1
|
Yuan CY, Zuo L, Dong YC, Liu BX, Qi H. Secretogranin III: a promising therapeutic target for intraocular neovascular lesions. Int Ophthalmol 2025; 45:26. [PMID: 39832055 PMCID: PMC11746947 DOI: 10.1007/s10792-024-03393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE The purpose of this study is to investigate the role of Secretogranin III (Scg3) in the pathogenesis of intraocular neovascular diseases and assess its potential as a therapeutic target for novel treatment strategies. METHODS A literature review was conducted to examine the expression of Scg3 in intraocular neovascular diseases. We reviewed studies on the interaction of Scg3 with its homologous receptors and its effect on endothelial cell proliferation, migration, and vascular permeability-key processes involved in angiogenesis and neovascularization. RESULTS Scg3 was found to be upregulated in the tissues affected by diabetic retinopathy (DR), retinopathy of prematurity (ROP), and choroidal neovascularization. In DR, Scg3 expression was linked to retinal neovascularization, where it facilitated endothelial cell proliferation and migration, essential processes for the formation of new blood vessels. Similarly, in ROP, Scg3 was associated with fibrovascular tissue proliferation within avascular retinal zones, contributing to the pathological neovascularization seen in premature infants. In the context of age-related macular degeneration (AMD), Scg3 appeared to play a role in choroidal neovascularization, where it promoted the invasion of choroidal capillaries into the retinal pigment epithelium. Furthermore, Scg3's binding to its homologous receptors was shown to enhance vascular permeability, potentially exacerbating fluid leakage and edema in these diseases, which is a hallmark of exudative conditions. Collectively, these findings suggest that Scg3 plays a pivotal role in driving angiogenesis and vascular permeability in intraocular neovascular diseases CONCLUSION: The upregulation of Scg3 in DR, ROP, and choroidal neovascularization highlights its potential as a novel therapeutic target. Inhibition of Scg3 could offer a new avenue for treating these sight-threatening conditions.
Collapse
Affiliation(s)
- Chao-Yi Yuan
- Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Ling Zuo
- Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Yu-Chen Dong
- Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Bao-Xing Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Hui Qi
- Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China.
| |
Collapse
|
2
|
Huang C, Waduge P, Kaur A, Tian H, Weng CY, Stout JT, Pang IH, Webster KA, Li W. Optimal Humanized Scg3-Neutralizing Antibodies for Anti-Angiogenic Therapy of Diabetic Retinopathy. Int J Mol Sci 2024; 25:9507. [PMID: 39273454 PMCID: PMC11394726 DOI: 10.3390/ijms25179507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Secretogranin III (Scg3) is a diabetic retinopathy (DR)-restricted angiogenic factor identified in preclinical studies as a target for DR therapy. Previously, our group generated and characterized ML49.3, an anti-Scg3 monoclonal antibody (mAb) which we then converted into an EBP2 humanized antibody Fab fragment (hFab) with potential for clinical application. We also generated anti-Scg3 mT4 mAb and related EBP3 hFab. In this study, to identify the preferred hFab for DR therapy, we compared all four antibodies for binding, neutralizing and therapeutic activities in vitro and in vivo. Octet binding kinetics analyses revealed that ML49.3 mAb, EBP2 hFab, mT4 mAb and EBP3 hFab have Scg3-binding affinities of 35, 8.7, 0.859 and 0.116 nM, respectively. Both anti-Scg3 EBP2 and EBP3 hFabs significantly inhibited Scg3-induced proliferation and migration of human umbilical vein endothelial cells in vitro, and alleviated DR vascular leakage and choroidal neovascularization with high efficacy. Paired assays in DR mice revealed that intravitreally injected EBP3 hFab is 26.4% and 10.3% more effective than EBP2 hFab and aflibercept, respectively, for ameliorating DR leakage. In conclusion, this study confirms the markedly improved binding affinities of hFabs compared to mAbs and further identifies EBP3 hFab as the preferred antibody to develop for anti-Scg3 therapy.
