1
|
Li JX, Meng LR, Hou BK, Hao XL, Wang DJ, Qu LH, Li ZH, Zhang L, Jin X. Detection of Novel BEST1 Variations in Autosomal Recessive Bestrophinopathy Using Third-generation Sequencing. Curr Med Sci 2024; 44:419-425. [PMID: 38619684 DOI: 10.1007/s11596-024-2865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Autosomal recessive bestrophinopathy (ARB), a retinal degenerative disease, is characterized by central visual loss, yellowish multifocal diffuse subretinal deposits, and a dramatic decrease in the light peak on electrooculogram. The potential pathogenic mechanism involves mutations in the BEST1 gene, which encodes Ca2+-activated Cl- channels in the retinal pigment epithelium (RPE), resulting in degeneration of RPE and photoreceptor. In this study, the complete clinical characteristics of two Chinese ARB families were summarized. METHODS Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing was performed on the probands to screen for disease-causing gene mutations, and Sanger sequencing was applied to validate variants in the patients and their family members. RESULTS Two novel mutations, c.202T>C (chr11:61722628, p.Y68H) and c.867+97G>A, in the BEST1 gene were identified in the two Chinese ARB families. The novel missense mutation BEST1 c.202T>C (p.Y68H) resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1. Another novel variant, BEST1 c.867+97G>A (chr11:61725867), located in intron 7, might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators. CONCLUSION Our findings represent the first use of third-generation sequencing (TGS) to identify novel BEST1 mutations in patients with ARB, indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes. The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.
Collapse
Affiliation(s)
- Jia-Xun Li
- Department of Senior Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Ling-Rui Meng
- Department of Senior Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Bao-Ke Hou
- Department of Senior Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Xiao-Lu Hao
- Department of Senior Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Da-Jiang Wang
- Department of Senior Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Ling-Hui Qu
- Department of Ophthalmology, the 74th Army Group Hospital, Guangzhou, 510318, China
| | - Zhao-Hui Li
- Department of Senior Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Lei Zhang
- Department of Senior Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Xin Jin
- Department of Senior Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Bianco L, Arrigo A, Antropoli A, Del Fabbro S, Mauro L, Pina A, Bandello F, Battaglia Parodi M. The Retinal Phenotype Associated with the p.Pro101Thr BEST1 Variant. Ophthalmol Retina 2024; 8:288-297. [PMID: 37717827 DOI: 10.1016/j.oret.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE To describe the retinal phenotype associated with the p.Pro101Thr BEST1 variant. DESIGN Retrospective, observational case series. PARTICIPANTS Patients diagnosed with bestrophinopathies in which molecular genetic testing identified the p.Pro101Thr BEST1 as well as healthy carriers among their first-degree relatives. METHODS Medical records were reviewed to obtain data on family history and ophthalmic examinations, including retinal imaging. The imaging protocol included OCT and fundus autofluorescence using Spectralis HRA + OCT (Heidelberg Engineering). Genetic analysis was performed by next-generation sequencing. MAIN OUTCOME MEASURES Results of ophthalmic examinations and multimodal imaging features of retinal phenotypes. RESULTS The c.301C>A, p.Pro101Thr BEST1 missense variant was identified as the causative variant in 8 individuals (all men) from 5 families, accounting for 13% of cases (8/61) and 10% of pathogenic alleles (9/93) in our cohort of patients affected by bestrophinopathies. Seven individuals (14 eyes) had the variant in heterozygous status: all eyes had a hyperopic refractive error (median spherical equivalent of + 3.75 diopters [D]) and 4 individuals had a macular dystrophy with mildly reduced visual acuity (median of 20/25 Snellen), whereas the other 3 were asymptomatic carriers. On multimodal retinal imaging, 5 (36%) out of 14 eyes had subclinical bestrophinopathy, 4 (29%) had typical findings of adult-onset foveomacular vitelliform dystrophy (AOFVD), and the remaining 5 (36%) displayed a pattern dystrophy-like phenotype. Follow-up data were available for 6 subjects, demonstrating clinical stability up to 11 years, in both subclinical and clinical forms. An additional patient with autosomal recessive bestrophinopathy was found to harbor the p.Pro101Thr variant in homozygosity. CONCLUSIONS The p.Pro101Thr BEST1 variant is likely a frequent cause of bestrophinopathy in the Italian population and can result in autosomal dominant macular dystrophies with incomplete penetrance and mild clinical manifestations as well as autosomal recessive bestrophinopathy. The spectrum of autosomal dominant maculopathy includes the typical AOFVD and a pattern dystrophy-like phenotype. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Alessio Antropoli
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Sebastiano Del Fabbro
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Mauro
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Adelaide Pina
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
TMAO to the rescue of pathogenic protein variants. Biochim Biophys Acta Gen Subj 2022; 1866:130214. [PMID: 35902028 DOI: 10.1016/j.bbagen.2022.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) is a chemical chaperone found in various organisms including humans. Various studies unveiled that it is an excellent protein-stabilizing agent, and induces folding of unstructured proteins. It is also well established that it can counteract the deleterious effects of urea, salt, and hydrostatic pressure on macromolecular integrity. There is also existence of large body of data regarding its ability to restore functional deficiency of various mutant proteins or pathogenic variants by correcting misfolding defects and inhibiting the formation of high-order toxic protein oligomers. Since an important class of human disease called "protein conformational disorders" is due to protein misfolding and/or formation of high-order oligomers, TMAO stands as a promising molecule for the therapeutic intervention of such diseases. The present review has been designed to gather a comprehensive knowledge of the TMAO's effect on the functional restoration of various mutants, identify its shortcomings and explore its potentiality as a lead molecule. Future prospects have also been suitably incorporated.
Collapse
|
4
|
Impaired Bestrophin Channel Activity in an iPSC-RPE Model of Best Vitelliform Macular Dystrophy (BVMD) from an Early Onset Patient Carrying the P77S Dominant Mutation. Int J Mol Sci 2022; 23:ijms23137432. [PMID: 35806438 PMCID: PMC9266689 DOI: 10.3390/ijms23137432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Best Vitelliform Macular dystrophy (BVMD) is the most prevalent of the distinctive retinal dystrophies caused by mutations in the BEST1 gene. This gene, which encodes for a homopentameric calcium-activated ion channel, is crucial for the homeostasis and function of the retinal pigment epithelia (RPE), the cell type responsible for recycling the visual pigments generated by photoreceptor cells. In BVMD patients, mutations in this gene induce functional problems in the RPE cell layer with an accumulation of lipofucsin that evolves into cell death and loss of sight. In this work, we employ iPSC-RPE cells derived from a patient with the p.Pro77Ser dominant mutation to determine the correlation between this variant and the ocular phenotype. To this purpose, gene and protein expression and localization are evaluated in iPSC-RPE cells along with functional assays like phagocytosis and anion channel activity. Our cell model shows no differences in gene expression, protein expression/localization, or phagocytosis capacity, but presents an increased chloride entrance, indicating that the p.Pro77Ser variant might be a gain-of-function mutation. We hypothesize that this variant disturbs the neck region of the BEST1 channel, affecting channel function but maintaining cell homeostasis in the short term. This data shed new light on the different phenotypes of dominant mutations in BEST1, and emphasize the importance of understanding its molecular mechanisms. Furthermore, the data widen the knowledge of this pathology and open the door for a better diagnosis and prognosis of the disease.
