery, with an increase in melanopsin protein expression and the number of melanopsin-positive RGCs, with incomplete recovery of function within two weeks. HRS treatment accelerated the recovery process, with a significant increase in melanopsin expression and the number of melanopsin-positive RGCs, and an improvement in the pERG waveform within two weeks.
Collapse
Affiliation(s)
- Xiao Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Yifan Sun
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Changlin Luan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Shiqiao Yang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Kailei Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Xiaoran Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
| | - Rui Hao
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, P. R. China
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin, P. R. China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, P. R. China
| |
Collapse
|
2
|
Ling Y, Wang Y, Ye J, Luan C, Bi A, Gu Y, Shi X. Changes in Intrinsically Photosensitive Retinal Ganglion Cells, Dopaminergic Amacrine Cells, and Their Connectivity in the Retinas of Lid Suture Myopia. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 39230992 PMCID: PMC11379095 DOI: 10.1167/iovs.65.11.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Purpose This study investigates alterations in intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells (DACs) in lid suture myopia (LSM) rats. Methods LSM was induced in rats by suturing the right eyes for 4 weeks. Double immunofluorescence staining of ipRGCs and DACs in whole-mount retinas was performed to analyze changes in the density and morphology of control, LSM, and fellow eyes. Real-time quantitative PCR and Western blotting were used to detect related genes and protein expression levels. Results Significant myopia was induced in the lid-sutured eye, but the fellow eye was not different to control. Decreased ipRGC density with paradoxically increased overall melanopsin expression and enlarged dendritic beads was observed in both the LSM and fellow eyes of the LSM rat retinas. In contrast, DAC changes occurred only in the LSM eyes, with reduced DAC density and tyrosine hydroxylase (TH) expression, sparser dendritic processes, and fewer varicosities. Interestingly, contacts between ipRGCs and DACs in the inner plexiform layer (IPL) and the expression of pituitary adenylate cyclase-activating polypeptide (PACAP) and vesicular monoamine transporter protein 2 (VMAT2) mRNA were decreased in the LSM eyes. Conclusions The ipRGCs and DACs in LSM rat retinas undergo multiple alterations in density, morphology, and related molecule expressions. However, the ipRGC changes alone appear not to be required for the development of myopia, given that myopia is only induced in the lid-sutured eye, and they are unlikely alone to drive the DAC changes. Reduced contacts between ipRGCs and DACs in the LSM eyes may be the structural foundation for the impaired signaling between them. PACAP and VMAT2, strongly associated with ipRGCs and DACs, may play important roles in LSM through complex mechanisms.
Collapse
Affiliation(s)
- Ying Ling
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingjing Ye
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changlin Luan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ailing Bi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xuefeng Shi
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Yuan J, Li L, Fan Y, Xu X, Huang X, Shi J, Zhang C, Shi L, Wang Y. Effects of artificial light with different spectral compositions on refractive development and matrix metalloproteinase 2 and tissue inhibitor of metalloproteinases 2 expression in the sclerae of juvenile guinea pigs. Eur J Histochem 2024; 68:3982. [PMID: 38934084 PMCID: PMC11228571 DOI: 10.4081/ejh.2024.3982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Artificial light can affect eyeball development and increase myopia rate. Matrix metalloproteinase 2 (MMP-2) degrades the extracellular matrix, and induces its remodeling, while tissue inhibitor of matrix MMP-2 (TIMP-2) inhibits active MMP-2. The present study aimed to look into how refractive development and the expression of MMP-2 and TIMP-2 in the guinea pigs' remodeled sclerae are affected by artificial light with varying spectral compositions. Three weeks old guinea pigs were randomly assigned to groups exposed to five different types of light: natural light, LED light with a low color temperature, three full spectrum artificial lights, i.e. E light (continuous spectrum in the range of ~390-780 nm), G light (a blue peak at 450 nm and a small valley 480 nm) and F light (continuous spectrum and wavelength of 400 nm below filtered). A-scan ultrasonography was used to measure the axial lengths of their eyes, every two weeks throughout the experiment. Following twelve weeks of exposure to light, the sclerae were observed by optical and transmission electron microscopy. Immunohistochemistry, Western blot and RT-qPCR were used to detect the MMP-2 and TIMP-2 protein and mRNA expression levels in the sclerae. After four, six, eight, ten, and twelve weeks of illumination, the guinea pigs in the LED and G light groups had axial lengths that were considerably longer than the animals in the natural light group while the guinea pigs in the E and F light groups had considerably shorter axial lengths than those in the LED group. Following twelve weeks of exposure to light, the expression of the scleral MMP-2 protein and mRNA were, from low to high, N group, E group, F group, G group, LED group; however, the expression of the scleral TIMP-2 protein and mRNA were, from high to low, N group, E group, F group, G group, LED group. The comparison between groups was statistically significant (p<0.01). Continuous, peaks-free or valleys-free artificial light with full-spectrum preserves remodeling of scleral extracellular matrix in guinea pigs by downregulating MMP-2 and upregulating TIMP-2, controlling eye axis elongation, and inhibiting the onset and progression of myopia.
