1
|
Shen J, Duan X, Xie T, Zhang X, Cai Y, Pan J, Zhang X, Sun X. Advances in locally administered nucleic acid therapeutics. Bioact Mater 2025; 49:218-254. [PMID: 40144794 PMCID: PMC11938090 DOI: 10.1016/j.bioactmat.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Nucleic acid drugs represent the latest generation of precision therapeutics, holding significant promise for the treatment of a wide range of intractable diseases. Delivery technology is crucial for the clinical application of nucleic acid drugs. However, extrahepatic delivery of nucleic acid drugs remains a significant challenge. Systemic administration often fails to achieve sufficient drug enrichment in target tissues. Localized administration has emerged as the predominant approach to facilitate extrahepatic delivery. While localized administration can significantly enhance drug accumulation at the injection sites, nucleic acid drugs still face biological barriers in reaching the target lesions. This review focuses on non-viral nucleic acid drug delivery techniques utilized in local administration for the treatment of extrahepatic diseases. First, the classification of nucleic acid drugs is described. Second, the current major non-viral delivery technologies for nucleic acid drugs are discussed. Third, the bio-barriers, administration approaches, and recent research advances in the local delivery of nucleic acid drugs for treating lung, brain, eye, skin, joint, and heart-related diseases are highlighted. Finally, the challenges associated with the localized therapeutic application of nucleic acid drugs are addressed.
Collapse
Affiliation(s)
- Jie Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xusheng Duan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ting Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junhao Pan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Zhang M, Lu X, Luo L, Dou J, Zhang J, Li G, Zhao L, Sun F. Targeting glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization. J Nanobiotechnology 2024; 22:703. [PMID: 39533430 PMCID: PMC11559141 DOI: 10.1186/s12951-024-02943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Choroidal neovascularization (CNV) is a leading cause of visual impairment in wet age-related macular degeneration (wAMD). Recent investigations have validated the potential of reducing glutamine synthetase (GS) to inhibit neovascularization formation, offering prospects for treating various neovascularization-related diseases. In this study, we devised a CRISPR/Cas9 delivery system employing the nucleic acid aptamer AS1411 as a targeting moiety and exosome-liposome hybrid nanoparticles as carriers (CAELN). Exploiting the binding affinity between AS1411 and nucleolin on endothelial cell surfaces, the delivery system was engineered to specifically target the glutamine synthetase gene (GLUL), thereby attenuating GS levels and continuously suppressing CNV. CAELN exhibited spherical and uniform dispersion. In vitro cellular investigations demonstrated gene editing efficiencies of CAELN ranging from 42.05 to 55.02% and its capacity to inhibit neovascularization in HUVEC cells. Moreover, in vivo pharmacodynamic studies conducted in CNV rabbits revealed efficacy of CAELN in restoring the thickness of intra- and extranuclear tissues. The findings suggest that GS is a novel target for the inhibition of pathological CNV, while the development of AS1411-modified exosome-liposome hybrid nanoparticles represents a novel delivery method for the treatment of neovascular-related diseases.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyue Lu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lifu Luo
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Jinqiu Dou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jingbo Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ge Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Li Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fengying Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Cao J, Zhang F, Xiong W. Discovery of Aptamers and the Acceleration of the Development of Targeting Research in Ophthalmology. Int J Nanomedicine 2023; 18:4421-4430. [PMID: 37551274 PMCID: PMC10404440 DOI: 10.2147/ijn.s418115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 08/09/2023] Open
Abstract
Aptamers are widely applied to diagnosis and therapy because of their targeting. However, the current progress of research into aptamers for the treatment of eye disorders has not been well-documented. The current literature on aptamers was reviewed in this study. Aptamer-related drugs and biochemical sensors have been evaluated for several eye disorders within the past decade; S58 targeting TGF-β receptor II and pegaptanib targeting vascular endothelial growth factor (VEGF) are used to prevent fibrosis after glaucoma filtration surgery. Anti-brain-derived neurotrophic factor aptamer has been used to diagnose glaucoma. The first approved aptamer drug (pegaptanib) has been used to inhibit angiogenesis in age-related macular degeneration (AMD) and diabetic retinopathy (DR), and its efficacy and safety have been demonstrated in clinical trials. Aptamers, including E10030, RBM-007, AS1411, and avacincaptad pegol, targeting other angiogenesis-related biomarkers have also been discovered and subjected to clinical trials. Aptamers, such as C promoter binding factor 1, CD44, and advanced end products in AMD and DR, targeting other signal pathway proteins have also been discovered for therapy, and biochemical sensors for early diagnosis have been developed based on aptamers targeting VEGF, connective tissue growth factor, and lipocalin 1. Aptamers used for early detection and treatment of ocular tumors were derived from other disease biomarkers, such as CD71, nucleolin, and high mobility group A. In this review, the development and application of aptamers in eye disorders in recent years are systematically discussed, which may inspire a new link between aptamers and eye disorders. The aptamer development trajectory also facilitates the discovery of the pathogenesis and therapeutic strategies for various eye disorders.