Collapse
|
5
|
Miyagi M, Takeuchi J, Koyanagi Y, Mizobuchi K, Hayashi T, Ito Y, Terasaki H, Nishiguchi KM, Ueno S. Clinical findings in eyes with BEST1-related retinopathy complicated by choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 2021; 260:1125-1137. [PMID: 34661736 DOI: 10.1007/s00417-021-05447-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To determine the characteristics of eyes diagnosed with Best vitelliform macular dystrophy (BVMD) and autosomal recessive bestrophinopathy (ARB) complicated by choroidal neovascularization (CNV). METHODS This was a retrospective, multicenter observational case series. Fourteen genetically confirmed BVMD patients and 9 ARB patients who had been examined in 2 ophthalmological institutions in Japan were studied. The findings in a series of ophthalmic examinations including B-scan optical coherence tomography (OCT) and OCT angiography (OCTA) were reviewed. RESULTS CNV was identified in 5 eyes (17.9%) of BVMD patients and in 2 eyes (11.1%) of ARB patients. Three of 5 eyes with BVMD were classified as being at the vitelliruptive stage and 2 eyes at the atrophic stage. The CNV in 2 BVMD eyes were diagnosed as exudative because of acute visual acuity reduction, retinal hemorrhage, and intraretinal fluid, while the CNV in 3 BVMD eyes and 2 ARB eyes were diagnosed as non-exudative. The visual acuity of the two eyes with exudative CNV did not improve despite anti-VEGF treatments. None of the eyes with non-exudative CNV had a reduction of their visual acuity for at least 4 years. All of the CNV were located within hyperreflective materials which were detected in 16 eyes (57.1%) of the BVMD eyes and in 7 eyes (38.9%) of the ARB eyes. CONCLUSIONS CNV is a relatively common complication in BEST1-related retinopathy in Asian population as well. The prognosis of eyes with exudative CNV is not always good, and OCTA can detect CNV in eyes possessing hyperreflective materials.
Collapse
Affiliation(s)
- Mai Miyagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Takeuchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuki Ito
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Ophthalmology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
6
|
Zhao Q, Kong Y, Kittredge A, Li Y, Shen Y, Zhang Y, Tsang SH, Yang T. Distinct expression requirements and rescue strategies for BEST1 loss- and gain-of-function mutations. eLife 2021; 10:67622. [PMID: 34061021 PMCID: PMC8169119 DOI: 10.7554/elife.67622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
Genetic mutation of the human BEST1 gene, which encodes a Ca2+-activated Cl- channel (BEST1) predominantly expressed in retinal pigment epithelium (RPE), causes a spectrum of retinal degenerative disorders commonly known as bestrophinopathies. Previously, we showed that BEST1 plays an indispensable role in generating Ca2+-dependent Cl- currents in human RPE cells, and the deficiency of BEST1 function in patient-derived RPE is rescuable by gene augmentation (Li et al., 2017). Here, we report that BEST1 patient-derived loss-of-function and gain-of-function mutations require different mutant to wild-type (WT) molecule ratios for phenotypic manifestation, underlying their distinct epigenetic requirements in bestrophinopathy development, and suggesting that some of the previously classified autosomal dominant mutations actually behave in a dominant-negative manner. Importantly, the strong dominant effect of BEST1 gain-of-function mutations prohibits the restoration of BEST1-dependent Cl- currents in RPE cells by gene augmentation, in contrast to the efficient rescue of loss-of-function mutations via the same approach. Moreover, we demonstrate that gain-of-function mutations are rescuable by a combination of gene augmentation with CRISPR/Cas9-mediated knockdown of endogenous BEST1 expression, providing a universal treatment strategy for all bestrophinopathy patients regardless of their mutation types.
Collapse
Affiliation(s)
- Qingqing Zhao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, United States
| | - Yang Kong
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Alec Kittredge
- Department of Pharmacology, Columbia University, New York, United States
| | - Yao Li
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Yin Shen
- Eye Center, Medical Research Institute, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yu Zhang
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Stephen H Tsang
- Jonas Children's Vision Care, Departments of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, Institute of Human Nutrition and Columbia Stem Cell Initiative, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, United States
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, United States.,Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| |
Collapse
|
7
|
Singh Grewal S, Smith JJ, Carr AJF. Bestrophinopathies: perspectives on clinical disease, Bestrophin-1 function and developing therapies. Ther Adv Ophthalmol 2021; 13:2515841421997191. [PMID: 33738427 PMCID: PMC7934022 DOI: 10.1177/2515841421997191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 (BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.