Collapse
Affiliation(s)
- Jianbao Yuan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing; Department of Ophthalmology, Clinical College of Yizheng People's Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Linfang Li
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Yi Fan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Xinyu Xu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Xiaoqiong Huang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Jiayu Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Chuanwei Zhang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Lixin Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| | - Yuliang Wang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu; The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu.
| |
Collapse
|
4
|
Yuan J, Wang Y, Xu X, Yang M, Fan Y, Shi X, Sun L, Shan M, Ma L. Effects of Different Light Environments with Varying Spectral Composition on the Axial Lengths and Scleral Specificity Protein 1 and Collagen Type I Expression in Juvenile Guinea Pigs. Folia Biol (Praha) 2024; 70:219-228. [PMID: 39692576 DOI: 10.14712/fb2024070040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The study aimed to investigate changes in the eye axial length in juvenile guinea pigs and the expression of scleral specificity protein 1 (Sp1) and collagen type I (Col-I) under different light environments with varying spectral composition. The animals were randomly divided into five groups: natural light (N), LED light with a low colour temperature (L), E light (E), Fulia light (F), and Gulia light (G). Axial lengths were measured every two weeks, and the expression of Sp1 and Col-I in the sclera was assessed by immunohistochemistry, Western blot and RT-qPCR. After 4, 6, 8, 10, and 12 weeks of light exposure, the L and G groups showed considerably longer axial lengths than the N group, with the L group exhibiting significantly longer axial lengths compared with the E and F groups. The protein and mRNA expression levels of Sp1 and Col-I, ranked from highest to lowest, were as follows: N, E, F, G, and L. The expression of Sp1 and Col-I was positively correlated, but both were negatively correlated with the length of the eye axis. The E group demonstrated higher Sp1 and Col-I expression than the other artificial light groups. Artificial light with a continuous, full spectrum lacking peaks and valleys can inhibit the elongation of the eye axis in juvenile guinea pigs and has a protective effect against myopia. There may be a certain relationship between Sp1 and Col-I, and the transforming growth factor-β1-Sp1-Col-I signalling pathway may play a crucial role in myopic scleral extracellular matrix remodelling.
Collapse
Affiliation(s)
- Jianbao Yuan
- Department of Ophthalmology, Clinical College of Yizheng People's Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu, China.
| | - Yuliang Wang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinyu Xu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mei Yang
- Department of Ophthalmology, Clinical College of Yizheng People's Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu, China
| | - Yipeng Fan
- Department of Ophthalmology, Clinical College of Yizheng People's Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu, China
| | - Xiaopan Shi
- Department of Ophthalmology, Clinical College of Yizheng People's Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu, China
| | - Lulu Sun
- Department of Ophthalmology, Clinical College of Yizheng People's Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu, China
| | - Mingyu Shan
- Department of Ophthalmology, Clinical College of Yizheng People's Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu, China
| | - Lei Ma
- Department of Ophthalmology, Clinical College of Yizheng People's Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Ziółkowska N, Lewczuk B, Szyryńska N, Rawicka A, Vyniarska A. Low-Intensity Blue Light Exposure Reduces Melanopsin Expression in Intrinsically Photosensitive Retinal Ganglion Cells and Damages Mitochondria in Retinal Ganglion Cells in Wistar Rats. Cells 2023; 12:cells12071014. [PMID: 37048087 PMCID: PMC10093228 DOI: 10.3390/cells12071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
This study investigated the effect of low-intensity blue light on the albino Wistar rat retina, including intrinsically photosensitive retinal ganglion cells (ipRGCs). Three groups of nine albino Wistar rats were used. One group was continuously exposed to blue light (150 lx) for 2 d (STE); one was exposed to 12 h of blue light and 12 h of darkness for 10 d (LTE); one was maintained in 12 h of white light (150 lx) and 12 h of darkness for 10 d (control). Melanopsin (Opn4) was immunolabelled on retinal whole-mounts. To count and measure Opn4-positive ipRGC somas and dendrites (including Sholl profiles), Neuron J was used. Retinal cryosections were immunolabeled for glial fibrillary acid protein (GFAP) and with terminal deoxynucleotidyl transferase dUTP nick-end labelling for apoptosis detection. LTE reduced the length of Opn4-positive ipRGC dendrites (p = 0.03) and decreased Opn4-immunoreactivity in ipRGC outer stratifying dendrites. LTE and STE decreased the complexity of dendritic arborization (Sholl profile; p < 0.001, p = 0.03, respectively), increased retinal GFAP immunoreactivity (p < 0.001, p = 0.002, respectively), and caused outer segment vesiculation and outer nuclear layer apoptosis. Ultrastructural analysis showed that LTE damaged mitochondria in retinal ganglion cells and in the inner plexiform layer. Thus, LTE to low-intensity blue light harms the retinas of albino Wistar rats.
Collapse
|
6
|
Xu X, Shi J, Zhang C, Shi L, Bai Y, Shi W, Wang Y. Effects of artificial light with different spectral composition on eye axial growth in juvenile guinea pigs. Eur J Histochem 2023; 67. [PMID: 36786079 DOI: 10.4081/ejh.2023.3634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to investigate the effect of artificial light with different spectral composition and distribution on axial growth in guinea pigs. Three-week-old guinea pigs were randomly assigned to groups exposed to natural light, low color temperature light-emitting diode (LED) light, two full spectrum artificial lights (E light and Julia light) and blue light filtered light with the same intensity. Axial lengths of guinea pigs' eyes were measured by A-scan ultrasonography prior to the experiment and every 2 weeks during the experiment. After light exposure for 12 weeks, retinal dopamine (DA), dihydroxy-phenylacetic acid (DOPAC) levels and DOPAC/DA ratio were analyzed by high-pressure liquid chromatography electrochemical detection and retinal histological structure was observed. Retinal melanopsin expression was detected using Western blot and immunohistochemistry. After exposed to different kinds of light with different spectrum for 4 weeks, the axial lengths of guinea pigs' eyes in LED group and Julia light group were significantly longer than those of natural light group. After 6 weeks, the axial lengths in LED light group were significantly longer than those of E light group and blue light filtered group. The difference between axial lengths in E light group and Julia light group showed statistical significance after 8 weeks (p<0.05). After 12 weeks of light exposure, the comparison of retinal DOPAC/DA ratio and melanopsin expression in each group was consistent with that of axial length. In guinea pigs, continuous full spectrum artificial light with no peak or valley can inhibit axial elongation via retinal dopaminergic and melanopsin system.