Collapse
Affiliation(s)
- Jiamin Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Feng Zhang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
4
|
Panda SP, Reddy PH, Gorla US, Prasanth D. Neuroinflammation and neovascularization in diabetic eye diseases (DEDs): identification of potential pharmacotherapeutic targets. Mol Biol Rep 2023; 50:1857-1869. [PMID: 36513866 DOI: 10.1007/s11033-022-08113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
The goal of this review is to increase public knowledge of the etiopathogenesis of diabetic eye diseases (DEDs), such as diabetic retinopathy (DR) and ocular angiosarcoma (ASO), and the likelihood of blindness among elderly widows. A widow's life in North India, in general, is fraught with peril because of the economic and social isolation it brings, as well as the increased risk of death from heart disease, hypertension, diabetes, depression, and dementia. Neovascularization, neuroinflammation, and edema in the ocular tissue are hallmarks of the ASO, a rare form of malignant tumor. When diabetes, hypertension, and aging all contribute to increased oxidative stress, the DR can proceed to ASO. Microglia in the retina of the optic nerve head are responsible for causing inflammation, discomfort, and neurodegeneration. Those that come into contact with them will get blind as a result of this. Advanced glycation end products (AGE), vascular endothelial growth factor (VEGF), protein kinase C (PKC), poly-ADP-ribose polymerase (PARP), metalloproteinase9 (MMP9), nuclear factor kappaB (NFkB), program death ligand1 (PDL-1), factor VIII (FVIII), and von Willebrand factor (VWF) are potent agents for ocular neovascularisation (ONV), neuroinflammation and edema in the ocular tissue. AGE/VEGF, DAG/PKC, PARP/NFkB, RAS/VEGF, PDL-1/PD-1, VWF/FVIII/VEGF, and RAS/VEGF are all linked to the pathophysiology of DEDs. The interaction between ONV and ASO is mostly determined by the VWF/FVIII/VEGF and PDL-1/PD-1 axis. This study focused on retinoprotective medications that can pass the blood-retinal barrier and cure DEDs, as well as the factors that influence the etiology of neovascularization and neuroinflammation in the eye.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, 281406, Mathura, Uttar Pradesh, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
| | - Uma Sankar Gorla
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP, India
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| |
Collapse
|
5
|
Li S, Shi S, Xia F, Luo B, Ha Y, Luisi J, Gupta PK, Merkley KH, Motamedi M, Liu H, Zhang W. CXCR3 deletion aggravates corneal neovascularization in a corneal alkali-burn model. Exp Eye Res 2022; 225:109265. [PMID: 36206861 PMCID: PMC10191246 DOI: 10.1016/j.exer.2022.109265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 01/16/2023]
Abstract
Corneal neovascularization can cause devastating consequences including vision impairment and even blindness. Corneal inflammation is a crucial factor for the induction of corneal neovascularization. Current anti-inflammatory approaches are of limited value with poor therapeutic effects. Therefore, there is an urgent need to develop new therapies that specifically modulate inflammatory pathways and inhibit neovascularization in the cornea. The interaction of chemokines and their receptors plays a key role in regulating leukocyte migration during inflammatory response. CXCR3 is essential for mediating the recruitment of activated T cells and microglia/macrophages, but the role of CXCR3 in the initiation and promotion of corneal neovascularization remains unclear. Here, we showed that the expression of CXCL10 and CXCR3 was significantly increased in the cornea after alkali burn. Compared with WT mice, CXCR3-/- mice exhibited significantly increased corneal hemangiogenesis and lymphangiogenesis