Collapse
Affiliation(s)
- Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Avinash Kaur
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX 77098, USA
| | - Christina Y. Weng
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - John Timothy Stout
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Iok-Hou Pang
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas, Fort Worth, TX 76107, USA
| | - Keith A. Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Everglades Biopharma, LLC, Houston, TX 77098, USA
- Department of Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Shen T, Lin R, Hu C, Yu D, Ren C, Li T, Zhu M, Wan Z, Su T, Wu Y, Cai W, Yu J. Succinate-induced macrophage polarization and RBP4 secretion promote vascular sprouting in ocular neovascularization. J Neuroinflammation 2023; 20:308. [PMID: 38129891 PMCID: PMC10734053 DOI: 10.1186/s12974-023-02998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Pathological neovascularization is a pivotal biological process in wet age-related macular degeneration (AMD), retinopathy of prematurity (ROP) and proliferative diabetic retinopathy (PDR), in which macrophages (Mφs) play a key role. Tip cell specialization is critical in angiogenesis; however, its interconnection with the surrounding immune environment remains unclear. Succinate is an intermediate in the tricarboxylic acid (TCA) cycle and was significantly elevated in patients with wet AMD by metabolomics. Advanced experiments revealed that SUCNR1 expression in Mφ and M2 polarization was detected in abnormal vessels of choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR) models. Succinate-induced M2 polarization via SUCNR1, which facilitated vascular endothelial cell (EC) migration, invasion, and tubulation, thus promoting angiogenesis in pathological neovascularization. Furthermore, evidence indicated that succinate triggered the release of RBP4 from Mφs into the surroundings to regulate endothelial sprouting and pathological angiogenesis via VEGFR2, a marker of tip cell formation. In conclusion, our results suggest that succinate represents a novel class of vasculature-inducing factors that modulate Mφ polarization and the RBP4/VEGFR2 pathway to induce pathological angiogenic signaling through tip cell specialization.
Collapse
Affiliation(s)
- Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ruoyi Lin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tu Su
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China.
| |
Collapse
|
4
|
Sun KX, Chen YY, Li Z, Zheng SJ, Wan WJ, Ji Y, Hu K. Genipin relieves diabetic retinopathy by down-regulation of advanced glycation end products via the mitochondrial metabolism related signaling pathway. World J Diabetes 2023; 14:1349-1368. [PMID: 37771331 PMCID: PMC10523227 DOI: 10.4239/wjd.v14.i9.1349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Glycation is an important step in aging and oxidative stress, which can lead to endothelial dysfunction and cause severe damage to the eyes or kidneys of diabetics. Inhibition of the formation of advanced glycation end products (AGEs) and their cell toxicity can be a useful therapeutic strategy in the prevention of diabetic retinopathy (DR). Gardenia jasminoides Ellis (GJE) fruit is a selective inhibitor of AGEs. Genipin is an active compound of GJE fruit, which can be employed to treat diabetes. AIM To confirm the effect of genipin, a vital component of GJE fruit, in preventing human retinal microvascular endothelial cells (hRMECs) from AGEs damage in DR, to investigate the effect of genipin in the down-regulation of AGEs expression, and to explore the role of the CHGA/UCP2/glucose transporter 1 (GLUT1) signal pathway in this process. METHODS In vitro, cell viability was tested to determine the effects of different doses of glucose and genipin in hRMECs. Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, immunofluorescence, wound healing assay, transwell assay, and tube-forming assay were used to detect the effect of genipin on hRMECs cultured in high glucose conditions. In vivo, streptozotocin (STZ) induced mice were used, and genipin was administered by intraocular injection (IOI). To explore the effect and mechanism of genipin in diabetic-induced retinal dysfunction, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) assays were performed to explore energy metabolism and oxidative stress damage in high glucose-induced hRMECs and STZ mouse retinas. Immunofluorescence and Western blot were used to investigate the expression