Collapse
Affiliation(s)
- Xinyu Xu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Jiayu Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Chuanwei Zhang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Lixin Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Yujie Bai
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Wei Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Yuliang Wang
- Department of Ophthalmology, Affiliated hospital of Nanjing University of Chinese Medicine, Nanjing.
| |
Collapse
|
7
|
Ziółkowska N, Lewczuk B. Profiles of Rho, Opn4, c-Fos, and Birc5 mRNA expression in Wistar rat retinas exposed to white or monochromatic light. Front Neuroanat 2022; 16:956000. [PMID: 36059433 PMCID: PMC9434339 DOI: 10.3389/fnana.2022.956000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Despite concern over potential retinal damage linked to exposure to light-emitting-diode (LED) light (particularly blue light), it remains unknown how exposure to low-intensity monochromatic LED light affects the expression of rhodopsin (Rho, a photopigment that mediates light-induced retinal degeneration), melanopsin (Opn4, a blue-light sensitive photopigment), c-Fos (associated with retinal damage/degeneration), and Birc5 (anti-apoptotic). This study investigated the mRNA expression profiles of these genes under exposure to white and monochromatic light (blue, red, green) in the retinas of albino rats under a cycle of 12 h of light and 12 h of darkness. In each group, 32 Wistar rats were exposed to one type of monochromatic-LED or white-fluorescent light for 7 day (150 lx). Retinal samples were taken for qPCR analysis and light and electron microscopy. Blue and green light exposure markedly decreased expression of Rho and Opn4 mRNA and increased expression of Birc5 and c-Fos mRNA (P < 0.05). In retinas from the blue-light group, loss and vesiculation of photoreceptor outer segments were visible, but not in retinas from the red-light and control group. Measurements of the photoreceptor inner and outer segments length revealed, that this length was significantly decreased in the blue- and green-light exposure groups (P < 0.02), but not in the red-light exposure group. Increased expression of Birc5 and decreased expression of Rho and Opn4 after exposure to blue and green light may be early responses that help to reduce light-induced retinal damage.
Collapse
Affiliation(s)
- Natalia Ziółkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | |
Collapse
|
8
|
Wong NA, Bahmani H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon 2022; 8:e10282. [PMID: 36042717 PMCID: PMC9420367 DOI: 10.1016/j.heliyon.2022.e10282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Light is necessary for human health and well-being. As we spend more time indoors, we are being increasingly exposed to artificial light. The development of artificial lighting has allowed us to control the brightness, colour, and timing of our light exposure. Yet, the widespread use of artificial light has raised concerns about the impact of altering our light environment on our health. The widespread adoption of personal digital devices over the past decade has exposed us to yet another source of artificial light. We spend a significant amount of time using digital devices with light-emitting screens, including smartphones and tablets, at close range. The light emitted from these devices, while appearing white, has an emission spectrum with a peak in the blue range. Blue light is often characterised as hazardous as its photon energy is higher than that of other wavelengths of visible light. Under certain conditions, visible blue light can cause harm to the retina and other ocular structures. Blue light can also influence the circadian rhythm and processes mediated by melanopsin-expressing intrinsically photosensitive retinal ganglion cells. While the blue component of sunlight is necessary for various physiological processes, whether the low-illuminance artificial blue light emitted from digital devices presents a risk to our health remains an ongoing area of debate. As technological advancements continue, it is relevant to understand how new devices may influence our well-being. This review examines the existing research on artificial blue light safety and the eye, visual performance, and circadian functions.
Collapse
Affiliation(s)
| | - Hamed Bahmani
- Dopavision GmbH, Berlin, Germany.,Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
9
|
Ziólkowska N, Chmielewska-Krzesinska M, Vyniarska A, Sienkiewicz W. Exposure to Blue Light Reduces Melanopsin Expression in Intrinsically Photoreceptive Retinal Ganglion Cells and Damages the Inner Retina in Rats. Invest Ophthalmol Vis Sci 2022; 63:26. [PMID: 35060997 PMCID: PMC8787613 DOI: 10.1167/iovs.63.1.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose The purpose of this study was to investigative the effects of blue light on intrinsically photoreceptive retinal ganglion cells (ipRGCs). Methods Brown Norway rats were used. Nine rats were continuously exposed to blue light (light emitting diodes [LEDs]: 463 nm; 1000 lx) for 2 days (acute exposure [AE]); 9 rats were exposed to 12 hours of blue light and 12 hours of darkness for 10 days (long-term exposure [LTE]); 6 control rats were exposed to 12 hours of white fluorescent light (1000 lx) and 12 hours of darkness for 10 days. Whole-mount retinas were immunolabelled with melanopsin antibodies; melanopsin-positive (MP) ipRGC somas and processes were counted and measured with Neuron J. To detect apoptosis, retinal cryo-sections were stained with terminal deoxynucleotidyl transferase dUTP nick-end labeling. Ultra-thin sections were visualized with transmission electron microscopy. Results The number of MP ipRGC somas was significantly lower in retinas from AE and LTE rats than in those from control rats (P < 0.001 and = 0.002, respectively). The mean length of MP areas of processes was significantly lower in AE rats (P < 0.001). AE rats had severe retinal damage and massive apoptosis in the outer nuclear layer; their mitochondria were damaged in the axons and dendrites of the nerve fiber layer and the inner plexiform layer. Retinal ganglion cells (RGCs) in AE rats appeared to have reduced amounts of free ribosomes and rough endoplasmic reticulum. Conclusions AE to blue light reduces melanopsin expression and damages RGCs, likely including ipRGCs. Changes in the axons and dendrites of RGCs suggest possible disruption of intraretinal and extraretinal signal transmission.
