1
|
Moyo MTG, Adali T, Tulay P. Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review. Regen Ther 2024; 26:235-250. [PMID: 38966602 PMCID: PMC11222715 DOI: 10.1016/j.reth.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Near East University, Faculty of Engineering, Department of Biomedical Engineering, P.O. Box: 99138, Nicosia, Cyprus, Mersin 10, Turkey
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Terin Adali
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus, Mersin 10, Turkey
- Near East University, DESAM Research Institute, Nicosia, Cyprus, Mersin 10, Turkey
| |
Collapse
|
2
|
Gopalarethinam J, Nair AP, Iyer M, Vellingiri B, Subramaniam MD. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem 2023; 125:152041. [PMID: 37167794 DOI: 10.1016/j.acthis.2023.152041] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023]
Abstract
A stem cell is a particular group of cells that has the extraordinary potential to convert within the body into particular cell types. They are used to regenerate tissues and cells in the body that have been damaged or destroyed by the disease. Stem cells come in three different varieties: adult stem cells, embryonic stem cells and induced pluripotent stem cells (iPSCs). Embryonic stem cells have a high chance of immune rejection and also have ethical dilemmas and iPSCs have genetic instability. Adult stem cells are difficult to analyze and extract for research since they are frequently insufficient in native tissues. However, mesenchymal stem cells (MSC) one of the categories of adult stem cells are stromal cells with a variety of potentials that can differentiate into a wide range of cell types. MSCs can be transplanted into a variety of people without worrying about rejection because they have demonstrated the ability to prevent an adverse reaction from the immune system. These transplants have powerful anti-inflammatory and immunosuppressive effects and greatly enhance the body's inherent healing capacity. While MSCs do not offer treatment for illnesses, the idea behind them is to enable the body to recover sufficiently for a protracted reduction in symptoms. In many cases, this is sufficient to significantly enhance the patient's well-being. Inspite of several advantages some potential long-term concerns connected to MSC therapy are maldifferentiation, immunosuppression and cancerous tumor growth. In this review, we will compare the mesenchymal stem cells with other stem cells with respect to the source of origin, their properties and therapeutic applications, and discuss the MSC's disadvantages.
Collapse
Affiliation(s)
- Janani Gopalarethinam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Aswathy P Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
| |
Collapse
|
3
|
Rohiwal SS, Ellederová Z, Ardan T, Klima J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines 2021; 9:biomedicines9081005. [PMID: 34440209 PMCID: PMC8393745 DOI: 10.3390/biomedicines9081005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The review intends to overview a wide range of nanostructured natural, synthetic and biological membrane implants for tissue engineering to help in retinal degenerative diseases. Herein, we discuss the transplantation strategies and the new development of material in combination with cells such as induced pluripotent stem cells (iPSC), mature retinal cells, adult stem cells, retinal progenitors, fetal retinal cells, or retinal pigment epithelial (RPE) sheets, etc. to be delivered into the subretinal space. Retinitis pigmentosa and age-related macular degeneration (AMD) are the most common retinal diseases resulting in vision impairment or blindness by permanent loss in photoreceptor cells. Currently, there are no therapies that can repair permanent vision loss, and the available treatments can only delay the advancement of retinal degeneration. The delivery of cell-based nanostructure scaffolds has been presented to enrich cell survival and direct cell differentiation in a range of retinal degenerative models. In this review, we sum up the research findings on different types of nanostructure scaffolds/substrate or material-based implants, with or without cells, used to deliver into the subretinal space for retinal diseases. Though, clinical and pre-clinical trials are still needed for these transplants to be used as a clinical treatment method for retinal degeneration.