of inflammatory cytokines [vascular endothelial growth factor (VEGF), SCG3, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-18, and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3 (NLRP3)]. The protein expression of the receptor of AGEs (RAGE) and the mitochondria-related signal molecules CHGA, GLUT1, and UCP2 in high glucose-induced hRMECs and STZ mouse retinas were measured and compared with the genipin-treated group. RESULTS The results of CCK-8 and colony formation assay showed that genipin promoted cell viability in high glucose (30 mmol/L D-Glucose)-induced hRMECs, especially at a 0.4 μmol/L dose for 7 d. Flow cytometry results showed that high glucose can increase apoptosis rate by 30%, and genipin alleviated cell apoptosis in AGEs-induced hRMECs. A high glucose environment promoted ATP, ROS, MMP, and 2-NBDG levels, while genipin inhibited these phenotypic abnormalities in AGEs-induced hRMECs. Furthermore, genipin remarkably reduced the levels of the pro-inflammatory cytokines TNF-α, IL-1β, IL-18, and NLRP3 and impeded the expression of VEGF and SCG3 in AGEs-damaged hRMECs. These results showed that genipin can reverse high glucose induced damage with regard to cell proliferation and apoptosis in vitro, while reducing energy metabolism, oxidative stress, and inflammatory injury caused by high glucose. In addition, ROS levels and glucose uptake levels were higher in the retina from the untreated eye than in the genipin-treated eye of STZ mice. The expression of inflammatory cytokines and pathway protein in the untreated eye compared with the genipin-treated eye was significantly increased, as measured by Western blot. These results showed that IOI of genipin reduced the expression of CHGA, UCP2, and GLUT1, maintained the retinal structure, and decreased ROS, glucose uptake, and inflammation levels in vivo. In addition, we found that SCG3 expression might have a higher sensitivity in DR than VEGF as a diagnostic marker at the protein level. CONCLUSION Our study suggested that genipin ameliorates AGEs-induced hRMECs proliferation, apoptosis, energy metabolism, oxidative stress, and inflammatory injury, partially via the CHGA/UCP2/GLUT1 pathway. Control of advanced glycation by IOI of genipin may represent a strategy to prevent severe retinopathy and vision loss.
Collapse
Affiliation(s)
- Ke-Xin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan-Yi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhen Li
- Department of Ophthalmology, The People’s Hospital of Leshan, Leshan 400000, Sichuan Province, China
| | - Shi-Jie Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wen-Juan Wan
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Ji
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Hu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Huang C, Ji L, Kaur A, Tian H, Waduge P, Webster KA, Li W. Anti-Scg3 Gene Therapy to Treat Choroidal Neovascularization in Mice. Biomedicines 2023; 11:1910. [PMID: 37509549 PMCID: PMC10377229 DOI: 10.3390/biomedicines11071910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) with choroidal neovascularization (CNV) is a leading cause of blindness in the elderly in developed countries. The disease is currently treated with anti-angiogenic biologics, including aflibercept, against vascular endothelial growth factor (VEGF) but with limited efficacy, treatment resistance and requirement for frequent intravitreal injections. Although anti-VEGF gene therapy may provide sustained therapy that obviates multiple injections, the efficacy and side effects related to VEGF pathway targeting remain, and alternative strategies to block angiogenesis independently of VEGF are needed. We recently reported that secretogranin III (Scg3) induces only pathological angiogenesis through VEGF-independent pathways, and Scg3-neutralizing antibodies selectively inhibit pathological but not physiological angiogenesis in mouse proliferative retinopathy models. Anti-Scg3 antibodies synergize dose-dependently with VEGF inhibitors in a CNV model. Here, we report that an adeno-associated virus-8 (AAV8) vector expressing anti-Scg3 Fab ameliorated CNV with an efficacy similar to that of AAV-aflibercept in a mouse model. This study is the first to test an anti-angiogenic gene therapy protocol that selectively targets pathological angiogenesis via a VEGF-independent mechanism. The findings support further safety/efficacy studies of anti-Scg3 gene therapy as monotherapy or combined with anti-VEGF to treat nAMD.