Collapse
Affiliation(s)
- Natalia Ziólkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Malgorzata Chmielewska-Krzesinska
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Alla Vyniarska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Stepan Gzhytskyi National University of Veterinary and Biotechnologies, Lviv, Ukraine
| | - Waldemar Sienkiewicz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
10
|
Kang SW. Central Nervous System Associated With Light Perception and Physiological Responses of Birds. Front Physiol 2021; 12:723454. [PMID: 34744764 PMCID: PMC8566752 DOI: 10.3389/fphys.2021.723454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental light that animal receives (i.e., photoperiod and light intensity) has recently been shown that it affects avian central nervous system for the physiological responses to the environment by up or downregulation of dopamine and serotonin activities, and this, in turn, affects the reproductive function and stress-related behavior of birds. In this study, the author speculated on the intriguing possibility that one of the proposed avian deep-brain photoreceptors (DBPs), i.e., melanopsin (Opn4), may play roles in the dual sensory-neurosecretory cells in the hypothalamus, midbrain, and brain stem for the behavior and physiological responses of birds by light. Specifically, the author has shown that the direct light perception of premammillary nucleus dopamine-melatonin (PMM DA-Mel) neurons is associated with the reproductive activation in birds. Although further research is required to establish the functional role of Opn4 in the ventral tegmental area (VTA), dorsal raphe nucleus, and caudal raphe nucleus in the light perception and physiological responses of birds, it is an exciting prospect because the previous results in birds support this hypothesis that Opn4 in the midbrain DA and serotonin neurons may play significant roles on the light-induced welfare of birds.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
11
|
Leclercq B, Hicks D, Laurent V. Photoperiod integration in C3H rd1 mice. J Pineal Res 2021; 71:e12711. [PMID: 33326640 DOI: 10.1111/jpi.12711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
In mammals, the suprachiasmatic nuclei (SCN) constitute the main circadian clock, receiving input from the retina which allows synchronization of endogenous biological rhythms with the daily light/dark cycle. Over the year, the SCN encodes photoperiodic variations through duration of melatonin secretion, with abundant nocturnal levels in winter and lower levels in summer. Thus, light information is critical to regulate seasonal reproduction in many species and is part of the central photoperiodic integration. Since intrinsically photosensitive retinal ganglion cells (ipRGCs) are vital for circadian photoentrainment and other nonvisual functions, we studied the contribution of ipRGCs in photoperiod integration in C3H retinal degeneration 1 (rd1) mice. We assessed locomotor activity and melatonin secretion in mice exposed to short or long photoperiods. Our results showed that rd1 mice are still responsive to photoperiod variations in term of locomotor activity, melatonin secretion, and regulation of the reproductive axis. In addition, retinas of animals exposed to short photoperiod exhibit higher melanopsin labeling intensity compared with the long photoperiod condition, suggesting seasonal-dependent changes within this photoreceptive system. These results show that ipRGCs in rd1 mice can still measure photoperiod and suggest a key role of melanopsin cells in photoperiod integration and the regulation of seasonal physiology.
Collapse
Affiliation(s)
- Bastien Leclercq
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| | - David Hicks
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| | - Virginie Laurent
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Hannibal J. Comparative Neurology of Circadian Photoreception: The Retinohypothalamic Tract (RHT) in Sighted and Naturally Blind Mammals. Front Neurosci 2021; 15:640113. [PMID: 34054403 PMCID: PMC8160255 DOI: 10.3389/fnins.2021.640113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
The mammalian eye contains two systems for light perception: an image detecting system constituted primarily of the classical photoreceptors, rods and cones, and a non-image forming system (NIF) constituted of a small group of intrinsically photosensitive retinal ganglion cells driven by melanopsin (mRGCs). The mRGCs receive input from the outer retina and NIF mediates light entrainment of circadian rhythms, masking behavior, light induced inhibition of nocturnal melatonin secretion, pupillary reflex (PLR), and affect the sleep/wake cycle. This review focuses on the mammalian NIF and its anatomy in the eye as well as its neuronal projection to the brain. This pathway is known as the retinohypothalamic tract (RHT). The development and functions of the NIF as well as the knowledge gained from studying gene modified mice is highlighted. Furthermore, the similarities of the NIF between sighted (nocturnal and diurnal rodent species, monkeys, humans) and naturally blind mammals (blind mole rats Spalax ehrenbergi and the Iberian mole, Talpa occidentalis) are discussed in relation to a changing world where increasing exposure to artificial light at night (ALAN) is becoming a challenge for humans and animals in the modern society.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Abstract