Collapse
Affiliation(s)
| | - Joseph J Smith
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Amanda-Jayne F Carr
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
8
|
Maggi J, Koller S, Bähr L, Feil S, Kivrak Pfiffner F, Hanson JVM, Maspoli A, Gerth-Kahlert C, Berger W. Long-Range PCR-Based NGS Applications to Diagnose Mendelian Retinal Diseases. Int J Mol Sci 2021; 22:ijms22041508. [PMID: 33546218 PMCID: PMC7913364 DOI: 10.3390/ijms22041508] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
The purpose of this study was to develop a flexible, cost-efficient, next-generation sequencing (NGS) protocol for genetic testing. Long-range polymerase chain reaction (PCR) amplicons of up to 20 kb in size were designed to amplify entire genomic regions for a panel (n = 35) of inherited retinal disease (IRD)-associated loci. Amplicons were pooled and sequenced by NGS. The analysis was applied to 227 probands diagnosed with IRD: (A) 108 previously molecularly diagnosed, (B) 94 without previous genetic testing, and (C) 25 undiagnosed after whole-exome sequencing (WES). The method was validated with 100% sensitivity on cohort A. Long-range PCR-based sequencing revealed likely causative variant(s) in 51% and 24% of proband from cohorts B and C, respectively. Breakpoints of 3 copy number variants (CNVs) could be characterized. Long-range PCR libraries spike-in extended coverage of WES. Read phasing confirmed compound heterozygosity in 5 probands. The proposed sequencing protocol provided deep coverage of the entire gene, including intronic and promoter regions. Our method can be used (i) as a first-tier assay to reduce genetic testing costs, (ii) to elucidate missing heritability cases, (iii) to characterize breakpoints of CNVs at nucleotide resolution, (iv) to extend WES data to non-coding regions by spiking-in long-range PCR libraries, and (v) to help with phasing of candidate variants.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Luzy Bähr
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Fatma Kivrak Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - James V. M. Hanson
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Alessandro Maspoli
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-556-33-50
| |
Collapse
|
9
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
10
|
Sinha D, Steyer B, Shahi PK, Mueller KP, Valiauga R, Edwards KL, Bacig C, Steltzer SS, Srinivasan S, Abdeen A, Cory E, Periyasamy V, Siahpirani AF, Stone EM, Tucker BA, Roy S, Pattnaik BR, Saha K, Gamm DM. Human iPSC Modeling Reveals Mutation-Specific Responses to Gene Therapy in a Genotypically Diverse Dominant Maculopathy. Am J Hum Genet 2020; 107:278-292. [PMID: 32707085 DOI: 10.1016/j.ajhg.2020.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Dominantly inherited disorders are not typically considered to be therapeutic candidates for gene augmentation. Here, we utilized induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) to test the potential of gene augmentation to treat Best disease, a dominant macular dystrophy caused by over 200 missense mutations in BEST1. Gene augmentation in iPSC-RPE fully restored BEST1 calcium-activated chloride channel activity and improved rhodopsin degradation in an iPSC-RPE model of recessive bestrophinopathy as well as in two models of dominant Best disease caused by different mutations in regions encoding ion-binding domains. A third dominant Best disease iPSC-RPE model did not respond to gene augmentation, but showed normalization of BEST1 channel activity following CRISPR-Cas9 editing of the mutant allele. We then subjected all three dominant Best disease iPSC-RPE models to gene editing, which produced premature stop codons specifically within the mutant BEST1 alleles. Single-cell profiling demonstrated no adverse perturbation of retinal pigment epithelium (RPE) transcriptional programs in any model, although off-target analysis detected a silent genomic alteration in one model. These results suggest that gene augmentation is a viable first-line approach for some individuals with dominant Best disease and that non-responders are candidates for alternate approaches such as gene editing. However, testing gene editing strategies for on-target efficiency and off-target events using personalized iPSC-RPE model systems is warranted. In summary, personalized iPSC-RPE models can be used to select among a growing list of gene therapy options to maximize safety and efficacy while minimizing time and cost. Similar scenarios likely exist for other genotypically diverse channelopathies, expanding the therapeutic landscape for affected individuals.
Collapse
Affiliation(s)
- Divya Sinha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Benjamin Steyer
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Pawan K Shahi
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Katherine P Mueller
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rasa Valiauga
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Cole Bacig
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stephanie S Steltzer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Sandhya Srinivasan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Amr Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Evan Cory
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Viswesh Periyasamy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biostatistics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bikash R Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishanu Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - David M Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
11
|
Zhou M, Geathers JS, Grillo SL, Weber SR, Wang W, Zhao Y, Sundstrom JM. Role of Epithelial-Mesenchymal Transition in Retinal Pigment Epithelium Dysfunction. Front Cell Dev Biol 2020; 8:501. [PMID: 32671066 PMCID: PMC7329994 DOI: 10.3389/fcell.2020.00501] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells maintain the health and functional integrity of both photoreceptors and the choroidal vasculature. Loss of RPE differentiation has long been known to play a critical role in numerous retinal diseases, including inherited rod-cone degenerations, inherited macular degeneration, age-related macular degeneration, and proliferative vitreoretinopathy. Recent studies in post-mortem eyes have found upregulation of critical epithelial-mesenchymal transition (EMT) drivers such as TGF-β, Wnt, and Hippo. As RPE cells become less differentiated, they begin to exhibit the defining characteristics of mesenchymal cells, namely, the capacity to migrate and proliferate. A number of preclinical studies, including animal and cell culture experiments, also have shown that RPE cells undergo EMT. Taken together, these data suggest that RPE cells retain the reprogramming capacity to move along a continuum between polarized epithelial cells and mesenchymal cells. We propose that movement along this continuum toward a mesenchymal phenotype be defined as RPE Dysfunction. Potential mechanisms include impaired tight junctions, accumulation of misfolded proteins and dysregulation of several key pathways and molecules, such as TGF-β pathway, Wnt pathway, nicotinamide, microRNA 204/211 and extracellular vesicles. This review synthesizes the evidence implicating EMT of RPE cells in post-mortem eyes, animal studies, primary RPE, iPSC-RPE and ARPE-19 cell lines.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Jasmine S Geathers
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Stephanie L Grillo
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Sarah R Weber
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Weiwei Wang
- Department of Medicine, The University of Texas Health Science Center at San Antonio, Houston, TX, United States
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
12
|
Mutation-Dependent Pathomechanisms Determine the Phenotype in the Bestrophinopathies. Int J Mol Sci 2020; 21:ijms21051597. [PMID: 32111077 PMCID: PMC7084480 DOI: 10.3390/ijms21051597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Best vitelliform macular dystrophy (BD), autosomal dominant vitreoretinochoroidopathy (ADVIRC), and the autosomal recessive bestrophinopathy (ARB), together known as the bestrophinopathies, are caused by mutations in the bestrophin-1 (BEST1) gene affecting anion transport through the plasma membrane of the retinal pigment epithelium (RPE). To date, while no treatment exists a better understanding of BEST1-related pathogenesis may help to define therapeutic targets. Here, we systematically characterize functional consequences of mutant BEST1 in thirteen RPE patient cell lines differentiated from human induced pluripotent stem cells (hiPSCs). Both BD and ARB hiPSC-RPEs display a strong reduction of BEST1-mediated anion transport function compared to control, while ADVIRC mutations trigger an increased anion permeability suggesting a stabilized open state condition of channel gating. Furthermore, BD and ARB hiPSC-RPEs differ by the degree of mutant protein turnover and by the site of subcellular protein quality control with adverse effects on lysosomal pH only in the BD-related cell lines. The latter finding is consistent with an altered processing of catalytic enzymes in the lysosomes. The present study provides a deeper insight into distinct molecular mechanisms of the three bestrophinopathies facilitating functional categorization of the more than 300 known BEST1 mutations that result into the distinct retinal phenotypes.
