1
|
Watanabe M, Tsugeno Y, Sato T, Higashide M, Umetsu A, Furuhashi M, Ohguro H. Inhibition of mTOR differently modulates planar and subepithelial fibrogenesis in human conjunctival fibroblasts. Graefes Arch Clin Exp Ophthalmol 2025; 263:33-46. [PMID: 39042147 DOI: 10.1007/s00417-024-06481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 07/24/2024] Open
Abstract
PURPOSE In the current investigation, the effects of the mTOR inhibitors, Rapa and Torin1 on the TGF-β2-induced conjunctival fibrogenesis were studied. STUDY DESIGN Experimental research. METHODS 2D and 3D cultures of HconF were subjected to the following analyses; (1) planar proliferation evaluated by TEER (2D), (2) Seahorse metabolic analyses (2D), (3) subepithelial proliferation evaluated by the 3D spheroids' size and hardness, and (4) the mRNA expression of ECM proteins and their regulators (2D and 3D). RESULT Rapa or Torin1 both significantly increased planar proliferation in the non-TGF-β2-treated 2D HconF cells, but in the TGF-β2-treated cells, this proliferation was inhibited by Rapa and enhanced by Torin1. Although Rapa or Torin1 did not affect cellular metabolism in the non-TGF-β2-treated HconF cells, mTOR inhibitors significantly decreased and increased the mitochondrial respiration and the glycolytic capacity, respectively, under conditions of TGF-β2-induced fibrogenesis. Subepithelial proliferation, as evidenced by the hardness of the 3D spheroids, was markedly down-regulated by both Rapa and Torin1 independent of TGF-β2. The mRNA expressions of several ECM molecules and their regulators fluctuated in the cases of 2D vs 3D and TGF-β2 untreated vs treated cultures. CONCLUSION The present findings indicate that mTOR inhibitors have the ability to increase and to reduce planar and subepithelial proliferation in HconF cells, depending on the inhibitor being used.
Collapse
Affiliation(s)
- Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan.
| | - Yuri Tsugeno
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Tatsuya Sato
- Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
- Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Megumi Higashide
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Araya Umetsu
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Masato Furuhashi
- Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan.
| |
Collapse
|
2
|
Li Y, Dai Y, Xu J, Zhang J. Transcriptomic analysis of keratoconus in Han Chinese patients: Insights into differential gene expression and ethnic-specific patterns. Exp Eye Res 2024; 248:110118. [PMID: 39395559 DOI: 10.1016/j.exer.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Keratoconus (KC) is a progressive corneal ectatic disorder with a high prevalence among Asians. This study aimed to explore the differential gene expression patterns in Han Chinese patients with KC, focusing on mRNAs and long noncoding RNAs (lncRNAs), to provide insights into the pathogenesis of the disease. Corneal tissues from KC patients and healthy controls were collected, and RNA sequencing was performed to profile mRNA and lncRNA expression. A total of 1973 differentially expressed mRNAs (DEGs) and 386 differentially expressed lncRNAs (DELs) were identified in KC-affected corneas. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significant enrichment in pathways related to ECM modulation, PI3K-Akt pathway and calcium signaling pathway. Furthermore, protein-protein interaction (PPI) network highlighted hub genes involved in ECM remodeling and inflammatory responses. Co-expression analysis of lncRNAs and mRNAs further prioritized 13 DELs linked to these hub genes. RT-qPCR validation confirmed the differential expression of select candidates. A meta-analysis integrating seven datasets from diverse ethnic backgrounds was performed and it suggested ethnic-specific differences in gene expression patterns. This study sheds new light on the molecular mechanisms underlying KC in the Han Chinese population, pinpointing potential therapeutic targets. It also emphasizes the critical role of ethnic-specific gene expression patterns in KC research, highlighting a need for tailored approaches in disease management and treatment.
