1
|
Yang T, Wang W, Xie L, Chen S, Ye X, Shen S, Chen H, Qi L, Cui Z, Xiong W, Guo Y, Chen J. Investigating retinal explant models cultured in static and perfused systems to test the performance of exosomes secreted from retinal organoids. J Neurosci Methods 2024; 408:110181. [PMID: 38823594 DOI: 10.1016/j.jneumeth.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Ex vivo cultures of retinal explants are appropriate models for translational research. However, one of the difficult problems of retinal explants ex vivo culture is that their nutrient supply needs cannot be constantly met. NEW METHOD This study evaluated the effect of perfused culture on the survival of retinal explants, addressing the challenge of insufficient nutrition in static culture. Furthermore, exosomes secreted from retinal organoids (RO-Exos) were stained with PKH26 to track their uptake in retinal explants to mimic the efficacy of exosomal drugs in vivo. RESULTS We found that the retinal explants cultured with perfusion exhibited significantly higher viability, increased NeuN+ cells, and reduced apoptosis compared to the static culture group at Days Ex Vivo (DEV) 4, 7, and 14. The perfusion-cultured retinal explants exhibited reduced mRNA markers for gliosis and microglial activation, along with lower expression of GFAP and Iba1, as revealed by immunostaining. Additionally, RNA-sequencing analysis showed that perfusion culture mainly upregulated genes associated with visual perception and photoreceptor cell maintenance while downregulating the immune system process and immune response. RO-Exos promoted the uptake of PKH26-labelled exosomes and the growth of retinal explants in perfusion culture. COMPARISON WITH EXISTING METHODS Our perfusion culture system can provide a continuous supply of culture medium to achieve steady-state equilibrium in retinal explant culture. Compared to traditional static culture, it better preserves the vitality, provides better neuroprotection, and reduces glial activation. CONCLUSIONS This study provides a promising ex vivo model for further studies on degenerative retinal diseases and drug screening.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China; Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Wenxuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Linyao Xie
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Sihui Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiuhong Ye
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shuhao Shen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Qi
- Central Laboratory, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Jiansu Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
2
|
Gegnaw ST, Sandu C, Mazzaro N, Mendoza J, Bergen AA, Felder-Schmittbuhl MP. Enhanced Robustness of the Mouse Retinal Circadian Clock Upon Inherited Retina Degeneration. J Biol Rhythms 2022; 37:567-574. [PMID: 35912966 DOI: 10.1177/07487304221112845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Daily biological rhythms are fundamental to retinal physiology and visual function. They are generated by a local circadian clock composed of a network of cell type/layer-specific, coupled oscillators. Animal models of retinal degeneration have been instrumental in characterizing the anatomical organization of the retinal clock. However, it is still unclear, among the multiple cell-types composing the retina, which ones are essential for proper circadian function. In this study, we used a previously well-characterized mouse model for autosomal dominant retinitis pigmentosa to examine the relationship between rod degeneration and the retinal circadian clock. This model carries the P23H mutation in rhodopsin, which induces mild rod degeneration in heterozygous and rapid loss of photoreceptors in homozygous genotypes. By measuring PER2::LUC bioluminescence rhythms, we show that the retinal clock in P23H/+ heterozygous mice displays circadian rhythms with significantly increased robustness and amplitude. By treating retinal explants with L-α aminoadipic acid, we further provide evidence that this enhanced rhythmicity might involve activation of Müller glial cells.
Collapse
Affiliation(s)
- Shumet T Gegnaw
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.,Departments of Clinical Genetics and Ophthalmology, University of Amsterdam, Amsterdam UMC, AMC, Amsterdam, The Netherlands
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Nadia Mazzaro
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Jorge Mendoza
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Arthur A Bergen
- Departments of Clinical Genetics and Ophthalmology, University of Amsterdam, Amsterdam UMC, AMC, Amsterdam, The Netherlands.,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
3
|
Bachmann G, Frohns F, Thangaraj G, Bausch A, Layer PG. IPL Sublamination in Chicken Retinal Spheroids Is Initiated via Müller Cells and Cholinergic Differentiation, and Is Disrupted by NMDA Signaling. Invest Ophthalmol Vis Sci 2020; 60:4759-4773. [PMID: 31738824 DOI: 10.1167/iovs.18-24952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Reaggregates from E6 embryonic chicken retina exhibit areas corresponding to an inner plexiform layer (IPL), which presents an ideal in vitro model to test conditions and constraints of cholinergic and glutamatergic network formation, providing a basis for retinal tissue engineering. Here, we show that ipl formation is regulated by cholinergic starburst amacrine cells (SACs), a glial scaffold and by L-glutamate. Methods Rosetted spheroids were cultured in absence or presence of 0.2 to 0.4 mM L-glutamate and analyzed by immuno- and enzyme histochemistry, proliferation, and apoptosis assays. Results After 2 days in vitro (div), ipl formation was announced by acetylcholinesterase+ (AChE) and choline acetyltransferase+ (ChAT) cells. Individual vimentin+ or transitin+ Müller glial cell precursors (MCPs) in ipl centers coexpressed ChAT. Comparable to in vivo, pairwise arranged ChAT+ SACs formed two laminar subbands. Projections of calretinin+ amacrine cells (ACs) into ipl associated with MCP processes. In L-glutamate-, or NMDA-treated spheroids ipls were disrupted, including loss of SACs and MCs; coincubation with NMDA receptor inhibitor MK-801 prevented these effects. Also, many Pax6+ cells, comprising most ACs, were lost, while rho4D2+ rod photoreceptors were increased. Cell proliferation was slightly increased, while apoptosis remained unaffected. Conclusions This demonstrated: (1) a far-advanced differentiation of an IPL in retinal spheroids, as never described before; (2) ipl sublamination was initiated by cholinergic precursor cells, which-functioning as "ipl founder cells"-(3) gave rise to neurons and glial cells; (4) these SACs and MCPs together organized ipl formation; and (5) this process was counteracted by NMDA-dependent glutamate actions.