Collapse
|
13
|
Gao FJ, Qi YH, Hu FY, Wang DD, Xu P, Guo JL, Li JK, Zhang YJ, Li W, Chen F, Xu GZ, Liu W, Chang Q, Wu JH. Mutation spectrum of the bestrophin-1 gene in a large Chinese cohort with bestrophinopathy. Br J Ophthalmol 2019; 104:846-851. [DOI: 10.1136/bjophthalmol-2019-314679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 11/04/2022]
Abstract
BackgroundBestrophin-1 (BEST1) gene is associated with a wide range of ocular phenotypes, collectively termed as bestrophinopathy. The aim of the current study was to identify the mutation spectrum of BEST1 in a large cohort of Chinese patients with bestrophinopathy.MethodsPatients clinically suspected of bestrophinopathy were screened using multigene panel testing. All BEST1 variants were confirmed by Sanger sequencing, and validated in the families.FindingsA total of 92 patients (Best vitelliform macular dystrophy (BVMD)=77; autosomal recessive bestrophinopathy (ARB)=15) from 58 unrelated families of Chinese origin and their available family members (n=65) were recruited. Overall, 39 distinct disease-causing BEST1 variants were identified, including 13 novel variants, and two reported variants but novel for ARB. Of them, 14 were associated with ARB, 23 with BVMD and two (c.604C>T and c.898G>A) with both BVMD and ARB. Most mutations associated with BVMD were missense (97.78%), while ARB was associated with more complex mutations, including missense (88.46%), splicing effect (3.85%), and frameshifts (15.38%). BEST1 hotspots were c.898G>A and c.584C>T among BVMD and ARB patients, respectively. Hot regions were located in exons 8, 2 and 6 in BVMD patients, and in exons 5 and 7 in ARB patients. The overall penetrance of BEST1 in our cohort was 71.30%, no de novo mutations were identified.ConclusionThis is the largest study to date that provides major population-based data of the BEST1 mutation spectrum in China. Our results can serve as a well-founded reference for genetic counselling for patients with bestrophinopathy of Chinese origin.
Collapse
|
14
|
Milenkovic A, Schmied D, Tanimoto N, Seeliger MW, Sparrow JR, Weber BHF. The Y227N mutation affects bestrophin-1 protein stability and impairs sperm function in a mouse model of Best vitelliform macular dystrophy. Biol Open 2019; 8:bio.041335. [PMID: 31201163 PMCID: PMC6679414 DOI: 10.1242/bio.041335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human bestrophin-1 (BEST1) is an integral membrane protein known to function as a Ca2+-activated and volume-regulated chloride channel. The majority of disease-associated mutations in BEST1 constitute missense mutations and were shown in vitro to lead to a reduction in mutant protein half-life causing Best disease (BD), a rare autosomal dominant macular dystrophy. To further delineate BEST1-associated pathology in vivo and to provide an animal model useful to explore experimental treatment efficacies, we have generated a knock-in mouse line (Best1Y227N). Heterozygous and homozygous mutants revealed no significant ocular abnormalities up to 2 years of age. In contrast, knock-in animals demonstrated a severe phenotype in the male reproductive tract. In heterozygous Best1Y227N males, Best1 protein was significantly reduced in testis and almost absent in homozygous mutant mice, although mRNA transcription of wild-type and knock-in allele is present and similar in quantity. Degradation of mutant Best1 protein in testis was associated with adverse effects on sperm motility and the capability to fertilize eggs. Based on these results, we conclude that mice carrying the Best1 Y227N mutation reveal a reproducible pathologic phenotype and thus provide a valuable in vivo tool to evaluate efficacy of drug therapies aimed at restoring Best1 protein stability and function.
Collapse
Affiliation(s)
- Andrea Milenkovic
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Denise Schmied
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, 72076 Tübingen, Germany.,Department of Ophthalmology, University of Kiel, 24105 Kiel, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, 72076 Tübingen, Germany
| | - Janet R Sparrow
- Department of Ophthalmology, Harkness Eye Institute, Columbia University Medical Center, 10032 New York, USA
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Milenkovic A, Milenkovic VM, Wetzel CH, Weber BHF. BEST1 protein stability and degradation pathways differ between autosomal dominant Best disease and autosomal recessive bestrophinopathy accounting for the distinct retinal phenotypes. Hum Mol Genet 2019; 27:1630-1641. [PMID: 29668979 PMCID: PMC5905664 DOI: 10.1093/hmg/ddy070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations in bestrophin-1 (BEST1) are associated with distinct retinopathies, notably three forms with autosomal dominant inheritance and one condition with an autosomal recessive mode of transmission. The molecular mechanisms underlying their distinct retinal phenotypes are mostly unknown. Although heterozygous missense mutations in BEST1 reveal dominant-negative effects in patients with autosomal dominant Best disease (BD), heterozygous mutations associated with autosomal recessive bestrophinopathy (ARB) display no disease phenotype. Here we show that the recessive mutations trigger a strong and fast protein degradation process in the endoplasmic reticulum (ER), thereby favoring a decreased stoichiometry of mutant versus normal BEST1 subunits in the assembly of the homo-pentameric BEST1 chloride channel. In contrast, dominant mutations escape ER-associated degradation and are subjected to a slightly delayed post-ER degradation via the endo-lysosomal degradation pathway. As a result, increased formation of a non-functional BEST1 channel occurs due to a roughly equimolar incorporation of normal and mutant BEST1 subunits into the channel complex. Taken together, our data provide insight into the molecular pathways of dominantly and recessively acting BEST1 missense mutations suggesting that the site of subcellular protein quality control as well as the rate and degree of mutant protein degradation are ultimately responsible for the distinct retinal disease phenotypes in BD and ARB.
Collapse
Affiliation(s)
- Andrea Milenkovic
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
- To whom correspondence should be addressed at: Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany. Tel: +49 9419445400; Fax: +49 9419445402;
| |
Collapse
|
16
|
Next generation sequencing identifies novel disease-associated BEST1 mutations in Bestrophinopathy patients. Sci Rep 2018; 8:10176. [PMID: 29976937 PMCID: PMC6033935 DOI: 10.1038/s41598-018-27951-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Bestinopathies are a spectrum of retinal disorders associated with mutations in BEST1 including autosomal recessive bestrophinopathy (ARB) and autosomal dominant Best vitelliform macular dystrophy (BVMD). We applied whole-exome sequencing on four unrelated Indian families comprising eight affected and twelve unaffected individuals. We identified five mutations in BEST1, including p.Tyr131Cys in family A, p.Arg150Pro in family B, p.Arg47His and p.Val216Ile in family C and p.Thr91Ile in family D. Among these, p.Tyr131Cys, p.Arg150Pro and p.Val216Ile have not been previously reported. Further, the inheritance pattern of BEST1 mutations in the families confirmed the diagnosis of ARB in probands in families A, B and C, while the inheritance of heterozygous BEST1 mutation in family D (p.Thr91Ile) was suggestive of BVMD. Interestingly, the ARB families A and B carry homozygous mutations while family C was a compound heterozygote with a mutation in an alternate BEST1 transcript isoform, highlighting a role for alternate BEST1 transcripts in bestrophinopathy. In the BVMD family D, the heterozygous BEST1 mutation found in the proband was also found in the asymptomatic parent, suggesting an incomplete penetrance and/or the presence of additional genetic modifiers. Our report expands the list of pathogenic BEST1 genotypes and the associated clinical diagnosis.