Collapse
|
4
|
Liu X, Chen F, Chen Y, Lu H, Lu X, Peng X, Kaplan HJ, Dean DC, Gao L, Liu Y. Paracrine effects of intraocularly implanted cells on degenerating retinas in mice. Stem Cell Res Ther 2020; 11:142. [PMID: 32234075 PMCID: PMC7326149 DOI: 10.1186/s13287-020-01651-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Retinal degeneration is a leading cause of blindness in the world; its etiology is complex and involves genetic defects and stress-associated aging. In addition to gene therapies for known genetically defective retinal degeneration, cellular therapies have been widely explored for restoring vision in both preclinical animal models and clinical trials. Stem cells of distinct tissue sources and their derived lineages have been tested for treating retinal degeneration; most of them were reported to be effective to some extent in restoring/improving deteriorated vision. Whether this visual improvement is due to a functional integration of grafted cells to substitute for lost retinal neurons in recipients or due to their neuroprotective and neurotrophic effects to retain recipient functional neurons, or both, is still under debate. METHODS We compared the results of subretinal transplantation of various somatic cell types, such as stem cells and differentiated cells, into RhoP23H/+ mice, a retinal degeneration model for human retinitis pigmentosa (RP) by evaluating their optokinetic response (OKR) and retinal histology. We identified some paracrine factors in the media that cultured cells secreted by western blotting (WB) and functionally evaluated the vascular endothelial growth factor Vegfa for its potential neurotrophic and neuroprotective effects on the neuroretina of model animals by intravitreal injection of VEGF antibody. RESULTS We found that live cells, regardless of whether they were stem cells or differentiated cell types, had a positive effect on improving degenerating retinas after subretinal transplantation; the efficacy depended on their survival duration in the host tissue. A few paracrine factors were identified in cell culture media; Vegfa was the most relevant neurotrophic and neuroprotective factor identified by our experiments to extend neuron survival duration in vivo. CONCLUSIONS Cellular therapy-produced benefits for remediating retinal degeneration are mostly, if not completely, due to a paracrine effect of implanted cells on the remaining host retinal neurons.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenghua Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha, China
| | - Huayi Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Xiaoyan Peng
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
- James Graham Brown Cancer Center, Louisville, USA.
- Birth Defects Center, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Ling Gao
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, China.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
- James Graham Brown Cancer Center, Louisville, USA.
- Birth Defects Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
5
|
Huang W, Wang C, Xie L, Wang X, Zhang L, Chen C, Jiang B. Traditional two-dimensional mesenchymal stem cells (MSCs) are better than spheroid MSCs on promoting retinal ganglion cells survival and axon regeneration. Exp Eye Res 2019; 185:107699. [DOI: 10.1016/j.exer.2019.107699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
|
6
|
An optimized protocol for generating labeled and transplantable photoreceptor precursors from human embryonic stem cells. Exp Eye Res 2019; 180:29-38. [DOI: 10.1016/j.exer.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023]
|
7
|
Pluripotent Stem Cells as Models of Retina Development. Mol Neurobiol 2019; 56:6056-6070. [DOI: 10.1007/s12035-019-1504-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
|
8
|
Yanai A, McNab P, Gregory-Evans K. Retinal therapy with induced pluripotent stem cells; leading the way to human clinical trials. EXPERT REVIEW OF OPHTHALMOLOGY 2019. [DOI: 10.1080/17469899.2019.1568872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anat Yanai
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pia McNab
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
EPIRETINAL MEMBRANE FORMATION AFTER INTRAVITREAL AUTOLOGOUS STEM CELL IMPLANTATION IN A RETINITIS PIGMENTOSA PATIENT. Retin Cases Brief Rep 2018; 11:227-231. [PMID: 27171917 DOI: 10.1097/icb.0000000000000327] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
METHODS A retrospective case report of a retinitis pigmentosa patient who underwent vitrectomy for epiretinal membrane after intravitreal autologous stem cell implantation. RESULTS A 71-year-old female RP patient came to our clinic for ophthalmic evaluation after intravitreal autologous stem cell injection. Four months ago, she underwent intravitreal autologous stem cell injection for both eyes at another hospital. New thick epiretinal membrane (ERM) with extensive macular pucker was found on her left eye. She underwent pars plana vitrectomy and membranectomy. After biopsy, many CD34-positive stem cells were detected in ERM specimen. CONCLUSION This is the first report of ERM formation following intravitreal autologous stem cells injection. CD34-positive stem cells were detected in a human eye at 4 months after injection. Further studies are needed to determine how stem cells caused ERM and how long they would stay in the eye.