SIGNIFICANCE Investigation of the mechanism and the role of melanopsin in lens-induced myopia is necessary to find out potential targets in the prevention of myopia development. PURPOSE We aimed to study the effect and mechanism of retinal melanopsin on lens-induced myopia in guinea pigs, as well as the interactions between melanopsin and other myopic regulation neurotransmitters such as dopamine and melatonin, and to explore the possible role of melanopsin in the prevention of myopia development. METHODS Twenty-day-old tricolor guinea pigs were randomly divided into four groups: control group, defocus group, defocus + AA92593 group, and defocus + dimethyl sulfoxide (DMSO) group. The defocus eyes wore -6.00 D lens. In the defocus + AA92593 group, the vitreous cavities were injected with melanopsin antagonist AA92593. In the defocus + DMSO group, the vitreous cavities were injected with 5% DMSO as the administration control. The expression of retinal melanopsin protein was measured with immunofluorescence staining and Western blot. The content of dopamine and melatonin in the retina was determined by the high-performance liquid chromatography electrochemical method. RESULTS Compared with the defocus group, intravitreal injection of AA92593 resulted in increased axial length of the defocus eyes (defocus, 8.05 ± 0.09 mm; defocus + AA92593, 8.15 ± 0.11 mm; P = .008), lower refractive degree (defocus, -1.98 ± 0.82 D; defocus + AA92593, -2.59 ± 0.97 D; P = .05), decreased relative expression of retinal melanopsin protein (defocus, 0.67 ± 0.11; defocus + AA92593, 0.20 ± 0.06; P < .0001), and increased melatonin content in the defocus eyes (defocus, 0.38 ± 0.09 ng/mg; defocus + AA92593, 0.55 ± 0.13 ng/mg; P = .01), but it had no obvious effect on dopamine content (defocus, 0.64 ± 0.18 ng/mg; defocus + AA9259, 0.61 ± 0.17 ng/mg; P > .99). The melatonin content of retina in the defocus + AA92593 group was correlated with refractive error (Pearson correlation coefficient = -0.68, P = .006) and eye axis length (Pearson correlation coefficient = 0.74, P = .02). CONCLUSIONS Retinal melanopsin has inhibitory effect on lens-induced myopia development in guinea pigs, and such effect may be related to retinal melatonin.
Collapse
|
14
|
Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci 2021; 78:889-907. [PMID: 32965515 PMCID: PMC8650628 DOI: 10.1007/s00018-020-03641-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
The melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of atypical ganglion cell photoreceptor. These ipRGCs are a morphologically and physiologically heterogeneous population that project widely throughout the brain and mediate a wide array of visual functions ranging from photoentrainment of our circadian rhythms, to driving the pupillary light reflex to improve visual function, to modulating our mood, alertness, learning, sleep/wakefulness, regulation of body temperature, and even our visual perception. The presence of melanopsin as a unique molecular signature of ipRGCs has allowed for the development of a vast array of molecular and genetic tools to study ipRGC circuits. Given the emerging complexity of this system, this review will provide an overview of the genetic tools and methods used to study ipRGCs, how these tools have been used to dissect their role in a variety of visual circuits and behaviors in mice, and identify important directions for future study.
Collapse
Affiliation(s)
- Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Kubištová A, Spišská V, Petrželková L, Hrubcová L, Moravcová S, Maierová L, Bendová Z. Constant Light in Critical Postnatal Days Affects Circadian Rhythms in Locomotion and Gene Expression in the Suprachiasmatic Nucleus, Retina, and Pineal Gland Later in Life. Biomedicines 2020; 8:biomedicines8120579. [PMID: 33297440 PMCID: PMC7762254 DOI: 10.3390/biomedicines8120579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
The circadian clock regulates bodily rhythms by time cues that result from the integration of genetically encoded endogenous rhythms with external cycles, most potently with the light/dark cycle. Chronic exposure to constant light in adulthood disrupts circadian system function and can induce behavioral and physiological arrhythmicity with potential clinical consequences. Since the developing nervous system is particularly vulnerable to experiences during the critical period, we hypothesized that early-life circadian disruption would negatively impact the development of the circadian clock and its adult function. Newborn rats were subjected to a constant light of 16 lux from the day of birth through until postnatal day 20, and then they were housed in conditions of L12 h (16 lux): D12 h (darkness). The circadian period was measured by locomotor activity rhythm at postnatal day 60, and the rhythmic expressions of clock genes and tissue-specific genes were detected in the suprachiasmatic nuclei, retinas, and pineal glands at postnatal days 30 and 90. Our data show that early postnatal exposure to constant light leads to a prolonged endogenous period of locomotor activity rhythm and affects the rhythmic gene expression in all studied brain structures later in life.
Collapse
Affiliation(s)
- Aneta Kubištová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Lucie Petrželková
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Leona Hrubcová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Simona Moravcová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
- Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, 250 67 Klecany, Czech Republic; (A.K.); (V.S.); (L.P.); (L.H.); (S.M.)
| | - Lenka Maierová
- University Center for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Buštěhrad, Czech Republic;
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
- Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, 250 67 Klecany, Czech Republic; (A.K.); (V.S.); (L.P.); (L.H.); (S.M.)
