1
|
Kim HJ, Kwak JH, Choi JS, Kim J, Moon SY, Lee SHS, Lee H, Park K, Lee JY, Won SY. Subretinal delivery of AAV5-mediated human Pde6b gene ameliorates the disease phenotype in a rat model of retinitis pigmentosa. Mol Vis 2025; 31:127-141. [PMID: 40384764 PMCID: PMC12085214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/27/2025] [Indexed: 05/20/2025] Open
Abstract
Purpose A genetic disorder that affects the beta subunit of cyclic guanosine monophosphate-phosphodiesterase type 6 (PDE6B) in humans leads to autosomal recessive retinitis pigmentosa (RP). This condition causes severe vision loss in early life due to fast deterioration of photoreceptors. This study evaluated the therapeutic potential of subretinal delivery of the adeno-associated virus (AAV)5-mediated human Pde6b gene in an RP rat model caused by Pde6b gene knockout (KO). Methods We compared the transduction efficiency and tropism of different AAV serotypes (2, 5 and 8) in Pde6b KO rats and found that AAV5 had the highest and most specific expression in photoreceptors. We injected AAV5-Pde6b into the subretinal space of Pde6b KO rats on postnatal day 21. We assessed the protective effects six weeks postinjection by measuring PDE6B protein expression, photoreceptor structure, retinal morphology and thickness, retinal pigment epithelium integrity and visual function. Results AAV5-Pde6b treatment ameliorated the disease phenotype in Pde6b KO rats by restoring PDE6B protein expression, preserving photoreceptor structure, improving retinal morphology and thickness, and maintaining retinal pigment epithelium integrity. Functional analysis of vision by scotopic electroretinogram (ERG) and optokinetic nystagmus revealed that AAV5-Pde6b treatment significantly improved the visual function of Pde6b gene KO rats compared with AAV5-GFP-injected Pde6b KO rats. Conclusions Our results demonstrate that AAV5-Pde6b may be a potential therapeutic gene candidate for RP caused by Pde6b mutations.
Collapse
Affiliation(s)
- Hee Jong Kim
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Ji Hoon Kwak
- Department of Ophthalmology, Asan Medical Center, University of Ulsan, College of Medicine, Republic of Korea
- Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Republic of Korea
| | - Jun Sub Choi
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Jin Kim
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Seo Yun Moon
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Steven Hyun Seung Lee
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Heuiran Lee
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Keerang Park
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan, College of Medicine, Republic of Korea
- Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Republic of Korea
| | - So-Yoon Won
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| |
Collapse
|
2
|
Rahman B, Anderson DMG, Chen C, Liu J, Migas LG, Van de Plas R, Schey KL, Kono M, Fan J, Koutalos Y. Sphingolipid Levels and Processing of the Retinyl Chromophore in the Retina of a Mouse Model of Niemann-Pick Disease. Invest Ophthalmol Vis Sci 2024; 65:24. [PMID: 39661357 PMCID: PMC11640910 DOI: 10.1167/iovs.65.14.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Mutations in the gene that encodes the enzyme acid sphingomyelinase (ASMase) are associated with Niemann-Pick disease, a lysosomal storage disorder. Mice that lack ASMase (ASMase-/-) exhibit age-related retinal degeneration and large increases in accumulation of lipofuscin in the retinal pigment epithelium (RPE). We examined which lipid species accumulate in the retina and the RPE of ASMase-/- mice and whether the retinal degeneration is associated with impaired photoreceptor metabolism and retinyl chromophore processing. Methods NADPH availability and all-trans retinol formation after rhodopsin bleaching were measured in isolated single rod photoreceptors with fluorescence imaging; sphingolipid levels in retinas and RPEs were measured with LC/MS; relative abundances of different lipid species in different retinal layers were measured with MALDI imaging mass spectrometry. Results There was no detectable difference in the kinetics of all-trans retinol formation or the NADPH-generating capacity between ASMase-/- and wild-type mice. Sphingomyelin levels were much higher in the retinas and RPEs of ASMase-/- animals compared to wild type, but there were no significant differences for ceramides. There was a large increase in the abundance of bis(monoacylglycero)phosphates (BMPs) in ASMase-/- mice, indicative of lysosomal dysfunction, but no substantial changes were detected for the bis-retinoid A2E. Conclusions Lysosomal dysfunction and retinal degeneration in ASMase-/- mice are not associated with defects in rod photoreceptor metabolism that affect all-trans retinol formation and availability of NADPH. Lysosomal dysfunction in ASMase-/- mice is not associated with bis-retinoid A2E accumulation.