Collapse
|
10
|
Johnson MB, March AR, Morsut L. Engineering multicellular systems: using synthetic biology to control tissue self-organization. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:163-173. [PMID: 29308442 DOI: 10.1016/j.cobme.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marion B Johnson
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine University of Southern California Keck School of Medicine 1425 San Pablo Avenue, BCC-507, Los Angeles, 90033, USA
| | - Alexander R March
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine University of Southern California Keck School of Medicine 1425 San Pablo Avenue, BCC-507, Los Angeles, 90033, USA
| | - Leonardo Morsut
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine University of Southern California Keck School of Medicine 1425 San Pablo Avenue, BCC-507, Los Angeles, 90033, USA
| |
Collapse
|
11
|
Steinfeld J, Steinfeld I, Bausch A, Coronato N, Hampel ML, Depner H, Layer PG, Vogel-Höpker A. BMP-induced reprogramming of the neural retina into retinal pigment epithelium requires Wnt signalling. Biol Open 2017; 6:979-992. [PMID: 28546339 PMCID: PMC5550904 DOI: 10.1242/bio.018739] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/21/2017] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, the retinal pigment epithelium (RPE) and photoreceptors of the neural retina (NR) comprise a functional unit required for vision. During vertebrate eye development, a conversion of the RPE into NR can be induced by growth factors in vivo at optic cup stages, but the reverse process, the conversion of NR tissue into RPE, has not been reported. Here, we show that bone morphogenetic protein (BMP) signalling can reprogram the NR into RPE at optic cup stages in chick. Shortly after BMP application, expression of Microphthalmia-associated transcription factor (Mitf) is induced in the NR and selective cell death on the basal side of the NR induces an RPE-like morphology. The newly induced RPE differentiates and expresses Melanosomalmatrix protein 115 (Mmp115) and RPE65. BMP-induced Wnt2b expression is observed in regions of the NR that become pigmented. Loss of function studies show that conversion of the NR into RPE requires both BMP and Wnt signalling. Simultaneous to the appearance of ectopic RPE tissue, BMP application reprogrammed the proximal RPE into multi-layered retinal tissue. The newly induced NR expresses visual segment homeobox-containing gene (Vsx2), and the ganglion and photoreceptor cell markers Brn3α and Visinin are detected. Our results show that high BMP concentrations are required to induce the conversion of NR into RPE, while low BMP concentrations can still induce transdifferentiation of the RPE into NR. This knowledge may contribute to the development of efficient standardized protocols for RPE and NR generation for cell replacement therapies.
Collapse
Affiliation(s)
- Jörg Steinfeld
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Ichie Steinfeld
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Alexander Bausch
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Nicola Coronato
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Meggi-Lee Hampel
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Heike Depner
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Paul G Layer
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Astrid Vogel-Höpker
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| |
Collapse
|
12
|
Caicedo A, Aponte PM, Cabrera F, Hidalgo C, Khoury M. Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications. Stem Cells Int 2017; 2017:7610414. [PMID: 28751917 PMCID: PMC5511681 DOI: 10.1155/2017/7610414] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
The objective of this review is to outline existing artificial mitochondria transfer techniques and to describe the future steps necessary to develop new therapeutic applications in medicine. Inspired by the symbiotic origin of mitochondria and by the cell's capacity to transfer these organelles to damaged neighbors, many researchers have developed procedures to artificially transfer mitochondria from one cell to another. The techniques currently in use today range from simple coincubations of isolated mitochondria and recipient cells to the use of physical approaches to induce integration. These methods mimic natural mitochondria transfer. In order to use mitochondrial transfer in medicine, we must answer key questions about how to replicate aspects of natural transport processes to improve current artificial transfer methods. Another priority is to determine the optimum quantity and cell/tissue source of the mitochondria in order to induce cell reprogramming or tissue repair, in both in vitro and in vivo applications. Additionally, it is important that the field explores how artificial mitochondria transfer techniques can be used to treat different diseases and how to navigate the ethical issues in such procedures. Without a doubt, mitochondria are more than mere cell power plants, as we continue to discover their potential to be used in medicine.