- Correspondence: ; Tel.: +420-2-2195-1796
| |
Collapse
|
16
|
Meng Q, Jiang J, Hou X, Jia L, Duan X, Zhou W, Zhang Q, Cheng Z, Wang S, Xiao Q, Wei X, Hao W. Antidepressant Effect of Blue Light on Depressive Phenotype in Light-Deprived Male Rats. J Neuropathol Exp Neurol 2020; 79:1344-1353. [PMID: 33249495 DOI: 10.1093/jnen/nlaa143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blue light has been previously reported to play a salient role in the treatment of seasonal affective disorder. The present study aimed to investigate whether blue light had antidepressant effect on light-deprivation-induced depression model, and the underlying visual neural mechanism. Blue light mitigated depression-like behaviors induced by light deprivation as measured by elevated sucrose preference and reduced immobility time. Blue light enhanced melanopsin expression and light responses in the retina. We also found the upregulation of serotonin and brain derived neurotrophic factor expression in the c-fos-positive areas of rats treated with blue light compared with those maintained in darkness. The species gap between nocturnal albino (Sprague-Dawley rat) and diurnal pigmented animals (human) might have influenced extrapolating data to humans. Blue light has antidepressant effect on light-deprived Sprague-Dawley rats, which might be related to activating the serotonergic system and neurotrophic activity via the retinoraphe and retinoamygdala pathways. Blue light is the effective component of light therapy for treatment of depression.
Collapse
Affiliation(s)
- Qinghe Meng
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Jianjun Jiang
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Xiaohong Hou
- From the Department of Toxicology, School of Public Health, Peking University
| | - Lixia Jia
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Xiaoxiao Duan
- From the Department of Toxicology, School of Public Health, Peking University
| | - Wenjuan Zhou
- From the Department of Toxicology, School of Public Health, Peking University
| | - Qi Zhang
- From the Department of Toxicology, School of Public Health, Peking University
| | - Zhiyuan Cheng
- From the Department of Toxicology, School of Public Health, Peking University
| | - Siqi Wang
- From the Department of Toxicology, School of Public Health, Peking University
| | - Qianqian Xiao
- From the Department of Toxicology, School of Public Health, Peking University
| | - Xuetao Wei
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Weidong Hao
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| |
Collapse
|
17
|
Photosensitive ganglion cells: A diminutive, yet essential population. ARCHIVOS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGÍA 2020; 96:299-315. [PMID: 34092284 DOI: 10.1016/j.oftale.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Our visual system has evolved to provide us with an image of the scene that surrounds us, informing us of its texture, colour, movement, and depth with an enormous spatial and temporal resolution, and for this purpose, the image formation (IF) dedicates the vast majority of our retinal ganglion cell (RGC) population and much of our cerebral cortex. On the other hand, a minuscule proportion of RGCs, in addition to receiving information from classic cone and rod photoreceptors, express melanopsin and are intrinsically photosensitive (ipRGC). These ipRGC are dedicated to non-image-forming (NIF) visual functions, of which we are unaware, but which are essential for aspects related to our daily physiology, such as the timing of our circadian rhythms and our pupillary light reflex, among many others. Before the discovery of ipRGCs, it was thought that the IF and NIF functions were distinct compartments regulated by different RGCs, but this concept has evolved in recent years with the discovery of new types of ipRGCs that innervate subcortical IF regions, and therefore have IF visual functions. Six different types of ipRGCs are currently known. These are termed M1-M6, and differ in their morphological, functional, molecular properties, central projections, and visual behaviour responsibilities. A review is presented on the melanopsin visual system, the most active field of research in vision, for which knowledge has grown exponentially during the last two decades, when RGCs giving rise to this pathway were first discovered.
Collapse
|
18
|
Stachurska A, Sarna T. Regulation of Melanopsin Signaling: Key Interactions of the Nonvisual Photopigment. Photochem Photobiol 2018; 95:83-94. [DOI: 10.1111/php.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Stachurska
- Labolatory of Imaging and Force Spectroscopy; Malopolska Centre of Biotechnology; Jagiellonian University; Krakow Poland
| | - Tadeusz Sarna
- Department of Biophysics; Faculty of Biochemistry, Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
| |
Collapse
|
19
|
García-Ayuso D, Galindo-Romero C, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M, Villegas Pérez MP. Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina. Exp Eye Res 2017; 161:10-16. [PMID: 28552384 DOI: 10.1016/j.exer.2017.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/16/2022]
Abstract
In this work we study the effects of an acute light-induced retinal degeneration on the population of melanopsin positive retinal ganglion cells (m+RGCs) and the expression of the melanopsin protein in the retina. The m+RGCs may be more resistant than other RGCs to lesion, but the effects of an acute light exposure in this population are unknown. Albino rats were exposed to white light (3000 lux) continuously for 48 h and processed 0, 3, 7 or 30 days after light exposure (ALE). Whole-mounted retinas were immunodetected with antibodies against melanopsin, Brn3a, and rhodopsin to study the populations of m+RGC, Brn3a+RGC and rods (which are the most abundant photoreceptors in the rat retina). Three days ALE there was substantial rod loss in an arciform area of the superior retina and with time this loss expanded in the form of rings all throughout the retina. Light exposure did not affect the number of Brn3a+RGCs but diminished the numbers of m+RGCs. Immediately ALE there was a significant decrease in the mean number of immunodetected m+RGCs that was more marked in the superior retina. Later, the number of m+RGCs increased progressively and reached normal values one month ALE. Western blot analysis showed that melanopsin expression down-regulates shortly ALE and recovers thereafter, in accordance with the anatomical data. This study demonstrates that there is a transient downregulation of melanopsin expression in the RGCs during the first month ALE. Further studies would be needed to clarify the long-term effect of light exposure on the m+RGC population.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain.