Collapse
Affiliation(s)
- Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| |
Collapse
|
3
|
Gupta M, Arya S, Agrawal P, Gupta H, Sikka R. Unravelling the molecular tapestry of pterygium: insights into genes for diagnostic and therapeutic innovations. Eye (Lond) 2024; 38:2880-2887. [PMID: 38907016 PMCID: PMC11461965 DOI: 10.1038/s41433-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Pterygium, an ocular surface disorder, manifests as a wing-shaped extension from the corneoscleral limbus onto the cornea, impacting vision and causing inflammation. With a global prevalence of 12%, varying by region, the condition is linked to UV exposure, age, gender, and socioeconomic factors. This review focuses on key genes associated with pterygium, shedding light on potential therapeutic targets. Matrix metalloproteinases (MMPs), especially MMP2 and MMP9, contribute to ECM remodelling and angiogenesis in pterygium. Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis and is elevated in pterygium tissues. B-cell lymphoma-2, S100 proteins, DNA repair genes (hOGG1, XRCC1), CYP monooxygenases, p53, and p16 are implicated in pterygium development. A protein-protein interaction network analysis highlighted 28 edges between the aforementioned proteins, except for VEGF, indicating a high level of interaction. Gene ontology, microRNA and pathway analyses revealed the involvement of processes such as base excision repair, IL-17 and p53 signalling, ECM disassembly, oxidative stress, hypoxia, metallopeptidase activity and others that are essential for pterygium development. In addition, miR-29, miR-125, miR-126, miR-143, miR-200, miR-429, and miR-451a microRNAs were predicted, which were shown to have a role in pterygium development and disease severity. Identification of these molecular mechanisms provides insights for potential diagnostic and therapeutic strategies for pterygium.
Collapse
Affiliation(s)
- Mahak Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Shubhang Arya
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | | | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
4
|
Choi Y, Samad I, Chakravarthy H, Matsubara J, Granville DJ, Yeung SN. Granzyme B Expression in Conjunctiva of Patients with Pterygium. Int J Mol Sci 2024; 25:8679. [PMID: 39201366 PMCID: PMC11354738 DOI: 10.3390/ijms25168679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Pterygium is often associated with chronic ultraviolet (UV) radiation exposure and characterized by the overgrowth of conjunctiva and extracellular matrix (ECM) remodeling. Notably, several studies in the skin have demonstrated that chronic UV radiation can upregulate Granzyme B (GrB) expression and increase ECM degradation. The aim of this study was to compare GrB expression between pterygium and healthy controls and to further link this GrB expression to mast cells. Post-mortem pterygium tissues and conjunctival tissues from age-matched controls were used to assess GrB expression via immunofluorescence and microscopy. We found a significantly higher density of GrB+ cells from pterygium specimens compared to healthy controls. Furthermore, many of the GrB+ cells in pterygium specimens co-expressed tryptase, a mast cell marker. These findings suggest a role for conjunctival mast cell-secreted GrB in the pathogenesis of pterygium and highlight GrB as a possible therapeutic target in delaying or halting pterygium progression.
Collapse
Affiliation(s)
- Yoojin Choi
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Isa Samad
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Harshini Chakravarthy
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Joanne Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| |
Collapse
|
5
|
Hulley M, Ngcungcu T, Ramsay M, Williams S. Non-invasive harvesting of conjunctival cells for whole transcriptome sequencing. Exp Eye Res 2023; 234:109613. [PMID: 37574038 DOI: 10.1016/j.exer.2023.109613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
The purpose of this study was to determine the feasibility of using a non-invasive technique, the EYEPRIM™ conjunctival cell impression device, to harvest sufficient RNA from conjunctival cells for the whole-transcriptome sequencing. Conjunctival cells from 40 participants were collected using an EYEPRIM™ conjunctival cell impression device. RNA was extracted from the samples, followed by library construction and transcriptome sequencing. Quality checks were performed for each technical step of the experiment, and the feasibility of this procedure was examined. RNA of sufficient yield and quality was successfully extracted following additional disruption and homogenization of the conjunctival cells and collection of two impression samples per eye. Successful library preparation and RNA sequencing were performed, with all 40 samples passing the various quality checks used for each step. In conclusion, harvesting cells from the ocular surface using an impression cytology device yields good quality and sufficient mRNA for whole transcriptome sequencing to study diseases of the eye. This technique provides a convenient alternative to using post-mortem tissues or surgical excisions.