Collapse
Affiliation(s)
- Andrés Caicedo
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Pedro M. Aponte
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
| | - Francisco Cabrera
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, 2 Montpellier University, Montpellier, France
| | - Carmen Hidalgo
- Mito-Act Research Consortium, Quito, Ecuador
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Maroun Khoury
- Mito-Act Research Consortium, Quito, Ecuador
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
| |
Collapse
|
13
|
Manthey AL, Liu W, Jiang ZX, Lee MHK, Ji J, So KF, Lai JSM, Lee VWH, Chiu K. Using Electrical Stimulation to Enhance the Efficacy of Cell Transplantation Therapies for Neurodegenerative Retinal Diseases: Concepts, Challenges, and Future Perspectives. Cell Transplant 2017; 26:949-965. [PMID: 28155808 DOI: 10.3727/096368917x694877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disease or trauma-induced loss or dysfunction of neurons in any central nervous system (CNS) tissue will have a significant impact on the health of the affected patient. The retina is a multilayered tissue that originates from the neuroectoderm, much like the brain and spinal cord. While sight is not required for life, neurodegeneration-related loss of vision not only affects the quality of life for the patient but also has societal implications in terms of health care expenditure. Thus, it is essential to develop effective strategies to repair the retina and prevent disease symptoms. To address this need, multiple techniques have been investigated for their efficacy in treating retinal degeneration. Recent advances in cell transplantation (CT) techniques in preclinical, animal, and in vitro culture studies, including further evaluation of endogenous retinal stem cells and the differentiation of exogenous adult stem cells into various retinal cell types, suggest that this may be the most appropriate option to replace lost retinal neurons. Unfortunately, the various limitations of CT, such as immune rejection or aberrant cell behavior, have largely prevented this technique from becoming a widely used clinical treatment option. In parallel with the advances in CT methodology, the use of electrical stimulation (ES) to treat retinal degeneration has also been recently evaluated with promising results. In this review, we propose that ES could be used to enhance CT therapy, whereby electrical impulses can be applied to the retina to control both native and transplanted stem cell behavior/survival in order to circumvent the limitations associated with retinal CT. To highlight the benefits of this dual treatment, we have briefly outlined the recent developments and limitations of CT with regard to its use in the ocular environment, followed by a brief description of retinal ES, as well as described their combined use in other CNS tissues.
Collapse
|
14
|
Neves J, Zhu J, Sousa-Victor P, Konjikusic M, Riley R, Chew S, Qi Y, Jasper H, Lamba DA. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 2016; 353:aaf3646. [PMID: 27365452 PMCID: PMC5270511 DOI: 10.1126/science.aaf3646] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
Regenerative therapies are limited by unfavorable environments in aging and diseased tissues. A promising strategy to improve success is to balance inflammatory and anti-inflammatory signals and enhance endogenous tissue repair mechanisms. Here, we identified a conserved immune modulatory mechanism that governs the interaction between damaged retinal cells and immune cells to promote tissue repair. In damaged retina of flies and mice, platelet-derived growth factor (PDGF)-like signaling induced mesencephalic astrocyte-derived neurotrophic factor (MANF) in innate immune cells. MANF promoted alternative activation of innate immune cells, enhanced neuroprotection and tissue repair, and improved the success of photoreceptor replacement therapies. Thus, immune modulation is required during tissue repair and regeneration. This approach may improve the efficacy of stem-cell-based regenerative therapies.
Collapse
Affiliation(s)
- Joana Neves
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Jie Zhu
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Pedro Sousa-Victor
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Mia Konjikusic
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Rebeccah Riley
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Shereen Chew
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Yanyan Qi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| | - Deepak A Lamba
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| |
Collapse
|
15
|
Activation of proHGF by St14 induces mouse embryonic stem cell differentiation. Protein Cell 2016; 7:601-5. [PMID: 27316827 PMCID: PMC4980328 DOI: 10.1007/s13238-016-0282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Krishnamoorthy V, Cherukuri P, Poria D, Goel M, Dagar S, Dhingra NK. Retinal Remodeling: Concerns, Emerging Remedies and Future Prospects. Front Cell Neurosci 2016; 10:38. [PMID: 26924962 PMCID: PMC4756099 DOI: 10.3389/fncel.2016.00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Deafferentation results not only in sensory loss, but also in a variety of alterations in the postsynaptic circuitry. These alterations may have detrimental impact on potential treatment strategies. Progressive loss of photoreceptors in retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration, leads to several changes in the remnant retinal circuitry. Müller glial cells undergo hypertrophy and form a glial seal. The second- and third-order retinal neurons undergo morphological, biochemical and physiological alterations. A result of these alterations is that retinal ganglion cells (RGCs), the output neurons of the retina, become hyperactive and exhibit spontaneous, oscillatory bursts of spikes. This aberrant electrical activity degrades the signal-to-noise ratio in RGC responses, and thus the quality of information they transmit to the brain. These changes in the remnant retina, collectively termed “retinal remodeling”, pose challenges for genetic, cellular and bionic approaches to restore vision. It is therefore crucial to understand the nature of retinal remodeling, how it affects the ability of remnant retina to respond to novel therapeutic strategies, and how to ameliorate its effects. In this article, we discuss these topics, and suggest that the pathological state of the retinal output following photoreceptor loss is reversible, and therefore, amenable to restorative strategies.