Collapse
Affiliation(s)
- Chengchi Huang
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liyang Ji
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Avinash Kaur
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX 77098, USA
| | - Prabuddha Waduge
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keith A. Webster
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Everglades Biopharma, LLC, Houston, TX 77098, USA
- Department of Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wei Li
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Fluorescence Angiography with Dual Fluorescence for the Early Detection and Longitudinal Quantitation of Vascular Leakage in Retinopathy. Biomedicines 2023; 11:biomedicines11020293. [PMID: 36830829 PMCID: PMC9953145 DOI: 10.3390/biomedicines11020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) afflicts more than 93 million people worldwide and is a leading cause of vision loss in working adults. While DR therapies are available, early DR development may go undetected without treatment due to the lack of sufficiently sensitive tools. Therefore, early detection is critically important to enable efficient treatment before progression to vision-threatening complications. A major clinical manifestation of early DR is retinal vascular leakage that may progress from diffuse to more localized focal leakage, leading to increased retinal thickness and diabetic macular edema (DME). In preclinical research, a hallmark of DR in mouse models is diffuse retinal leakage without increased thickness or DME, which limits the utility of optical coherence tomography and fluorescein angiography (FA) for early detection. The Evans blue assay detects diffuse leakage but requires euthanasia, which precludes longitudinal studies in the same animals. METHODS We developed a new modality of ratiometric fluorescence angiography with dual fluorescence (FA-DF) to reliably detect and longitudinally quantify diffuse retinal vascular leakage in mouse models of induced and spontaneous DR. RESULTS These studies demonstrated the feasibility and sensitivity of FA-DF in detecting and quantifying retinal vascular leakage in the same mice over time during DR progression in association with chronic hyperglycemia and age. CONCLUSIONS These proof-of-concept studies demonstrated the promise of FA-DF as a minimally invasive method to quantify DR leakage in preclinical mouse models longitudinally.
Collapse
|
7
|
Zhang Z, Shen MM, Fu Y. Combination of AIBP, apoA-I, and Aflibercept Overcomes Anti-VEGF Resistance in Neovascular AMD by Inhibiting Arteriolar Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 36318195 PMCID: PMC9639697 DOI: 10.1167/iovs.63.12.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose Anti-VEGF resistance represents a major unmet clinical need in the management of choroidal neovascularization (CNV). We have previously reported that a combination of AIBP, apoA-I, and an anti-VEGF antibody overcomes anti-VEGF resistance in laser-induced CNV in old mice in prevention experiments. The purpose of this work is to conduct a more clinically relevant study to assess the efficacy of the combination of AIBP, apoA-I, and aflibercept in the treatment of anti-VEGF resistance of experimental CNV at different time points after laser photocoagulation. Methods To understand the pathobiology of anti-VEGF resistance, we performed comprehensive examinations of the vascular morphology of laser-induced CNV in young mice that are highly responsive to anti-VEGF treatment, and in old mice that are resistant to anti-VEGF therapy by indocyanine green angiography (ICGA), fluorescein angiography (FA), optical coherence tomography (OCT), and Alexa 568 isolectin labeled choroid flatmounts. We examined the efficacy of the combination therapy of AIBP, apoA-I, and aflibercept intravitreally delivered at 2, 4, and 7 days after laser photocoagulation in the treatment of CNV in old mice. Results Laser-induced CNV in young and old mice exhibited cardinal features of capillary and arteriolar CNV, respectively. The combination therapy and the aflibercept monotherapy were equally effective in treating capillary CNV in young mice. In old mice, the combination therapy was effective in treating anti-VEGF resistance by potently inhibiting arteriolar CNV, whereas aflibercept monotherapy was ineffective. Conclusions Combination therapy of AIBP, apoA-I, and aflibercept overcomes anti-VEGF resistance in experimental CNV in old mice by inhibiting arteriolar CNV.