Collapse
|
17
|
Molecular Diagnosis of 34 Japanese Families with Leber Congenital Amaurosis Using Targeted Next Generation Sequencing. Sci Rep 2018; 8:8279. [PMID: 29844330 PMCID: PMC5974356 DOI: 10.1038/s41598-018-26524-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Leber congenital amaurosis (LCA) is a genetically and clinically heterogeneous disease, and represents the most severe form of inherited retinal dystrophy (IRD). The present study reports the mutation spectra and frequency of known LCA and IRD-associated genes in 34 Japanese families with LCA (including three families that were previously reported). A total of 74 LCA- and IRD-associated genes were analysed via targeted-next generation sequencing (TS), while recently discovered LCA-associated genes, as well as known variants not able to be screened using this approach, were evaluated via additional Sanger sequencing, long-range polymerase chain reaction, and/or copy number variation analyses. The results of these analyses revealed 30 potential pathogenic variants in 12 (nine LCA-associated and three other IRD-associated) genes among 19 of the 34 analysed families. The most frequently mutated genes were CRB1, NMNAT1, and RPGRIP1. The results also showed the mutation spectra and frequencies identified in the analysed Japanese population to be distinctly different from those previously identified for other ethnic backgrounds. Finally, the present study, which is the first to conduct a NGS-based molecular diagnosis of a large Japanese LCA cohort, achieved a detection rate of approximately 56%, indicating that TS is a valuable method for molecular diagnosis of LCA cases in the Japanese population.
Collapse
|
18
|
Marmorstein AD, Johnson AA, Bachman LA, Andrews-Pfannkoch C, Knudsen T, Gilles BJ, Hill M, Gandhi JK, Marmorstein LY, Pulido JS. Mutant Best1 Expression and Impaired Phagocytosis in an iPSC Model of Autosomal Recessive Bestrophinopathy. Sci Rep 2018. [PMID: 29540715 PMCID: PMC5852082 DOI: 10.1038/s41598-018-21651-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive bestrophinopathy (ARB) is caused by mutations in the gene BEST1 which encodes bestrophin 1 (Best1), an anion channel expressed in retinal pigment epithelial (RPE) cells. It has been hypothesized that ARB represents the human null phenotype for BEST1 and that this occurs due to nonsense mediated decay (NMD). To test this hypothesis, we generated induced pluripotent stem cells (iPSCs) from a patient with ARB and her parents. After differentiation to retinal pigment epithelial (iPSC-RPE) cells, both BEST1 mRNA and Best1 protein expression were compared to controls. BEST1 mRNA expression levels, determined by quantitative PCR, were similar in ARB iPSC-RPE, parental cells, and genetically unrelated controls. Western blotting revealed that CRALBP and RPE65 were expressed within the range delineated by unrelated controls in iPSC-RPE from the ARB donor and her parents. Best1 protein was detected in different clones of ARB iPSC-RPE, but at reduced levels compared to all controls. When tested for the ability to phagocytose photoreceptor outer segments, ARB iPSC-RPE exhibited impaired internalization. These data suggest that impaired phagocytosis is a trait common to the bestrophinopathies. Furthermore, ARB is not universally the result of NMD and ARB, in this patient, is not due to the absence of Best1.
Collapse
Affiliation(s)
- Alan D Marmorstein
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Adiv A Johnson
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lori A Bachman
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Travis Knudsen
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Benjamin J Gilles
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew Hill
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jarel K Gandhi
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lihua Y Marmorstein
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
19
|
|
20
|
Adult-Onset Vitelliform Macular Dystrophy caused by BEST1 p.Ile38Ser Mutation is a Mild Form of Best Vitelliform Macular Dystrophy. Sci Rep 2017; 7:9146. [PMID: 28831140 PMCID: PMC5567297 DOI: 10.1038/s41598-017-09629-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Adult-onset vitelliform macular dystrophy (AVMD) is a common and benign macular degeneration which can be caused by BEST1 mutation. Here, we investigated the clinical characteristics associated with a newly identified BEST1 mutation, p.Ile38Ser and confirmed the associated physiological functional defects. The 51-year-old patient presented bilateral small subretinal yellow deposits. Consistent with AVMD, the corresponding lesions showed hyperautofluorescence, late staining in fluorescein angiography, and subretinal hyper-reflective materials in spectral-domain optical coherence tomography. Genetic analysis demonstrated that the patient presented with a heterozygous p.Ile38Ser BEST1 mutation. Surface biotinylation and patch clamp experiments were performed in transfected HEK293T cells. Although, the identified BEST1 mutant maintains normal membrane expression, p.Ile38Ser mutant showed significantly smaller currents than wild type (WT). However, it showed larger currents than other BEST1 mutants, p.Trp93Cys, causing autosomal dominant best vitelliform macular dystrophy (BVMD), and p.Ala195Val, causing autosomal recessive bestrophinopathy (ARB). The cells expressing both WT and each BEST1 mutant showed that the functional defect of p.Ile38ser was milder than that of p.Trp93Cys, whereas combination of p.Ala195Val with WT showed good current. We identified and described the phenotype and in vitro functions of a novel BEST1 mutation causing AVMD. AVMD induced by p.Ile38Ser BEST1 mutation is a mild form of BVMD.
Collapse
|
21
|
Caceres PS, Benedicto I, Lehmann GL, Rodriguez-Boulan EJ. Directional Fluid Transport across Organ-Blood Barriers: Physiology and Cell Biology. Cold Spring Harb Perspect Biol 2017; 9:a027847. [PMID: 28003183 PMCID: PMC5334253 DOI: 10.1101/cshperspect.a027847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Directional fluid flow is an essential process for embryo development as well as for organ and organism homeostasis. Here, we review the diverse structure of various organ-blood barriers, the driving forces, transporters, and polarity mechanisms that regulate fluid transport across them, focusing on kidney-, eye-, and brain-blood barriers. We end by discussing how cross talk between barrier epithelial and endothelial cells, perivascular cells, and basement membrane signaling contribute to generate and maintain organ-blood barriers.