Collapse
Affiliation(s)
- Bushra Rahman
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - David M. G. Anderson
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, Unites States
| | - Chunhe Chen
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jian Liu
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Lukasz G. Migas
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Raf Van de Plas
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Kevin L. Schey
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, Unites States
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jie Fan
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
3
|
Lipofuscin Granule Bisretinoid Oxidation in the Human Retinal Pigment Epithelium forms Cytotoxic Carbonyls. Int J Mol Sci 2021; 23:ijms23010222. [PMID: 35008647 PMCID: PMC8745408 DOI: 10.3390/ijms23010222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of central blindness among the elderly. AMD is associated with progressive accumulation of lipofuscin granules in retinal pigment epithelium (RPE) cells. Lipofuscin contains bisretinoid fluorophores, which are photosensitizers and are phototoxic to RPE and neuroretinal cells. In the presence of oxygen, bisretinoids are also oxidized, forming various products, consisting primarily of aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that in AMD, bisretinoid oxidation products are increased in RPE lipofuscin granules. The purpose of the present study was to determine if these products were toxic to cellular structures. The physicochemical characteristics of bisretinoid oxidation products in lipofuscin, which were obtained from healthy donor eyes, were studied. Raman spectroscopy and time-of-flight secondary ion mass spectrometry (ToF–SIMS) analysis identified the presence of free-state aldehydes and ketones within the lipofuscin granules. Together, fluorescence spectroscopy, high-performance liquid chromatography, and mass spectrometry revealed that bisretinoid oxidation products have both hydrophilic and amphiphilic properties, allowing their diffusion through lipofuscin granule membrane into the RPE cell cytoplasm. These products contain cytotoxic carbonyls, which can modify cellular proteins and lipids. Therefore, bisretinoid oxidation products are a likely aggravating factor in the pathogenesis of AMD.
Collapse
|
4
|
Chen C, Kono M, Koutalos Y. Photooxidation mediated by 11- cis and all- trans retinal in single isolated mouse rod photoreceptors. Photochem Photobiol Sci 2020; 19:1300-1307. [PMID: 32812970 DOI: 10.1039/d0pp00060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal, the vitamin A aldehyde, is a potent photosensitizer that plays a major role in light-induced damage to vertebrate photoreceptors. 11-Cis retinal is the light-sensitive chromophore of rhodopsin, the photopigment of vertebrate rod photoreceptors. It is isomerized by light to all-trans, activating rhodopsin and beginning the process of light detection. All-trans retinal is released by activated rhodopsin, allowing its regeneration by fresh 11-cis retinal continually supplied to photoreceptors. The released all-trans retinal is reduced to all-trans retinol in a reaction using NADPH. We have examined the photooxidation mediated by 11-cis and all-trans retinal in single living rod photoreceptors isolated from mouse retinas. Photooxidation was measured with fluorescence imaging from the oxidation of internalized BODIPY C11, a fluorescent dye whose fluorescence changes upon oxidation. We found that photooxidation increased with the concentration of exogenously added 11-cis or all-trans retinal to metabolically compromised rod outer segments that lacked NADPH supply. In dark-adapted metabolically intact rod outer segments with access to NADPH, there was no significant increase in photooxidation following exposure of the cell to light, but there was significant increase following addition of exogenous 11-cis retinal. The results indicate that both 11-cis and all-trans retinal can mediate light-induced damage in rod photoreceptors. In metabolically intact cells, the removal of the all-trans retinal generated by light through its reduction to retinol minimizes all-trans retinal-mediated photooxidation. However, because the enzymatic machinery of the rod outer segment cannot remove 11-cis retinal, 11-cis-retinal-mediated photooxidation may play a significant role in light-induced damage to photoreceptor cells.
Collapse
Affiliation(s)
- Chunhe Chen
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, Charleston, SC 29425, USA.
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, Charleston, SC 29425, USA.
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Taveau N, Cubizolle A, Guillou L, Pinquier N, Moine E, Cia D, Kalatzis V, Vercauteren J, Durand T, Crauste C, Brabet P. Preclinical pharmacology of a lipophenol in a mouse model of light-induced retinopathy. Exp Mol Med 2020; 52:1090-1101. [PMID: 32641711 PMCID: PMC8080701 DOI: 10.1038/s12276-020-0460-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Environmental light has deleterious effects on the outer retina in human retinopathies, such as ABCA4-related Stargardt’s disease and dry age-related macular degeneration. These effects involve carbonyl and oxidative stress, which contribute to retinal cell death and vision loss. Here, we used an albino Abca4−/− mouse model, the outer retina of which shows susceptibility to acute photodamage, to test the protective efficacy of a new polyunsaturated fatty acid lipophenol derivative. Anatomical and functional analyses demonstrated that a single intravenous injection of isopropyl-phloroglucinol-DHA, termed IP-DHA, dose-dependently decreased light-induced photoreceptor degeneration and preserved visual sensitivity. This protective effect persisted for 3 months. IP-DHA did not affect the kinetics of the visual cycle in vivo or the activity of the RPE65 isomerase in vitro. Moreover, IP-DHA administered by oral gavage showed significant protection of photoreceptors against acute light damage. In conclusion, short-term tests in Abca4-deficient mice, following single-dose administration and light exposure, identify IP-DHA as a therapeutic agent for the prevention of retinal degeneration. Treating retinal damage in both aging and young patients might now be easier, thanks to treatment with a lipophenol, an omega-3 fatty acid linked to an antioxidant. The retina is the part of the eye that senses light, aided by light-sensitive pigments. However, these light-sensitive pigments can be converted by light to toxic byproducts, and in some individuals, these toxic byproducts can accumulate, damaging the retina and leading to vision loss. Philippe Brabet at the Montpellier Institute of Neuroscience in France and co-workers found that lipophenol treatment protected retinal cells from damage in a mouse model of retinal disease, and that a single dose has been effective in preserving vision. These results may help in finding new treatments for retinal diseases such as Stargardt disease and age-related macular degeneration.