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - María P Villegas Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain.
| |
Collapse
|
20
|
Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, Kiilgaard JF. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol 2017; 525:1934-1961. [PMID: 28160289 DOI: 10.1002/cne.24181] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Steffen Heegaard
- Department of Ophalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Langel JL, Smale L, Esquiva G, Hannibal J. Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus. Front Neuroanat 2015; 9:93. [PMID: 26236201 PMCID: PMC4500959 DOI: 10.3389/fnana.2015.00093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
The direct effects of photic stimuli on behavior are very different in diurnal and nocturnal species, as light stimulates an increase in activity in the former and a decrease in the latter. Studies of nocturnal mice have implicated a select population of retinal ganglion cells that are intrinsically photosensitive (ipRGCs) in mediation of these acute responses to light. ipRGCs are photosensitive due to the expression of the photopigment melanopsin; these cells use glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitters. PACAP is useful for the study of central ipRGC projections because, in the retina, it is found exclusively within melanopsin cells. Little is known about the central projections of ipRGCs in diurnal species. Here, we first characterized these cells in the retina of the diurnal Nile grass rat using immunohistochemistry (IHC). The same basic subtypes of melanopsin cells that have been described in other mammals were present, but nearly 25% of them were displaced, primarily in its superior region. PACAP was present in 87.7% of all melanopsin cells, while 97.4% of PACAP cells contained melanopsin. We then investigated central projections of ipRGCs by examining the distribution of immunoreactive PACAP fibers in intact and enucleated animals. This revealed evidence that these cells project to the suprachiasmatic nucleus, lateral geniculate nucleus (LGN), pretectum, and superior colliculus. This distribution was confirmed with injections of cholera toxin subunit β coupled with Alexa Fluor 488 in one eye and Alexa Fluor 594 in the other, combined with IHC staining of PACAP. These studies also revealed that the ventral and dorsal LGN and the caudal olivary pretectal nucleus receive less innervation from ipRGCs than that reported in nocturnal rodents. Overall, these data suggest that although ipRGCs and their projections are very similar in diurnal and nocturnal rodents, they may not be identical.
Collapse
Affiliation(s)
- Jennifer L Langel
- Neuroscience Program, Michigan State University East Lansing, MI, USA
| | - Laura Smale
- Neuroscience Program, Michigan State University East Lansing, MI, USA ; Department of Psychology, Michigan State University East Lansing, MI, USA ; Department of Zoology, Michigan State University East Lansing, MI, USA
| | - Gema Esquiva
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark ; Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
22
|
Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells. PLoS One 2015; 10:e0117967. [PMID: 25714375 PMCID: PMC4340921 DOI: 10.1371/journal.pone.0117967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 12/15/2014] [Indexed: 12/15/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions.
Collapse
|
23
|
Reifler AN, Chervenak AP, Dolikian ME, Benenati BA, Meyers BS, Demertzis ZD, Lynch AM, Li BY, Wachter RD, Abufarha FS, Dulka EA, Pack W, Zhao X, Wong KY. The rat retina has five types of ganglion-cell photoreceptors. Exp Eye Res 2015; 130:17-28. [PMID: 25450063 PMCID: PMC4276437 DOI: 10.1016/j.exer.2014.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 01/30/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are inner retinal photoreceptors that mediate non-image-forming visual functions, e.g. pupillary constriction, regulation of pineal melatonin release, and circadian photoentrainment. Five types of ipRGCs were recently discovered in mouse, but whether they exist in other mammals remained unknown. We report that the rat also has five types of ipRGCs, whose morphologies match those of mouse ipRGCs; this is the first demonstration of all five cell types in a non-mouse species. Through immunostaining and λmax measurements, we showed that melanopsin is likely the photopigment of all rat ipRGCs. The various cell types exhibited diverse spontaneous spike rates, with the M1 type spiking the least and M4 spiking the most, just like we had observed for their mouse counterparts. Also similar to mouse, all ipRGCs in rat generated not only sluggish intrinsic photoresponses but also fast, synaptically driven ones. However, we noticed two significant differences between these species. First, whereas we learned previously that all mouse ipRGCs had equally sustained synaptic light responses, rat M1 cells' synaptic photoresponses were far more transient than those of M2-M5. Since M1 cells provide all input to the circadian clock, this rat-versus-mouse discrepancy could explain the difference in photoentrainment threshold between mouse and other species. Second, rat ipRGCs' melanopsin-based spiking photoresponses could be classified into three varieties, but only two were discerned for mouse ipRGCs. This correlation of spiking photoresponses with cell types will help researchers classify ipRGCs in multielectrode-array (MEA) spike recordings.
Collapse
Affiliation(s)
- Aaron N Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew P Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael E Dolikian
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Brian A Benenati
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Benjamin S Meyers
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Zachary D Demertzis
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew M Lynch
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Benjamin Y Li
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Rebecca D Wachter
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Fady S Abufarha
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Eden A Dulka
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Weston Pack
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xiwu Zhao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
24
|
Valiente-Soriano FJ, García-Ayuso D, Ortín-Martínez A, Jiménez-López M, Galindo-Romero C, Villegas-Pérez MP, Agudo-Barriuso M, Vugler AA, Vidal-Sanz M. Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina. Front Neuroanat 2014; 8:131. [PMID: 25477787 PMCID: PMC4238377 DOI: 10.3389/fnana.2014.00131] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/28/2014] [Indexed: 01/17/2023] Open
Abstract
Here we have studied the population of intrinsically photosensitive retinal ganglion cells (ipRGCs) in adult pigmented and albino mice. Our data show that although pigmented (C57Bl/6) and albino (Swiss) mice have a similar total number of ipRGCs, their distribution is slightly different: while in pigmented mice ipRGCs are more abundant in the temporal retina, in albinos the ipRGCs are more abundant in superior retina. In both strains, ipRGCs are located in the retinal periphery, in the areas of lower Brn3a+RGC density. Both strains also contain displaced ipRGCs (d-ipRGCs) in the inner nuclear layer (INL) that account for 14% of total ipRGCs in pigmented mice and 5% in albinos. Tracing from both superior colliculli shows that 98% (pigmented) and 97% (albino) of the total ipRGCs, become retrogradely labeled, while double immunodetection of melanopsin and Brn3a confirms that few ipRGCs express this transcription factor in mice. Rather surprisingly, application of a retrograde tracer to the optic nerve (ON) labels all ipRGCs, except for a sub-population of the d-ipRGCs (14% in pigmented and 28% in albino, respectively) and melanopsin positive cells residing in the ciliary marginal zone (CMZ) of the retina. In the CMZ, between 20% (pigmented) and 24% (albino) of the melanopsin positive cells are unlabeled by the tracer and we suggest that this may be because they fail to send an axon into the ON. As such, this study provides the first evidence for a population of melanopsin interneurons in the mammalian retina.