Collapse
Affiliation(s)
- Paulo S Caceres
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Enrique J Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
22
|
Johnson AA, Guziewicz KE, Lee CJ, Kalathur RC, Pulido JS, Marmorstein LY, Marmorstein AD. Bestrophin 1 and retinal disease. Prog Retin Eye Res 2017; 58:45-69. [PMID: 28153808 DOI: 10.1016/j.preteyeres.2017.01.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the gene BEST1 are causally associated with as many as five clinically distinct retinal degenerative diseases, which are collectively referred to as the "bestrophinopathies". These five associated diseases are: Best vitelliform macular dystrophy, autosomal recessive bestrophinopathy, adult-onset vitelliform macular dystrophy, autosomal dominant vitreoretinochoroidopathy, and retinitis pigmentosa. The most common of these is Best vitelliform macular dystrophy. Bestrophin 1 (Best1), the protein encoded by the gene BEST1, has been the subject of a great deal of research since it was first identified nearly two decades ago. Today we know that Best1 functions as both a pentameric anion channel and a regulator of intracellular Ca2+ signaling. Best1 is an integral membrane protein which, within the eye, is uniquely expressed in the retinal pigment epithelium where it predominantly localizes to the basolateral plasma membrane. Within the brain, Best1 expression has been documented in both glial cells and astrocytes where it functions in both tonic GABA release and glutamate transport. The crystal structure of Best1 has revealed critical information about how Best1 functions as an ion channel and how Ca2+ regulates that function. Studies using animal models have led to critical insights into the physiological roles of Best1 and advances in stem cell technology have allowed for the development of patient-derived, "disease in a dish" models. In this article we review our knowledge of Best1 and discuss prospects for near-term clinical trials to test therapies for the bestrophinopathies, a currently incurable and untreatable set of diseases.
Collapse
Affiliation(s)
- Adiv A Johnson
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA; Nikon Instruments, Melville, NY, USA
| | - Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ravi C Kalathur
- New York Structural Biology Center, New York Consortium on Membrane Protein Structure, New York, NY, USA
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
23
|
Mislocalisation of BEST1 in iPSC-derived retinal pigment epithelial cells from a family with autosomal dominant vitreoretinochoroidopathy (ADVIRC). Sci Rep 2016; 6:33792. [PMID: 27653836 PMCID: PMC5031956 DOI: 10.1038/srep33792] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare, early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene, which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here, we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T > C, p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE, however in patient-derived iPSC-RPE, BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery, from an early developmental stage, could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients.
Collapse
|
24
|
Uggenti C, Briant K, Streit AK, Thomson S, Koay YH, Baines RA, Swanton E, Manson FD. Restoration of mutant bestrophin-1 expression, localisation and function in a polarised epithelial cell model. Dis Model Mech 2016; 9:1317-1328. [PMID: 27519691 PMCID: PMC5117222 DOI: 10.1242/dmm.024216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/21/2016] [Indexed: 01/13/2023] Open
Abstract
Autosomal recessive bestrophinopathy (ARB) is a retinopathy caused by mutations in the bestrophin-1 protein, which is thought to function as a Ca2+-gated Cl− channel in the basolateral surface of the retinal pigment epithelium (RPE). Using a stably transfected polarised epithelial cell model, we show that four ARB mutant bestrophin-1 proteins were mislocalised and subjected to proteasomal degradation. In contrast to the wild-type bestrophin-1, each of the four mutant proteins also failed to conduct Cl− ions in transiently transfected cells as determined by whole-cell patch clamp. We demonstrate that a combination of two clinically approved drugs, bortezomib and 4-phenylbutyrate (4PBA), successfully restored the expression and localisation of all four ARB mutant bestrophin-1 proteins. Importantly, the Cl− conductance function of each of the mutant bestrophin-1 proteins was fully restored to that of wild-type bestrophin-1 by treatment of cells with 4PBA alone. The functional rescue achieved with 4PBA is significant because it suggests that this drug, which is already approved for long-term use in infants and adults, might represent a promising therapy for the treatment of ARB and other bestrophinopathies resulting from missense mutations in BEST1. Summary: Chemical chaperone 4PBA fully restores Cl− conductance activity for mutant bestrophin-1 proteins associated with inherited retinal dystrophy, autosomal recessive bestrophinopathy.
Collapse
Affiliation(s)
- Carolina Uggenti
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kit Briant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Anne-Kathrin Streit
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Steven Thomson
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Yee Hui Koay
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Richard A Baines
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Eileithyia Swanton
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Forbes D Manson
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
25
|
Dalvin LA, Abou Chehade JE, Chiang J, Fuchs J, Iezzi R, Marmorstein AD. Retinitis pigmentosa associated with a mutation in BEST1. Am J Ophthalmol Case Rep 2016; 2:11-17. [PMID: 29503890 PMCID: PMC5757359 DOI: 10.1016/j.ajoc.2016.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/18/2016] [Accepted: 03/26/2016] [Indexed: 11/24/2022] Open
Abstract
Purpose There is only one prior report associating mutations in BEST1 with a diagnosis of retinitis pigmentosa (RP). The imaging studies presented in that report were more atypical of RP and shared features of autosomal recessive bestrophinopathy and autosomal dominant vitreoretinochoroidopathy. Here, we present a patient with a clinical phenotype consistent with classic features of RP. Observations The patient in this report was diagnosed with simplex RP based on clinically-evident bone spicules with characteristic ERG and EOG findings. The patient had associated massive cystoid macular edema which resolved following a short course of oral acetazolamide. Genetic testing revealed that the patient carries a novel heterozygous deletion mutation in BEST1 which is not carried by either parent. While this suggests BEST1 is causative, the patient also inherited heterozygous copies of several mutations in other genes known to cause recessive retinal degenerative disease. Conclusions and Importance How some mutations in BEST1 associate with peripheral retinal degeneration phenotypes, while others manifest as macular degeneration phenotypes is currently unknown. We speculate that RP due to BEST1 mutation requires mutations in other modifier genes.
Collapse
Affiliation(s)
- Lauren A Dalvin
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Jackson E Abou Chehade
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - John Chiang
- CEI Diagnostic Laboratory, Casey Eye Institute, 3375 SW Terwilliger Blvd, Portland, OR, 97239, United States
| | - Josefine Fuchs
- Department of Ophthalmology, Rigshospitalet, Blegdamsvej 9, 2100, København Ø, Denmark
| | - Raymond Iezzi
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Alan D Marmorstein
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| |
Collapse
|
26
|
Giblin JP, Comes N, Strauss O, Gasull X. Ion Channels in the Eye: Involvement in Ocular Pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:157-231. [PMID: 27038375 DOI: 10.1016/bs.apcsb.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology.