Collapse
Affiliation(s)
| | - Pitchaiah Cherukuri
- Developmental Neurobiology Laboratory, European Neuroscience Institute Göttingen Göttingen, Germany
| | - Deepak Poria
- National Brain Research Centre Manesar, Haryana, India
| | - Manvi Goel
- National Brain Research Centre Manesar, Haryana, India
| | - Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Heinrich-Heine University Düsseldorf, Germany
| | | |
Collapse
|
17
|
Popelka Š, Studenovská H, Abelová L, Ardan T, Studený P, Straňák Z, Klíma J, Dvořánková B, Kotek J, Hodan J, Rypáček F. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed Mater 2015; 10:045022. [DOI: 10.1088/1748-6041/10/4/045022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Sohn EH, Jiao C, Kaalberg E, Cranston C, Mullins RF, Stone EM, Tucker BA. Allogenic iPSC-derived RPE cell transplants induce immune response in pigs: a pilot study. Sci Rep 2015; 5:11791. [PMID: 26138532 PMCID: PMC4490339 DOI: 10.1038/srep11791] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cell strategies focused on replacement of RPE cells for the treatment of geographic atrophy are under intense investigation. Although the eye has long been considered immune privileged, there is limited information about the immune response to transplanted cells in the subretinal space of large animals. The purpose of this study was to evaluate the survival of allogenic induced pluripotent stem cell-derived RPE cells (iPSC-RPE) delivered to the subretinal space of the pig as well as determine whether these cells induce an immune response in non-diseased eyes. GFP positive iPSC-RPE, generated from outbred domestic swine, were injected into the subretinal space of vitrectomized miniature swine. Control eyes received vehicle only. GFP positive iPSC-RPE cells were identified in the subretinal space 3 weeks after injection in 5 of 6 eyes. Accompanying GFP-negative cells positive for IgG, CD45 and macrophage markers were also identified in close proximity to the injected iPSC-RPE cells. All subretinal cells were negative for GFAP as well as cell cycle markers. We found that subretinal injection of allogenic iPSC-RPE cells into wild-type mini-pigs can induce the innate immune response. These findings suggest that immunologically matched or autologous donor cells should be considered for clinical RPE cell replacement.
Collapse
Affiliation(s)
- Elliott H Sohn
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Chunhua Jiao
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Emily Kaalberg
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Cathryn Cranston
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Robert F Mullins
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Edwin M Stone
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Budd A Tucker
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA
| |
Collapse
|
19
|
Leach LL, Clegg DO. Concise Review: Making Stem Cells Retinal: Methods for Deriving Retinal Pigment Epithelium and Implications for Patients With Ocular Disease. Stem Cells 2015; 33:2363-73. [DOI: 10.1002/stem.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Lyndsay L. Leach
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular; Cellular and Developmental Biology, University of California; Santa Barbara California USA
| | - Dennis O. Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular; Cellular and Developmental Biology, University of California; Santa Barbara California USA
| |
Collapse
|
20
|
Shi J, Ren C, Liu H, Wang L, Zhu B, Huang W, Liu W, Liu J, Liu Y, Xia X, Xu R, Jiang X. An ESRG-interacting protein, COXII, is involved in pro-apoptosis of human embryonic stem cells. Biochem Biophys Res Commun 2015; 460:130-5. [PMID: 25748575 DOI: 10.1016/j.bbrc.2015.02.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 02/22/2015] [Indexed: 12/14/2022]
Abstract
Human embryonic stem cells(hESC) posses very promising application perspective in clinical transplant therapies for their characteristics of self-renewal and pluripotency. So efforts focusing on the mechanisms of the two characteristics are extremely important. ESRG, first identified by our group, is a candidate stemness gene of hESC for its much higher expression level in hESC comparing to that in 7-day embryoid bodies(EBs). Here, the proteins interacted with ESRG and its functions in hESC were explored. Yeast two-hybrid (Y2H) screening system was adopted to explore the interacting proteins of ESRG. Then Co-IP was performed to confirm the interactions between candidate proteins and ESRG. At last, the functions of validated interacting protein were explored by RNA interference(RNAi) and Western blot(WB). There were no autonomous activation and toxicity in the Y2H system, which verified its availability. Four candidate proteins, AAMP, DDT, GNB2L1 and COXII, were discovered, and the interaction between ESRG and COXII was ultimately confirmed. The expression of COXII in hESC was suppressed by siRNA, and the inhibited mitochondrial apoptosis was observed in hESC with downregulated COXII expression. Our work first validated the interaction between ESRG and COXII, and demonstrated that COXII serves as a pro-apoptotic protein in hESC. The results implied that ESRG may play an important role in regulating the apoptosis of hESC by interacting with COXII, and thus contribute a lot to the maintenance of hESC characteristics.