Collapse
Affiliation(s)
- Zhao Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Megan M. Shen
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Yingbin Fu
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
8
|
Ji L, Waduge P, Wan W, Tian H, Li J, Zhang J, Chen R, Li W. Comparative ligandomics implicates secretogranin III as a disease‐restricted angiogenic factor in laser‐induced choroidal neovascularization. FEBS J 2022; 289:3521-3534. [DOI: 10.1111/febs.16356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Liyang Ji
- Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston TX USA
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
- Department of Ophthalmology The Fourth Affiliated Hospital of China Medical University Shenyang Liaoning China
| | - Prabuddha Waduge
- Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston TX USA
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
| | - Wencui Wan
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
- Department of Ophthalmology First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Hong Tian
- Everglades Biopharma, LLC Houston TX USA
| | - Jin Li
- Department of Molecular & Human Genetics Baylor College of Medicine Houston TX USA
| | - Jinsong Zhang
- Department of Ophthalmology The Fourth Affiliated Hospital of China Medical University Shenyang Liaoning China
| | - Rui Chen
- Department of Molecular & Human Genetics Baylor College of Medicine Houston TX USA
| | - Wei Li
- Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston TX USA
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
| |
Collapse
|
9
|
Dai C, Waduge P, Ji L, Huang C, He Y, Tian H, Zuniga-Sanchez E, Bhatt A, Pang IH, Su G, Webster KA, Li W. Secretogranin III stringently regulates pathological but not physiological angiogenesis in oxygen-induced retinopathy. Cell Mol Life Sci 2022; 79:63. [PMID: 35006382 PMCID: PMC9007175 DOI: 10.1007/s00018-021-04111-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 01/12/2023]
Abstract
Conventional angiogenic factors, such as vascular endothelial growth factor (VEGF), regulate both pathological and physiological angiogenesis indiscriminately, and their inhibitors may elicit adverse side effects. Secretogranin III (Scg3) was recently reported to be a diabetes-restricted VEGF-independent angiogenic factor, but the disease selectivity of Scg3 in retinopathy of prematurity (ROP), a retinal disease in preterm infants with concurrent pathological and physiological angiogenesis, was not defined. Here, using oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, we quantified an exclusive binding of Scg3 to diseased versus healthy developing neovessels that contrasted sharply with the ubiquitous binding of VEGF. Functional immunohistochemistry visualized Scg3 binding exclusively to disease-related disorganized retinal neovessels and neovascular tufts, whereas VEGF bound to both disorganized and well-organized neovessels. Homozygous deletion of the Scg3 gene showed undetectable effects on physiological retinal neovascularization but markedly reduced the severity of OIR-induced pathological angiogenesis. Furthermore, anti-Scg3 humanized antibody Fab (hFab) inhibited pathological angiogenesis with similar efficacy to anti-VEGF aflibercept. Aflibercept dose-dependently blocked physiological angiogenesis in neonatal retinas, whereas anti-Scg3 hFab was without adverse effects at any dose and supported a therapeutic window at least 10X wider than that of aflibercept. Therefore, Scg3 stringently regulates pathological but not physiological angiogenesis, and anti-Scg3 hFab satisfies essential criteria for development as a safe and effective disease-targeted anti-angiogenic therapy for ROP.
Collapse
Affiliation(s)
- Chang Dai
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Ye He
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX, USA
| | | | - Amit Bhatt
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Texas Children Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Iok-Hou Pang
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas, Fort Worth, TX, USA
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, Jilin, China
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
- Everglades Biopharma, LLC, Houston, TX, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
10
|
Ji L, Waduge P, Hao L, Kaur A, Wan W, Wu Y, Tian H, Zhang J, Webster KA, Li W. Selectively targeting disease-restricted secretogranin III to alleviate choroidal neovascularization. FASEB J 2022; 36:e22106. [PMID: 34918375 PMCID: PMC8694659 DOI: 10.1096/fj.202101085rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
Choroidal neovascularization (CNV), a leading cause of blindness in the elderly, is routinely treated with vascular endothelial growth factor (VEGF) inhibitors that have limited efficacy and potentially adverse side effects. An unmet clinical need is to develop novel therapies against other angiogenic factors for alternative or combination treatment to improve efficacy and safety. We recently described secretogranin III (Scg3) as a disease-selective angiogenic factor, causally linked to diabetic retinopathy and acting independently of the VEGF pathway. An important question is whether such a disease-selective Scg3 pathway contributes to other states of pathological angiogenesis beyond diabetic retinopathy. By applying a novel in vivo endothelial ligand binding assay, we found that the binding of Scg3 to CNV vessels in live mice was markedly increased over background binding to healthy choriocapillaris and blocked by an Scg3-neutralizing antibody, whereas VEGF showed no such differential binding. Intravitreal injection of anti-Scg3 humanized antibody Fab (hFab) inhibited Matrigel-induced CNV with similar efficacy to the anti-VEGF drug aflibercept. Importantly, a combination of anti-Scg3 hFab and aflibercept synergistically alleviated CNV. Homozygous deletion of the Scg3 gene markedly reduced CNV severity and abolished the therapeutic activity of anti-Scg3 hFab, but not aflibercept, suggesting a role for Scg3 in VEGF-independent CNV pathogenesis and therapy. Our work demonstrates the stringent disease selectivity of Scg3 binding and positions anti-Scg3 hFab as a next-generation disease-targeted anti-angiogenic therapy for CNV.