Collapse
Affiliation(s)
- Jonathan P Giblin
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Comes
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Xavier Gasull
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
27
|
Singh R, Kuai D, Guziewicz KE, Meyer J, Wilson M, Lu J, Smith M, Clark E, Verhoeven A, Aguirre GD, Gamm DM. Pharmacological Modulation of Photoreceptor Outer Segment Degradation in a Human iPS Cell Model of Inherited Macular Degeneration. Mol Ther 2015; 23:1700-1711. [PMID: 26300224 PMCID: PMC4817951 DOI: 10.1038/mt.2015.141] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022] Open
Abstract
Degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is essential for vision, and studies have implicated altered POS processing in the pathogenesis of some retinal degenerative diseases. Consistent with this concept, a recently established hiPSC-RPE model of inherited macular degeneration, Best disease (BD), displayed reduced rates of POS breakdown. Herein we utilized this model to determine (i) if disturbances in protein degradation pathways are associated with delayed POS digestion and (ii) whether such defect(s) can be pharmacologically targeted. We found that BD hiPSC-RPE cultures possessed increased protein oxidation, decreased free-ubiquitin levels, and altered rates of exosome secretion, consistent with altered POS processing. Application of valproic acid (VPA) with or without rapamycin increased rates of POS degradation in our model, whereas application of bafilomycin-A1 decreased such rates. Importantly, the negative effect of bafilomycin-A1 could be fully reversed by VPA. The utility of hiPSC-RPE for VPA testing was further evident following examination of its efficacy and metabolism in a complementary canine disease model. Our findings suggest that disturbances in protein degradation pathways contribute to the POS processing defect observed in BD hiPSC-RPE, which can be manipulated pharmacologically. These results have therapeutic implications for BD and perhaps other maculopathies.
Collapse
Affiliation(s)
- Ruchira Singh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - David Kuai
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jackelyn Meyer
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Molly Wilson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jianfeng Lu
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Molly Smith
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric Clark
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amelia Verhoeven
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gustavo D Aguirre
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
28
|
Johnson AA, Bachman LA, Gilles BJ, Cross SD, Stelzig KE, Resch ZT, Marmorstein LY, Pulido JS, Marmorstein AD. Autosomal Recessive Bestrophinopathy Is Not Associated With the Loss of Bestrophin-1 Anion Channel Function in a Patient With a Novel BEST1 Mutation. Invest Ophthalmol Vis Sci 2015. [PMID: 26200502 DOI: 10.1167/iovs.15-16910] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Mutations in BEST1, encoding bestrophin-1 (Best1), cause autosomal recessive bestrophinopathy (ARB). Encoding bestrophin-1 is a pentameric anion channel localized to the basolateral plasma membrane of the RPE. Here, we characterize the effects of the mutations R141H (CGC > CAC) and I366fsX18 (c.1098_1100+7del), identified in a patient in our practice, on Best1 trafficking, oligomerization, and channel activity. METHODS Currents of Cl- were assessed in transfected HEK293 cells using whole-cell patch clamp. Best1 localization was assessed by confocal microscopy in differentiated, human-induced pluripotent stem cell-derived RPE (iPSC-RPE) cells following expression of mutants via adenovirus-mediated gene transfer. Oligomerization was evaluated by coimmunoprecipitation in iPSC-RPE and MDCK cells. RESULTS Compared to Best1, Best1 I366fsX18 currents were increased while Best1 R141H Cl- currents were diminished. Coexpression of Best1 R141H with Best1 or Best1 I366fsX18 resulted in rescued channel activity. Overexpressed Best1, Best1 R141H, and Best1 I366fsX18 were all properly localized in iPSC-RPE cells; Best1 R141H and Best1 I366fsX18 coimmunoprecipitated with endogenous Best1 in iPSC-RPE cells and with each other in MDCK cells. CONCLUSIONS The first 366 amino acids of Best1 are sufficient to mediate channel activity and homo-oligomerization. The combination of Best1 and Best1 R141H does not cause disease, while Best1 R141H together with Best1 I366fsX18 causes ARB. Since both combinations generate comparable Cl- currents, this indicates that ARB in this patient is not caused by a loss of channel activity. Moreover, Best1 I366fsX18 differs from Best1 in that it lacks most of the cytosolic C-terminal domain, suggesting that the loss of this region contributes significantly to the pathogenesis of ARB in this patient.
Collapse
Affiliation(s)
- Adiv A Johnson
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Lori A Bachman
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin J Gilles
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Samuel D Cross
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Kimberly E Stelzig
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Zachary T Resch
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lihua Y Marmorstein
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Jose S Pulido
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States 3Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Alan D Marmorstein
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
29
|
Abstract
PURPOSE To report the ocular phenotype in patients with autosomal recessive bestrophinopathy and carriers, and to describe novel BEST1 mutations. METHODS Patients with clinically suspected and subsequently genetically proven autosomal recessive bestrophinopathy underwent full ophthalmic examination and investigation with fundus autofluorescence imaging, spectral domain optical coherence tomography, electroretinography, and electrooculography. Mutation analysis of the BEST1 gene was performed through direct Sanger sequencing. RESULTS Five affected patients from four families were identified. Mean age was 16 years (range, 6-42 years). All affected patients presented with reduced visual acuity and bilateral, hyperautofluorescent subretinal yellowish deposits within the posterior pole. Spectral domain optical coherence tomography demonstrated submacular fluid and subretinal vitelliform material in all patients. A cystoid maculopathy was seen in all but one patient. In 1 patient, the location of the vitelliform material was seen to change over a follow-up period of 3 years despite relatively stable vision. Visual acuity and fundus changes were unresponsive to topical and systemic carbonic anhydrase inhibitors and systemic steroids. Carriers had normal ocular examinations including normal fundus autofluorescence. Three novel mutations were detected. CONCLUSION Three novel BEST1 mutations are described, suggesting that many deleterious variants in BEST1 resulting in haploinsufficiency are still unknown. Mutations causing autosomal recessive bestrophinopathy are mostly located outside of the exons that usually harbor vitelliform macular dystrophy-associated dominant mutations.