Collapse
Affiliation(s)
- Jia Shi
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China.
| | - Hui Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Lei Wang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Bin Zhu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Wei Huang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Weidong Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Jie Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Yanyu Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Xiaomeng Xia
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Rong Xu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.
| |
Collapse
|
21
|
Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res 2015; 14:243-57. [PMID: 25752437 PMCID: PMC4434205 DOI: 10.1016/j.scr.2015.02.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/16/2022] Open
Abstract
Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment.
Collapse
Affiliation(s)
- Ben Mead
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK; School of Dentistry, University of Birmingham, B4 6NN, UK.
| | - Martin Berry
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Robert A H Scott
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Wendy Leadbeater
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, B15 2TT, UK
| | - Ben A Scheven
- School of Dentistry, University of Birmingham, B4 6NN, UK
| |
Collapse
|
22
|
Chapter 4 - Restoring Vision to the Blind: Stem Cells and Transplantation. Transl Vis Sci Technol 2015; 3:6. [PMID: 25653890 DOI: 10.1167/tvst.3.7.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
|
23
|
Garcia JM, Mendonça L, Brant R, Abud M, Regatieri C, Diniz B. Stem cell therapy for retinal diseases. World J Stem Cells 2015; 7:160-4. [PMID: 25621115 PMCID: PMC4300926 DOI: 10.4252/wjsc.v7.i1.160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/26/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt's dystrophy, and patients with geographic atrophy, providing good outcomes. This study's intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients' vision, and, finally, approaching future directions and challenges for the treatment of several conditions.
Collapse
Affiliation(s)
- José Mauricio Garcia
- José Mauricio Garcia, Luisa Mendonça, Murilo Abud, Bruno Diniz, Department of Ophthalmology, Universidade Federal de Goiás, Goiânia 74001-970, Brazil
| | - Luisa Mendonça
- José Mauricio Garcia, Luisa Mendonça, Murilo Abud, Bruno Diniz, Department of Ophthalmology, Universidade Federal de Goiás, Goiânia 74001-970, Brazil
| | - Rodrigo Brant
- José Mauricio Garcia, Luisa Mendonça, Murilo Abud, Bruno Diniz, Department of Ophthalmology, Universidade Federal de Goiás, Goiânia 74001-970, Brazil
| | - Murilo Abud
- José Mauricio Garcia, Luisa Mendonça, Murilo Abud, Bruno Diniz, Department of Ophthalmology, Universidade Federal de Goiás, Goiânia 74001-970, Brazil
| | - Caio Regatieri
- José Mauricio Garcia, Luisa Mendonça, Murilo Abud, Bruno Diniz, Department of Ophthalmology, Universidade Federal de Goiás, Goiânia 74001-970, Brazil
| | - Bruno Diniz
- José Mauricio Garcia, Luisa Mendonça, Murilo Abud, Bruno Diniz, Department of Ophthalmology, Universidade Federal de Goiás, Goiânia 74001-970, Brazil
| |
Collapse
|
24
|
Generation of eye field/optic vesicle-like structures from human embryonic stem cells under two-dimensional and chemically defined conditions. In Vitro Cell Dev Biol Anim 2014; 51:310-8. [DOI: 10.1007/s11626-014-9835-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
25
|
D'Orazi FD, Suzuki SC, Wong RO. Neuronal remodeling in retinal circuit assembly, disassembly, and reassembly. Trends Neurosci 2014; 37:594-603. [PMID: 25156327 DOI: 10.1016/j.tins.2014.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/03/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
Developing neuronal circuits often undergo a period of refinement to eliminate aberrant synaptic connections. Inappropriate connections can also form among surviving neurons during neuronal degeneration. The laminar organization of the vertebrate retina enables synaptic reorganization to be readily identified. Synaptic rearrangements are shown to help sculpt developing retinal circuits, although the mechanisms involved remain debated. Structural changes in retinal diseases can also lead to functional rewiring. This poses a major challenge to retinal repair because it may be necessary to untangle the miswired connections before reconnecting with proper synaptic partners. Here, we review our current understanding of the mechanisms that underlie circuit remodeling during retinal development, and discuss how alterations in connectivity during damage could impede circuit repair.
Collapse
Affiliation(s)
- Florence D D'Orazi
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|