Collapse
Affiliation(s)
- Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL.,Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL
| | - Lili Hao
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL.,Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Avinash Kaur
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL
| | - Wencui Wan
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL.,Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Wu
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX
| | - Jinsong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Keith A. Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL.,Everglades Biopharma, LLC, Houston, TX
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
11
|
Dai C, Webster KA, Bhatt A, Tian H, Su G, Li W. Concurrent Physiological and Pathological Angiogenesis in Retinopathy of Prematurity and Emerging Therapies. Int J Mol Sci 2021; 22:4809. [PMID: 34062733 PMCID: PMC8124946 DOI: 10.3390/ijms22094809] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is an ocular vascular disease affecting premature infants, characterized by pathological retinal neovascularization (RNV), dilated and tortuous retinal blood vessels, and retinal or vitreous hemorrhages that may lead to retinal detachment, vision impairment and blindness. Compared with other neovascular diseases, ROP is unique because of ongoing and concurrent physiological and pathological angiogenesis in the developing retina. While the disease is currently treated by laser or cryotherapy, anti-vascular endothelial growth factor (VEGF) agents have been extensively investigated but are not approved in the U.S. because of safety concerns that they negatively interfere with physiological angiogenesis of the developing retina. An ideal therapeutic strategy would selectively inhibit pathological but not physiological angiogenesis. Our group recently described a novel strategy that selectively and safely alleviates pathological RNV in animal models of ROP by targeting secretogranin III (Scg3), a disease-restricted angiogenic factor. The preclinical profile of anti-Scg3 therapy presents a high potential for next-generation disease-targeted anti-angiogenic therapy for the ROP indication. This review focuses on retinal vessel development in neonates, the pathogenesis of ROP and its underlying molecular mechanisms, including different animal models, and provides a summary of current and emerging therapies.
Collapse
Affiliation(s)
- Chang Dai
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (C.D.); (K.A.W.); (A.B.)
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Keith A. Webster
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (C.D.); (K.A.W.); (A.B.)
- Department of Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA
- Everglades Biopharma, LLC, Houston, TX 77030, USA;
| | - Amit Bhatt
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (C.D.); (K.A.W.); (A.B.)
- Texas Children Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX 77030, USA;
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (C.D.); (K.A.W.); (A.B.)
| |
Collapse
|
12
|
Zhang J, Mao K, Gu Q, Wu X. The Antiangiogenic Effect of Sanguinarine Chloride on Experimental Choroidal Neovacularization in Mice via Inhibiting Vascular Endothelial Growth Factor. Front Pharmacol 2021; 12:638215. [PMID: 33790794 PMCID: PMC8005541 DOI: 10.3389/fphar.2021.638215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/02/2021] [Indexed: 01/02/2023] Open
Abstract
Background: The purpose of this study is to investigate the antiangiogenic effect of Sanguinarine chloride (SC) on models of age-related macular degeneration (AMD) both in vivo and in vitro. Methods: Choroidal neovascularization (CNV) was conducted by laser photocoagulation in C57BL6/J mice. SC (2.5 μM, 2 μl/eye) was intravitreally injected immediately after laser injury. The control group received an equal amount of PBS. 7 days after laser injury, CNV severity was evaluated using fundus fluorescein angiography, hematoxylin and eosin (H&E) staining, and choroid flat-mount staining. Vascular endothelial growth factor (VEGF) expression in the retina/choroid complex was measured by western blot analysis and ELISA kit. In vitro, human retinal microvascular endothelial cells (HRMECs) were used to investigate the effects of SC on cell tube formation, migration, and cytotoxicity. The expression of VEGF-induced expression of extracellular signal-regulated kinase (ERK)1/2, protein kinase B (AKT), mitogen-activated protein kinases (p38-MAPK) in vitro and laser induced VEGF expression in vivo were also analyzed. Results: SC (≤2.5 μM) was safe both in vitro and in vivo. Intravitreal injection of SC restrained the formation of laser induced CNV in mice and decreased VEGF expression in the laser site of the retina/choroid complex. In vitro, SC inhibited VEGF-induced tube formation and endothelial cell migration by decreasing the phosphorylation of AKT, ERK1/2, and p38-MAPK in HRMECs. Conclusions: SC could inhibit laser-induced CNV formation via down-regulating VEGF expression and restrain the VEGF-induced tube formation and endothelial migration. Therefore, SC could be a potential candidate for the treatment of wet AMD.