Collapse
|
30
|
Wivestad Jansson R, Berland S, Bredrup C, Austeng D, Andréasson S, Wittström E. Biallelic Mutations in the BEST1 Gene: Additional Families with Autosomal Recessive Bestrophinopathy. Ophthalmic Genet 2015; 37:183-93. [PMID: 26333019 DOI: 10.3109/13816810.2015.1020558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE To describe the genotype and phenotype of patients with autosomal recessive bestrophinopathy (ARB), and heterozygous carriers. METHODS The members of three unrelated ARB families were investigated. Molecular genetic analysis was performed on 11 members of these families. Ten members were examined clinically; including visual acuity, slit-lamp examination, biomicroscopy, fundus photography, and Goldmann applanation tonometry. Measurements were also made of the anterior chamber depth and axial length, and optical coherence tomography (OCT), electrooculography (EOG), and full-field electroretinography (full-field ERG) were performed. Multifocal electroretinography (mfERG) was performed on eight members of these families. RESULTS Two novel combinations of missense mutations in the BEST1 gene were identified: p.R141H/p.M325T in three patients with ARB in two unrelated Norwegian families, and p.R141H/p.I201T was found in an ARB patient in a Swedish family. All four patients with ARB had clinical and electrophysiological features of ARB. All the heterozygous carriers of the p.R141H mutation were clinically normal, and showed normal OCT, EOG and full-field ERG findings, but had mildly abnormal mfERG results. Only one heterozygous carrier of the p.M325T mutation was studied and he was clinically normal, showing normal OCT and full-field ERG results, but subnormal EOG and mfERG findings. The heterozygous carrier of the p.I201T mutation was clinically normal, showing normal OCT, EOG and full-field ERG results, but subnormal mfERG results. CONCLUSIONS We have shown that the two novel combinations of compound heterozygous mutations p.R141H/p.M325T and p.R141H/p.I201T in the BEST1 gene can also lead to the ARB phenotype.
Collapse
Affiliation(s)
- Ragnhild Wivestad Jansson
- a Department of Clinical Medicine , Section of Ophthalmology, University of Bergen , Bergen , Norway .,b Department of Ophthalmology , Haukeland University Hospital , Bergen , Norway
| | - Siren Berland
- c Department of Pathology , Section of Clinical Genetics, St. Olav's Hospital , Trondheim , Norway
| | - Cecilie Bredrup
- b Department of Ophthalmology , Haukeland University Hospital , Bergen , Norway
| | - Dordi Austeng
- d Department of Ophthalmology , Trondheim University Hospital , Trondheim , Norway , and
| | - Sten Andréasson
- e Department of Ophthalmology , Lund University , Lund , Sweden
| | | |
Collapse
|
31
|
Dalvin LA, Johnson AA, Pulido JS, Dhaliwal R, Marmorstein AD. Nonantibestrophin Anti-RPE Antibodies in Paraneoplastic Exudative Polymorphous Vitelliform Maculopathy. Transl Vis Sci Technol 2015; 4:2. [PMID: 26046004 DOI: 10.1167/tvst.4.3.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/02/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE A previous report demonstrated antibodies to bestrophin in paraneoplastic exudative polymorphous vitelliform maculopathy (PEPVM). Other cases demonstrated antibodies to different proteins in the retinal pigment epithelium (RPE). In this report, serum was analyzed to determine whether a patient with PEPVM and a reduced Arden ratio had developed autoantibodies to human Bestrophin-1 (Best1). METHODS Human embryonic kidney 293 cells (HEK293) were transfected with Best1 and stained with an antibody specific to Best1 (E6-6), or patient serum. Staining patterns were compared with those of untransfected cells stained with E6-6, patient serum, control serum, or secondary antibody alone. Western blots were performed using lysed RPE and stained with E6-6, patient serum, control serum, or secondary antibody alone. RESULTS Immunofluorescence staining of HEK-293 cells or HEK-293 cells expressing Best1 did not differ between patient and control sera or show a staining pattern consistent with recognition of Best1. Immunoblotting of human RPE lysate with patient serum did not identify Best1 (68 kDa) but did recognize a band at approximately 48 kDa that was absent in blots using control serum. CONCLUSIONS To our knowledge, this is the first report of PEPVM with an autoantibody to an approximately 48-kDa RPE protein, but previous reports have demonstrated autoantibodies to other RPE proteins, suggesting that autoantibody formation is an important component of PEPVM. TRANSLATIONAL RELEVANCE This research emphasizes the role that autoantibodies play in PEPVM. The fact that different autoantibodies appear to cause similar patterns demonstrates the heterogeneity of causes of vitelliform lesions.
Collapse
Affiliation(s)
| | | | - Jose S Pulido
- Department of Ophthalmology Mayo Clinic, Rochester, MN, USA ; Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
32
|
Marmorstein AD, Kinnick TR, Stanton JB, Johnson AA, Lynch RM, Marmorstein LY. Bestrophin-1 influences transepithelial electrical properties and Ca2+ signaling in human retinal pigment epithelium. Mol Vis 2015; 21:347-59. [PMID: 25878489 PMCID: PMC4390793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Mutations in BEST1, encoding Bestrophin-1 (Best1), cause Best vitelliform macular dystrophy (BVMD) and other inherited retinal degenerative diseases. Best1 is an integral membrane protein localized to the basolateral plasma membrane of the retinal pigment epithelium (RPE). Data from numerous in vitro and in vivo models have demonstrated that Best1 regulates intracellular Ca2+ levels. Although it is known from in vitro and crystal structure data that Best1 is also a calcium-activated anion channel, evidence for Best1 functioning as a channel in human RPE is lacking. To assess Best1-associated channel activity in the RPE, we examined the transepithelial electrical properties of fetal human RPE (fhRPE) cells, which express endogenous Best1. METHODS Using adenovirus-mediated gene transfer, we overexpressed Best1 and the BVMD mutant Best1W93C in fhRPE cells and assessed resting transepithelial potential (TEP), transepithelial resistance, short circuit current (Isc), and intracellular Ca2+ levels. Cl- currents were directly measured in transfected HEK293 cells using whole-cell patch clamp. RESULTS Best1W93C showed ablated Cl- currents and, when co-expressed, suppressed the channel activity of Best1 in HEK293 cells. In fhRPE, overexpression of Best1 increased TEP and Isc, while Best1W93C diminished TEP and Isc. Substitution of Cl- in the bath media resulted in a significant reduction of Isc in monolayers overexpressing Best1, but no significant Isc change in monolayers expressing Best1W93C. We removed Ca2+ as a limit on transepithelial electrical properties by treating cells with ionomycin, and found that changes in Isc and TEP for monolayers expressing Best1 were absent in monolayers expressing Best1W93C. Similarly, inhibition of calcium-activated anion channels with niflumic acid reduced both Isc and TEP of control and Best1 monolayers, but did not notably affect Best1W93C monolayers. Stimulation with extracellular ATP induced an increase in TEP in control monolayers that was greater than that observed in those expressing Best1(W93C). Examination of [Ca2+]i following ATP stimulation demonstrated that the expression of Best1W93C impaired intracellular Ca2+ signaling. CONCLUSIONS These data indicate that Best1 activity strongly influences electrophysiology and Ca2+ signaling in RPE cells, and that a common BVMD mutation disrupts both of these parameters. Our findings support the hypothesis that Best1 functions as an anion channel in human RPE.
Collapse
|