after alkali burn. In addition, exaggerated leukocyte infiltration and leukostasis, and elevated expression of inflammatory cytokines and angiogenic factor were also found in the corneas of CXCR3-/- mice subjected to alkali burn. With bone marrow (BM) transplantation, we further demonstrated that the deletion of CXCR3 in BM-derived leukocytes plays a key role in the acceleration of alkali burn-induced corneal neovascularization. Taken together, our results suggest that upregulation of CXCR3 does not exhibit its conventional action as a proinflammatory cytokine but instead serves as a self-protective mechanism for the modulation of inflammation and maintenance of corneal avascularity after corneal alkali burn.
Collapse
Affiliation(s)
- Shengguo Li
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Ban Luo
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yonju Ha
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan Luisi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Praveena K Gupta
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Kevin H Merkley
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Massoud Motamedi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
6
|
Tang B, Xie X, Yang R, Zhou S, Hu R, Feng J, Zheng Q, Zan X. Decorating hexahistidine-metal assemblies with tyrosine enhances the ability of proteins to pass through corneal biobarriers. Acta Biomater 2022; 153:231-242. [PMID: 36126912 DOI: 10.1016/j.actbio.2022.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/01/2022]
Abstract
In recent decades, the use of protein drugs has increased dramatically for almost every clinical indication, including autoimmunity and cancer infection, given their high specificity and limited side effects. However, their easy deactivation by the surrounding microenvironment and limited ability to pass through biological barriers pose large challenges to the use of these agents for therapeutic effects; these deficits could be greatly improved by nanodelivery using platforms with suitable physicochemical properties. Here, to assess the effect of the hydrophilicity of nanoparticles on their ability to penetrate biological barriers, the hydrophobic amino acid tyrosine (Y) was decorated onto hexahistidine peptide, and two nanosized YHmA and HmA particles were generated, in which Avastin (Ava, a protein drug) was encapsulated by a coassembly strategy. In vitro and in vivo tests demonstrated that these nanoparticles effectively retained the bioactivity of Ava and protected Ava from proteinase K hydrolysis. Importantly, YHmA displayed a considerably higher affinity to the ocular surface than HmA, and YHmA also exhibited the ability to transfer proteins across the barriers of the anterior segment, which greatly improved the bioavailability of the encapsulated Ava and produced surprisingly good therapeutic outcomes in a model of corneal neovascularization. STATEMENT OF SIGNIFICANCE: Improving the ability to penetrate tissue barriers and averting inactivation caused by surrounding environments, are the keys to broaden the application of protein drugs. By decorating hydrophobic amino acid, tyrosine (Y), on hexahistidine peptide, YHmA encapsulated protein drug Ava with high efficiency by co-assembly strategy. YHmA displayed promising ability to maintain bioactivity of Ava during encapsulation and delivery, and protected Ava from proteinase K hydrolysis. Importantly, YHmA transferred Ava across the corneal epithelial barrier and greatly improved its bioavailability, producing surprisingly good therapeutic outcomes in a model of corneal neovascularization. Our results contributed to not only the strategy to overcome shortcomings of protein drugs, but also suggestion on hydrophilicity as a nonnegligible factor in nanodrug penetration through biobarriers.