Collapse
Affiliation(s)
- Nicolas Taveau
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France.,Université de Montpellier, F-34091, Montpellier, France
| | - Aurélie Cubizolle
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France.,Université de Montpellier, F-34091, Montpellier, France
| | - Laurent Guillou
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France.,Université de Montpellier, F-34091, Montpellier, France
| | - Nicolas Pinquier
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France
| | - Espérance Moine
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247 - Université de Montpellier, CNRS, ENSCM, F-34095, Montpellier, France
| | - David Cia
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107, Facultés de Médecine et de Pharmacie, F-63001, Clermont-Ferrand, France
| | - Vasiliki Kalatzis
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France.,Université de Montpellier, F-34091, Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247 - Université de Montpellier, CNRS, ENSCM, F-34095, Montpellier, France
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247 - Université de Montpellier, CNRS, ENSCM, F-34095, Montpellier, France
| | - Céline Crauste
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247 - Université de Montpellier, CNRS, ENSCM, F-34095, Montpellier, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France. .,Université de Montpellier, F-34091, Montpellier, France.
| |
Collapse
|
6
|
Pawlak AM, Olchawa M, Koscielniak A, Zadlo A, Broniec A, Oles T, Sarna TJ. Oxidized Lipids Decrease Phagocytic Activity of ARPE‐19 Cells In Vitro. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anna M. Pawlak
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Magdalena Olchawa
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Anna Koscielniak
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical EngineeringAGH‐University of Science and Technology30‐059 KrakówPoland
| | - Andrzej Zadlo
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Agnieszka Broniec
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Tomasz Oles
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Tadeusz J. Sarna
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| |
Collapse
|
7
|
Chen C, Adler L, Goletz P, Gonzalez-Fernandez F, Thompson DA, Koutalos Y. Interphotoreceptor retinoid-binding protein removes all- trans-retinol and retinal from rod outer segments, preventing lipofuscin precursor formation. J Biol Chem 2017; 292:19356-19365. [PMID: 28972139 DOI: 10.1074/jbc.m117.795187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is a specialized lipophilic carrier that binds the all-trans and 11-cis isomers of retinal and retinol, and this facilitates their transport between photoreceptors and cells in the retina. One of these retinoids, all-trans-retinal, is released in the rod outer segment by photoactivated rhodopsin after light excitation. Following its release, all-trans-retinal is reduced by the retinol dehydrogenase RDH8 to all-trans-retinol in an NADPH-dependent reaction. However, all-trans-retinal can also react with outer segment components, sometimes forming lipofuscin precursors, which after conversion to lipofuscin accumulate in the lysosomes of the retinal pigment epithelium and display cytotoxic effects. Here, we have imaged the fluorescence of all-trans-retinol, all-trans-retinal, and lipofuscin precursors in real time in single isolated mouse rod photoreceptors. We found that IRBP removes all-trans-retinol from individual rod photoreceptors in a concentration-dependent manner. The rate constant for retinol removal increased linearly with IRBP concentration with a slope of 0.012 min-1 μm-1 IRBP also removed all-trans-retinal, but with much less efficacy, indicating that the reduction of retinal to retinol promotes faster clearance of the photoisomerized rhodopsin chromophore. The presence of physiological IRBP concentrations in the extracellular medium resulted in lower levels of all-trans-retinal and retinol in rod outer segments following light exposure. It also prevented light-induced lipofuscin precursor formation, but it did not remove precursors that were already present. These findings reveal an important and previously unappreciated role of IRBP in protecting the photoreceptor cells against the cytotoxic effects of accumulated all-trans-retinal.
Collapse
Affiliation(s)
- Chunhe Chen
- From the Departments of Ophthalmology and Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Leopold Adler
- From the Departments of Ophthalmology and Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Patrice Goletz
- From the Departments of Ophthalmology and Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Federico Gonzalez-Fernandez
- the Departments of Ophthalmology and Pathology, University of Mississippi and G. V. (Sonny) Montgomery Veterans Affairs Medical Centers, Jackson, Mississippi 39216, and
| | - Debra A Thompson
- the Departments of Ophthalmology and Visual Sciences, and Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48105
| | - Yiannis Koutalos
- From the Departments of Ophthalmology and Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425,
| |
Collapse
|