Collapse
Affiliation(s)
- Michaella Hulley
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Thandiswa Ngcungcu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Susan Williams
- Division of Ophthalmology, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
6
|
Key Genes of Immunity Associated with Pterygium and Primary Sjögren's Syndrome. Int J Mol Sci 2023; 24:ijms24032047. [PMID: 36768371 PMCID: PMC9916617 DOI: 10.3390/ijms24032047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Pterygium and primary Sjögren's Syndrome (pSS) share many similarities in clinical symptoms and ocular pathophysiological changes, but their etiology is unclear. To identify the potential genes and pathways related to immunity, two published datasets, GSE2513 containing pterygium information and GSE176510 containing pSS information, were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) of pterygium or pSS patients compared with healthy control conjunctiva, and the common DEGs between them were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted for common DEGs. The protein-protein interaction (PPI) network was constructed using the STRING database to find the hub genes, which were verified in clinical samples. There were 14 co-upregulated DEGs. The GO and KEGG analyses showed that these common DEGs were enriched in pathways correlated with virus infection, antigen processing and presentation, nuclear factor-kappa B (NF-κB) and Th17 cell differentiation. The hub genes (IL1R1, ICAM1, IRAK1, S100A9, and S100A8) were selected by PPI construction. In the era of the COVID-19 epidemic, the relationship between virus infection, vaccination, and the incidence of pSS and pterygium growth deserves more attention.
Collapse
|
7
|
Yu J, Luo J, Li P, Chen X, Zhang G, Guan H. Identification of the circRNA-miRNA-mRNA Regulatory Network in Pterygium-Associated Conjunctival Epithelium. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2673890. [PMID: 36398070 PMCID: PMC9666032 DOI: 10.1155/2022/2673890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 10/07/2023]
Abstract
To investigate the regulatory mechanism of pterygium formation, we detected differentially expressed messenger RNAs (DE-mRNAs) and differentially expressed circular RNAs (DE-circRNAs) in pterygium-associated conjunctival epithelium (PCE) and normal conjunctival epithelium (NCE). Genome-wide mRNA and circRNA expression profiles of PCE and NCE were determined using high-throughput sequencing. Bioinformatics analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) analysis, were conducted. The microRNAs (miRNAs) interacting with the hub DE-mRNAs and DE-circRNAs were predicted and verified using real-time quantitative PCR (RT-qPCR). The data showed that there were 536 DE-mRNAs (280 upregulated and 256 downregulated mRNAs) and 78 DE-circRNAs (20 upregulated and 58 downregulated circRNAs) in PCE. KEGG enrichment analysis indicated that the DE-mRNAs were mainly involved in the following biological processes: IL-17 signalling pathway, viral protein interaction with cytokine and cytokine receptor, cytokine-cytokine receptor interaction, ECM-receptor interaction, and focal adhesion. The GSEA results revealed that the epithelial mesenchymal transition (EMT) process was significantly enriched in upregulated mRNAs. The pterygium-associated circRNA-miRNA-mRNA network was established based on the top 10 DE-circRNAs, 4 validated miRNAs (upregulated miR-376a-5p and miR-208a-5p,downregulated miR-203a-3p and miR-200b-3p), and 31 DE-mRNAs. We found that miR-200b-3p, as a regulator of FN1, SDC2, and MEX3D, could be regulated by 5 upregulated circRNAs. In addition, we screened out EMT-related DE-mRNAs, including 6 upregulated DE-mRNAs and 6 downregulated DE-mRNAs. The EMT-related circRNA-miRNA-mRNA network was established with the top 10 circRNAs, 8 validated miRNAs (upregulated miR-17-5p, miR-181a-5p, and miR-106a-5p, downregulated miR-124-3p, miR-9-5p, miR-130b-5p, miR-1-3p, and miR-26b-5P), and 12 EMT-related DE-mRNAs. We found that hsa_circ_0002406 might upregulate FN1 and ADAM12 by sponging miR-26b-5p and miR-1-3p, respectively, thus promoting EMT in pterygium. Briefly, the study provides a novel viewpoint on the molecular pathological mechanisms in pterygium formation. CircRNA-miRNA-mRNA regulatory networks participate in the pathogenesis of pterygium and might become promising targets for pterygium prevention and treatment.