Collapse
Affiliation(s)
- Gesine Bachmann
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Florian Frohns
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Darmstadt, Germany.,Radiation Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gopenath Thangaraj
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Darmstadt, Germany.,Division of Biotechnology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Alexander Bausch
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Paul G Layer
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
4
|
Honrubia-Gómez P, López-Garrido MP, Gil-Gas C, Sánchez-Sánchez J, Alvarez-Simon C, Cuenca-Escalona J, Perez AF, Arias E, Moreno R, Sánchez-Sánchez F, Ramirez-Castillejo C. Pedf derived peptides affect colorectal cancer cell lines resistance and tumour re-growth capacity. Oncotarget 2019; 10:2973-2986. [PMID: 31105879 PMCID: PMC6508205 DOI: 10.18632/oncotarget.26085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Relapse after chemotherapy treatment depends on the cancer initiating cells (CICs). PEDF (Pigmented Epithelium Derived Factor) is an anti-angiogenic, neurotrophic and self-renewal regulator molecule, also involved in CICs biology. Acute and chronic exposition of colon cancer cell lines to CT/CTE PEDF-derived peptides decreased drug-resistance to conventional colorectal cancer treatments, such as oxaliplatin or irinotecan. We confirmed a reduction in the irinotecan and oxaliplatin IC50 doses for all tested tumour cell lines. After xenograft transplantation, CT/CTE treatments also produced a reduction in resistance to conventional chemotherapy treatments as in culture-assays. Metastatic capacity of these treated cell lines was also depleted. The PEDF signaling pathway could be a future therapeutic tool for use as an adjuvant therapy that decreases IC50 dosis, adverse effects and treatment costs. This pathway could also be involved in an increase of the time relapse in patients, decreased tumourigenicity, and decreased capacity to produce metastasis.
Collapse
Affiliation(s)
| | - María-Pilar López-Garrido
- Genética Médica, Departamento de Ciencia y Tecnología Agroforestal y Genética, IDINE, UCLM, Albacete, Spain
| | - Carmen Gil-Gas
- Stem Cell Laboratory, Departamento Ciencias Médicas, CRIB, UCLM, Albacete, Spain
| | | | - Carmen Alvarez-Simon
- Stem Cell Laboratory, Departamento Ciencias Médicas, CRIB, UCLM, Albacete, Spain
| | - Jorge Cuenca-Escalona
- Cancer Stem Cell Laboratory, HST Group, Biotechnology and V Biology Department, ETSIAAB, UPM, Madrid, Spain
| | - Ana Ferrer Perez
- Current address: Oncology Division, Hospital Obispo Polanco, Teruel, Spain
| | - Enrique Arias
- Departamento de Sistemas Informáticos, UCLM, Albacete, Spain
| | | | - Francisco Sánchez-Sánchez
- Genética Médica, Departamento de Ciencia y Tecnología Agroforestal y Genética, IDINE, UCLM, Albacete, Spain
| | - Carmen Ramirez-Castillejo
- Stem Cell Laboratory, Departamento Ciencias Médicas, CRIB, UCLM, Albacete, Spain.,Cancer Stem Cell Laboratory, HST Group, Biotechnology and V Biology Department, ETSIAAB, UPM, Madrid, Spain
| |
Collapse
|
5
|
Influence of cued-fear conditioning and its impairment on NREM sleep. Neurobiol Learn Mem 2017; 144:155-165. [PMID: 28733208 DOI: 10.1016/j.nlm.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/30/2017] [Accepted: 07/15/2017] [Indexed: 01/03/2023]
Abstract
Many studies suggest that fear conditioning influences sleep. It is, however, not known if the changes in sleep architecture after fear conditioning are essentially associated with the consolidation of fearful memory or with fear itself. Here, we have observed that within sleep, NREM sleep consistently remained augmented after the consolidation of cued fear-conditioned memory. But a similar change did not occur after impairing memory consolidation by blocking new protein synthesis and glutamate transmission between glial-neuronal loop in the lateral amygdala (LA). Anisomycin (a protein synthesis inhibitor) and DL-α-amino-adipic acid (DL- α -AA) (a glial glutamine synthetase enzyme inhibitor) were microinjected into the LA soon after cued fear-conditioning to induce memory impairment. On the post-conditioning day, animals in both the groups exhibited significantly less freezing. In memory-consolidated groups (vehicle groups), NREM sleep significantly increased during 2nd to 5th hours after training compared to their baseline days. However, in memory impaired groups (anisomycin and DL- α -AA microinjected groups), similar changes were not observed. Our results thus suggest that changes in sleep architecture after cued fear-conditioning are indeed a consolidation dependent event.
Collapse
|