Collapse
Affiliation(s)
- Junxiu Zhang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Mao
- Department of Ophthalmology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Gu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingwei Wu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Liu Y, Feng M, Cai J, Li S, Dai X, Shan G, Wu S. Repurposing bortezomib for choroidal neovascularization treatment via antagonizing VEGF-A and PDGF-D mediated signaling. Exp Eye Res 2021; 204:108446. [PMID: 33476605 DOI: 10.1016/j.exer.2021.108446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Neovascular age-related macular degeneration (neoAMD) is the leading cause of blindness in AMD and manifests as choroidal neovascularization (CNV). Anti-vascular endothelial growth factor (VEGF) therapies are the mainstay treatments but with limited efficacy and cause detrimental effects on the retina after long-term application. These disadvantages warrant alternative strategy. Herein, we examined the effect on CNV by intravitreal injection of bortezomib, a reversible proteasome inhibitor, and further dissected the mechanism. Krypton red Laser was used to create CNV model in mice. The angiogenesis volume was assessed in choroidal flat-mount with isolectin GS-IB4 labeling and the leakage was examined with fluorescein fundus angiography. Injection of Borsub inhibited angiogenesis in the CNV model which was dose-dependent; the injection significantly inhibited leakage as well. Furthermore, Borsub injection reduced the contents of VEGF-A, macrophage chemotactic factor 1 (MCP-1), and platelet-derived growth factor (PDGF)-D but not PDGF-B, examined by enzyme-linked immunosorbent assay, in choroid/retinal pigment epithelium (RPE) tissue. These injections also reduced phospho-VEGFR-2 and phospho-PDGFRβ in choroid/RPE tissue examined by immunoblotting. Moreover, Borsub inhibited the recruitment of mural cells or macrophages to laser-injured spots. Injection of Borsub indicated negative effect on scotopic and photopic responses recorded by electroretinogram. Altogether, intravitreal injection of Borsub significantly reduced CNV by antagonizing VEGF-A/Flk-1 and PDGF-D/PDGFRβ pathways without impacting electroretinography parameters. Thus, Borsub may offer an invaluable therapy for the prevention and treatment of neoAMD.
Collapse
Affiliation(s)
- Yimei Liu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Meiling Feng
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Jingjing Cai
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Shifeng Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Xufeng Dai
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China.
| |
Collapse
|
14
|
Zhang Q, Liu Z, Li J, Liu G. Identifying Diabetic Macular Edema and Other Retinal Diseases by Optical Coherence Tomography Image and Multiscale Deep Learning. Diabetes Metab Syndr Obes 2020; 13:4787-4800. [PMID: 33304104 PMCID: PMC7723239 DOI: 10.2147/dmso.s288419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Diabetic Macular Edema has been one of the research hotspots all over the world. But as the global population continues to grow, the number of OCT images requiring manual analysis is becoming increasingly unaffordable. Medical images are often fuzzy due to the inherent physical processes of acquiring them. It is difficult for traditional algorithms to use low-quality data. And traditional algorithms usually only provide diagnostic results, which makes the reliability and interpretability of the model face challenges. To solve problem above, we proposed a more intuitive and robust diagnosis model with self-enhancement ability and clinical triage patients' ability. METHODS We used 38,057 OCT images (Drusen, DME, CNV and Normal) to establish and evaluate the model. All data are OCT images of fundus retina. There were 37,457 samples in the training dataset and 600 samples in the validation dataset. In order to diagnose these images accurately, we propose a multiscale transfer learning algorithm. Firstly, the sample is sent to the automatic self-enhancement module for edge detection and enhancement. Then, the processed data are sent to the image diagnosis module to determine the disease type. This process makes more data more effective and can be accurately classified. Finally, we calculated the accuracy, precision, sensitivity and specificity of the model, and verified the performance of the model from the perspective of clinical application. RESULTS The model proposed in this paper can provide the diagnosis results and display the detection targets more intuitively. The model reached 94.5% accuracy, 97.2% precision, 97.7% sensitivity and 97% specificity in the independent testing dataset. CONCLUSION Comparing the performance of relevant work and ablation test, our model achieved relatively good performance. It is proved that the model proposed in this paper has a stronger ability to recognize diseases even in the face of low-quality images. Experiment results also demonstrate its clinical referral capability. It can reduce the workload of medical staff and save the precious time of patients.