Collapse
Affiliation(s)
- Bojiao Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, PR China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Ronggui Hu
- Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jiayao Feng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Qinxiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, PR China.
| |
Collapse
|
7
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
8
|
Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology 2022; 20:57. [PMID: 35101048 PMCID: PMC8805415 DOI: 10.1186/s12951-022-01240-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Targeted cancer therapy has become one of the most important medical methods because of the spreading and metastatic nature of cancer. Based on the introduction of AS1411 and its four-chain structure, this paper reviews the research progress in cancer detection and drug delivery systems by modifying AS1411 aptamers based on graphene, mesoporous silica, silver and gold. The application of AS1411 in cancer treatment and drug delivery and the use of AS1411 as a targeting agent for the detection of cancer markers such as nucleoli were summarized from three aspects of active targeting, passive targeting and targeted nucleic acid apharmers. Although AS1411 has been withdrawn from clinical trials, the research surrounding its structural optimization is still very popular. Further progress has been made in the modification of nanoparticles loaded with TCM extracts by AS1411.
Collapse
Affiliation(s)
- Xin Tong
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Jun Ai
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| | - Yong Wang
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
9
|
Zhang T, Jin X, Zhang N, Jiao X, Ma Y, Liu R, Liu B, Li Z. Targeted drug delivery vehicles mediated by nanocarriers and aptamers for posterior eye disease therapeutics: barriers, recent advances and potential opportunities. NANOTECHNOLOGY 2022; 33:162001. [PMID: 34965522 DOI: 10.1088/1361-6528/ac46d5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Nanomedicine and aptamer have excellent potential in giving play to passive and active targeting respectively, which are considered to be effective strategies in the retro-ocular drug delivery system. The presence of closely adjoined tissue structures in the eye makes it difficult to administer the drug in the posterior segment of the eye. The application of nanomedicine could represent a new avenue for the treatment, since it could improve penetration, achieve targeted release, and improve bioavailability. Additionally, a novel type of targeted molecule aptamer with identical objective was proposed. As an emerging molecule, aptamer shows the advantages of penetration, non-toxicity, and high biocompatibility, which make it suitable for ocular drug administration. The purpose of this paper is to summarize the recent studies on the effectiveness of nanoparticles as a drug delivery to the posterior segment of the eye. This paper also creatively looks forward to the possibility of the combined application of nanocarriers and aptamers as a new method of targeted drug delivery system in the field of post-ophthalmic therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309, People's Republic of China
| | - Nan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Xinyi Jiao
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Yuanyuan Ma
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Boshi Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| |
Collapse
|
10
|
Iturriaga-Goyon E, Vivanco-Rojas O, Magaña-Guerrero FS, Buentello-Volante B, Castro-Salas I, Aguayo-Flores JE, Gracia-Mora I, Rivera-Huerta M, Sánchez-Bartés F, Garfias Y. AS1411 Nucleolin-Specific Binding Aptamers Reduce Pathological Angiogenesis through Inhibition of Nucleolin Phosphorylation. Int J Mol Sci 2021; 22:13150. [PMID: 34884955 PMCID: PMC8658263 DOI: 10.3390/ijms222313150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Proliferative retinopathies produces an irreversible type of blindness affecting working age and pediatric population of industrialized countries. Despite the good results of anti-VEGF therapy, intraocular and systemic complications are often associated after its intravitreal use, hence novel therapeutic approaches are needed. The aim of the present study is to test the effect of the AS1411, an antiangiogenic nucleolin-binding aptamer, using in vivo, ex vivo and in vitro models of angiogenesis and propose a mechanistic insight. Our results showed that AS1411 significantly inhibited retinal neovascularization in the oxygen induced retinopathy (OIR) in vivo model, as well as inhibited branch formation in the rat aortic ex vivo assay, and, significantly reduced proliferation, cell migration and tube formation in the HUVEC in vitro model. Importantly, phosphorylated NCL protein was significantly abolished in HUVEC in the presence of AS1411 without affecting NFκB phosphorylation and -21 and 221-angiomiRs, suggesting that the antiangiogenic properties of this molecule are partially mediated by a down regulation in NCL phosphorylation. In sum, this new research further supports the NCL role in the molecular etiology of pathological angiogenesis and identifies AS1411 as a novel anti-angiogenic treatment.