Collapse
Affiliation(s)
- Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Maria Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| | - Anthony A Vugler
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology London, UK
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Campus de Espinardo, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria-Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-ARRIXACA) Murcia, Spain
| |
Collapse
|
25
|
Moraes MNDCM, Lima LHRGD, Ramos BCR, Poletini MDO, Castrucci AMDL. Endothelin modulates the circadian expression of non-visual opsins. Gen Comp Endocrinol 2014; 205:279-86. [PMID: 24816266 DOI: 10.1016/j.ygcen.2014.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 01/07/2023]
Abstract
The non-visual opsin, melanopsin, expressed in the mammalian retina, is considered a circadian photopigment because it is responsible to entrain the endogenous biological clock. This photopigment is also present in the melanophores of Xenopus laevis, where it was first described, but its role in these cells is not fully understood. X. laevis melanophores respond to light with melanin granule dispersion, the maximal response being achieved at the wavelength of melanopsin maximal excitation. Pigment dispersion can also be triggered by endothelin-3 (ET-3). Here we show that melanin translocation is greater when a blue light pulse was applied in the presence of ET-3. In addition, we demonstrated that mRNA levels of the melanopsins Opn4x and Opn4m exhibit temporal variation in melanophores under light/dark (LD) cycles or constant darkness, suggesting that this variation is clock-driven. Moreover, under LD cycles the oscillations of both melanopsins show a circadian profile suggesting a role for these opsins in the photoentrainment mechanism. Blue-light pulse decreased Opn4x expression, but had no effect on Opn4m. ET-3 abolishes the circadian rhythm of expression of both opsins; in addition the hormone increases Opn4x expression in a dose-, circadian time- and light-dependent way. ET-3 also increases the expression of its own receptor, in a dose-dependent manner. The variation of melanopsin levels may represent an adaptive mechanism to ensure greater melanophore sensitivity in response to environmental light conditions with ideal magnitude in terms of melanin granule dispersion, and consequently color change.
Collapse
Affiliation(s)
| | | | | | - Maristela de Oliveira Poletini
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
26
|
Georg B, Rask L, Hannibal J, Fahrenkrug J. The Light-InducedFOSResponse in Melanopsin Expressing HEK-293 Cells is Correlated with Melanopsin Quantity and Dependent on Light Duration and Irradiance. Photochem Photobiol 2014; 90:1069-76. [DOI: 10.1111/php.12298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/29/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Birgitte Georg
- Department of Clinical Biochemistry; Faculty of Health Sciences; Bispebjerg Hospital; University of Copenhagen; Copenhagen NV Denmark
| | - Lene Rask
- Department of Clinical Biochemistry; Faculty of Health Sciences; Bispebjerg Hospital; University of Copenhagen; Copenhagen NV Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry; Faculty of Health Sciences; Bispebjerg Hospital; University of Copenhagen; Copenhagen NV Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry; Faculty of Health Sciences; Bispebjerg Hospital; University of Copenhagen; Copenhagen NV Denmark
| |
Collapse
|
27
|
Photic stimulation of the suprachiasmatic nucleus via the non-visual optic system. A gene expression study in the blind Crx −/− mouse. Cell Tissue Res 2014; 358:239-48. [DOI: 10.1007/s00441-014-1910-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/23/2014] [Indexed: 12/23/2022]
|
28
|
Ramsey DJ, Ramsey KM, Vavvas DG. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system. Semin Ophthalmol 2013; 28:406-421. [PMID: 24010846 DOI: 10.3109/08820538.2013.825294] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Daily changes in the light-dark cycle are the principal environmental signal that enables organisms to synchronize their internal biology with the 24-hour day-night cycle. In humans, the visual system is integral to photoentrainment and is primarily driven by a specialized class of intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin (OPN4) in the inner retina. These cells project through the retinohypothalamic tract (RHT) to the suprachiasmatic nuclei (SCN) of the hypothalamus, which serves as the body's master biological clock. At the same time, the retina itself possesses intrinsic circadian oscillations, exemplified by diurnal fluctuations in visual sensitivity, neurotransmitter levels, and outer segment turnover rates. Recently, it has been noted that both central and peripheral oscillators share a molecular clock consisting of an endogenous, circadian-driven, transcription-translation feedback loop that cycles with a periodicity of approximately 24 hours. This review will cover the role that melanopsin and ipRGCs play in the circadian organization of the visual system.
Collapse
Affiliation(s)
- David J Ramsey
- Retina Service, Harvard Medical School, Massachusetts Eye and Ear Infirmary and Mass General Hospital , Boston, Massachusetts , USA
| | | | | |
Collapse
|