Collapse
Affiliation(s)
- Quan Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin300350, People’s Republic of China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin300350, People’s Republic of China
| | - Zhiang Liu
- College of Computer Science, Nankai University, Tianjin300350, People’s Republic of China
| | - Jiaxu Li
- The Second Affiliated Hospital of Harbin Medical University, Department of Plastic and Cosmetic Surgery, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Guohua Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin300350, People’s Republic of China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin300350, People’s Republic of China
| |
Collapse
|
15
|
Tan W, Zou J, Yoshida S, Jiang B, Zhou Y. The Role of Inflammation in Age-Related Macular Degeneration. Int J Biol Sci 2020; 16:2989-3001. [PMID: 33061811 PMCID: PMC7545698 DOI: 10.7150/ijbs.49890] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease which incidence gradually increases with age. Inflammation participates in AMD pathogenesis, including choroidal neovascularization and geographic atrophy. It is also a kind of self-protective regulation from injury for the eyes. In this review, we described inflammation in AMD pathogenesis, summarized the roles played by inflammation-related cytokines, including pro-inflammatory and anti-inflammatory cytokines, as well as leukocytes (macrophages, dendritic cells, neutrophils, T lymphocytes and B lymphocytes) in the innate or adaptive immunity in AMD. Possible clinical applications such as potential diagnostic biomarkers and anti-inflammatory therapies were also discussed. This review overviews the inflammation as a target of novel effective therapies in treating AMD.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|
16
|
Liu X, Zhang L, Wang JH, Zeng H, Zou J, Tan W, Zhao H, He Y, Shi J, Yoshida S, Li Y, Zhou Y. Investigation of circRNA Expression Profiles and Analysis of circRNA-miRNA-mRNA Networks in an Animal (Mouse) Model of Age-Related Macular Degeneration. Curr Eye Res 2020; 45:1173-1180. [PMID: 31979995 DOI: 10.1080/02713683.2020.1722179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSES To (i) identify dysregulated circular RNAs (circRNAs) and (ii) elucidate their potential functions in an animal (mouse) model of choroidal neovascularization (CNV), a prominent feature of neovascular age-related macular degeneration (AMD). METHODS Expression profiles for circRNA were identified by microarray analysis. Selected circRNAs were confirmed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Bioinformatic analyses of identified circRNAs were performed to predict (i) circRNA/microRNA interactions and (ii) occurrence of competing endogenous RNA (ceRNA) networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were applied to predict both the biological functions and potential pathways of the altered parental genes involved in CNV. RESULTS Microarray analysis indicated that 100 circRNAs in RPE-choroid-sclera complexes from CNV mice were significantly altered compared with those from control mice (fold change≥1.5, p < .05). Of these, six were validated by qRT-PCR, and included up-regulated mmu_circRNA_20332 and mmu_circRNA_19388, and down-regulated mmu_circRNA_36481, mmu_circRNA_006555, mmu_circRNA_012588, and mmu_circRNA_005578. GO analysis revealed that the altered parental genes involved in ceRNA networks were mostly enriched in immune system processes and portions of neurons. KEGG analysis revealed that these altered parental genes were also amplified in extracellular matrix (ECM)-receptor interactions, chemokine signaling pathways, and advanced glycation end-product (AGE)-receptors for advanced glycation end-product (RAGE) signaling pathways in diabetic complications. CONCLUSION The study identified statistically significant differences between CNV-mouse circRNAs and control mouse circRNAs, suggesting that circRNAs play vital roles in the pathogenesis of CNV. It is, therefore, reasonable to consider circRNAs as potential therapeutic targets for regulating CNV in AMD patients.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital , East Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne , East Melbourne, Australia
| | - Huilan Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Jingming Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine , Kurume, Japan
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| |
Collapse
|