Collapse
Affiliation(s)
- Emilio Iturriaga-Goyon
- MD/Ph.D. (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
- Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Ciudad de Mexico 06800, Mexico; (O.V.-R.); (F.S.M.-G.); (B.B.-V.); (I.C.-S.); (J.E.A.-F.)
| | - Oscar Vivanco-Rojas
- Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Ciudad de Mexico 06800, Mexico; (O.V.-R.); (F.S.M.-G.); (B.B.-V.); (I.C.-S.); (J.E.A.-F.)
| | - Fátima Sofía Magaña-Guerrero
- Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Ciudad de Mexico 06800, Mexico; (O.V.-R.); (F.S.M.-G.); (B.B.-V.); (I.C.-S.); (J.E.A.-F.)
| | - Beatriz Buentello-Volante
- Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Ciudad de Mexico 06800, Mexico; (O.V.-R.); (F.S.M.-G.); (B.B.-V.); (I.C.-S.); (J.E.A.-F.)
| | - Ilse Castro-Salas
- Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Ciudad de Mexico 06800, Mexico; (O.V.-R.); (F.S.M.-G.); (B.B.-V.); (I.C.-S.); (J.E.A.-F.)
| | - José Eduardo Aguayo-Flores
- Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Ciudad de Mexico 06800, Mexico; (O.V.-R.); (F.S.M.-G.); (B.B.-V.); (I.C.-S.); (J.E.A.-F.)
| | - Isabel Gracia-Mora
- Unidad de Experimentación Preclínica, Department of Inorganic and Nuclear Chemistry, Faculty of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de Mexico 04510, Mexico; (I.G.-M.); (M.R.-H.); (F.S.-B.)
| | - Marisol Rivera-Huerta
- Unidad de Experimentación Preclínica, Department of Inorganic and Nuclear Chemistry, Faculty of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de Mexico 04510, Mexico; (I.G.-M.); (M.R.-H.); (F.S.-B.)
| | - Francisco Sánchez-Bartés
- Unidad de Experimentación Preclínica, Department of Inorganic and Nuclear Chemistry, Faculty of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de Mexico 04510, Mexico; (I.G.-M.); (M.R.-H.); (F.S.-B.)
| | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Ciudad de Mexico 06800, Mexico; (O.V.-R.); (F.S.M.-G.); (B.B.-V.); (I.C.-S.); (J.E.A.-F.)
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
11
|
Yang B, Li G, Liu J, Li X, Zhang S, Sun F, Liu W. Nanotechnology for Age-Related Macular Degeneration. Pharmaceutics 2021; 13:pharmaceutics13122035. [PMID: 34959316 PMCID: PMC8705006 DOI: 10.3390/pharmaceutics13122035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative eye disease that is the leading cause of irreversible vision loss in people 50 years and older. Today, the most common treatment for AMD involves repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) drugs. However, the existing expensive therapies not only cannot cure this disease, they also produce a variety of side effects. For example, the number of injections increases the cumulative risk of endophthalmitis and other complications. Today, a single intravitreal injection of gene therapy products can greatly reduce the burden of treatment and improve visual effects. In addition, the latest innovations in nanotherapy provide the best drug delivery alternative for the treatment of AMD. In this review, we discuss the development of nano-drug delivery systems and gene therapy strategies for AMD in recent years. In addition, we discuss some novel targeting strategies and the potential application of these delivery methods in the treatment of AMD. Finally, we also propose that the combination of CRISPR/Cas9 technology with a new non-viral delivery system may be promising as a therapeutic strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Bo Yang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Ge Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Jiaxin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Shixin Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Wenhua Liu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- Correspondence:
| |
Collapse
|
12
|
Iturriaga-Goyon E, Buentello-Volante B, Magaña-Guerrero FS, Garfias Y. Future Perspectives of Therapeutic, Diagnostic and Prognostic Aptamers in Eye Pathological Angiogenesis. Cells 2021; 10:cells10061455. [PMID: 34200613 PMCID: PMC8227682 DOI: 10.3390/cells10061455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA oligonucleotides that are currently used in clinical trials due to their selectivity and specificity to bind small molecules such as proteins, peptides, viral particles, vitamins, metal ions and even whole cells. Aptamers are highly specific to their targets, they are smaller than antibodies and fragment antibodies, they can be easily conjugated to multiple surfaces and ions and controllable post-production modifications can be performed. Aptamers have been therapeutically used for age-related macular degeneration, cancer, thrombosis and inflammatory diseases. The aim of this review is to highlight the therapeutic, diagnostic and prognostic possibilities associated with aptamers, focusing on eye pathological angiogenesis.
Collapse
Affiliation(s)
- Emilio Iturriaga-Goyon
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Beatriz Buentello-Volante
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
| | - Fátima Sofía Magaña-Guerrero
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
| | - Yonathan Garfias
- Cell and Tissue Biology, Research Unit, Institute of Ophthalmology, Conde de Valenciana, Chimalpopoca 14, Mexico City 06800, Mexico; (B.B.-V.); (F.S.M.-G.)
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
13
|
Formica ML, Awde Alfonso HG, Palma SD. Biological drug therapy for ocular angiogenesis: Anti-VEGF agents and novel strategies based on nanotechnology. Pharmacol Res Perspect 2021; 9:e00723. [PMID: 33694304 PMCID: PMC7947217 DOI: 10.1002/prp2.723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, biological drug therapy for ocular angiogenesis treatment is based on the administration of anti‐VEGF agents via intravitreal route. The molecules approved with this purpose for ocular use include pegaptanib, ranibizumab, and aflibercept, whereas bevacizumab is commonly off‐label used in the clinical practice. The schedule dosage involves repeated intravitreal injections of anti‐VEGF agents to achieve and maintain effective concentrations in retina and choroids, which are administrated as solutions form. In this review article, we describe the features of different anti‐VEGF agents, major challenges for their ocular delivery and the nanoparticles in development as delivery system of them. In this way, several polymeric and lipid nanoparticles are explored to load anti‐VEGF agents with the aim of achieving sustained drug release and thus, minimize the number of intravitreal injections required. The main challenges were focused in the loading the molecules that maintain their bioactivity after their release from nanoparticulate system, followed the evaluation of them through studies of formulation stability, pharmacokinetic, and efficacy in in vitro and in vivo models. The analysis was based on the information published in peer‐reviewed published papers relevant to anti‐VEGF treatments and nanoparticles developed as ocular anti‐VEGF delivery system.
Collapse
Affiliation(s)
- María L Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Hamoudi G Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Santiago D Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| |
Collapse
|
14
|
Vähätupa M, Järvinen TAH, Uusitalo-Järvinen H. Exploration of Oxygen-Induced Retinopathy Model to Discover New Therapeutic Drug Targets in Retinopathies. Front Pharmacol 2020; 11:873. [PMID: 32595503 PMCID: PMC7300227 DOI: 10.3389/fphar.2020.00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygen-induced retinopathy (OIR) is a pure hypoxia-driven angiogenesis model and the most widely used model for ischemic retinopathies, such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). OIR model has been used to test new potential anti-angiogenic factors for human diseases. We have recently performed the most comprehensive characterization of OIR by a relatively novel mass spectrometry (MS) technique, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) proteomics and used genetically modified mice strains to identify novel molecular drug targets in angiogenic retinal diseases. We have confirmed the relevance of the identified molecular targets to human diseases by determining their expression pattern in neovascular membranes obtained from PDR and RVO patients. Based on our results, crystallins were the most prominent proteins induced by early hypoxic environment during the OIR, while actomyosin complex and Filamin A-R-Ras axis, that regulates vascular permeability of the angiogenic blood vessels, stood out at the peak of angiogenesis. Our results have revealed potential new therapeutic targets to address hypoxia-induced pathological angiogenesis and the associated vascular permeability in number of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tero A. H. Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|