Collapse
Affiliation(s)
- Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jiawei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Esposito G, Balzamino BO, Rocco ML, Aloe L, Micera A. Nerve Growth Factor (NGF) as Partaker in the Modulation of UV-Response in Cultured Human Conjunctival Fibroblasts. Int J Mol Sci 2022; 23:ijms23116337. [PMID: 35683016 PMCID: PMC9181148 DOI: 10.3390/ijms23116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
Corroborating data sustain the pleiotropic effect of nerve growth factor (NGF) in the protection of the visual system from dangerous stimuli, including ultraviolet (UV). Since UV exposure might promote ocular surface changes (conjunctival inflammation and matrix rearrangement), as previously reported from in vivo studies sustaining some protective NGF effects, in vitro cultures of human conjunctival fibroblasts (FBs) were developed and exposed to a single UV exposure over 15 min (0.277 W/m2), either alone or supplemented with NGF (1–10–100 ng/mL). Conditioned media and cell monolayers were collected and analyzed for protein release (ELISA, ELLA microfluidic) and transcript expression (real-time PCR). A specific “inflammatory to remodeling” pattern (IL8, VEGF, IL33, OPN, and CYR61) as well as a few epigenetic transcripts (known as modulator of cell differentiation and matrix-remodeling (DNMT3a, HDAC1, NRF2 and KEAP1)) were investigated in parallel. UV-exposed FBs (i), showed no proliferation or significant cytoskeleton rearrangement; (ii), displayed a trkANGFR/p75NTR phenotype; and (iii), synthesized/released IL8, VEGF-A, IL33, OPN, and CYR61, as compared to unexposed ones. NGF addition counteracted IL8, IL33, OPN, and CYR61 protein release merely at lower NGF concentrations but not VEGF. NGF supplementation did not affect DNMT3a or HDAC1 transcripts, while it significantly upregulated NRF2 at lowest NGF doses and did not change KEAP1 expression. Taken together, a single UV exposure activated conjunctival FBs to release pro-inflammatory/fibrogenic factors in association with epigenetic changes. The effects were selectively counteracted by NGF supplementation in a dose-dependent fashion, most probably accountable to the trkANGFR/p75NTR phenotype. Further in vitro studies are underway to better understand this additional NGF pleiotropic effect. Since UV-shield impairments represent a worldwide alert and UV radiation can slowly affect ocular surface homeostasis (photo-ageing, cataract) or might exacerbate ocular diseases with a preexisting fibrosis (pterygium, VKC), these findings on NGF modulation of UV-exposed FBs might provide additional information for protecting the ocular surface (homeostasis) from low-grade long-lasting UV insults.
Collapse
Affiliation(s)
- Graziana Esposito
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00198 Rome, Italy; (G.E.); (B.O.B.)
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00198 Rome, Italy; (G.E.); (B.O.B.)
| | - Maria Luisa Rocco
- Institute of Cell Biology and Neurobiology, CNR, 00143 Rome, Italy;
- Fondazione IRET, 40064 Bologna, Italy;
| | - Luigi Aloe
- Fondazione IRET, 40064 Bologna, Italy;
- Associazione NGF ONLUS, 00172 Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00198 Rome, Italy; (G.E.); (B.O.B.)
- Correspondence:
| |
Collapse
|
9
|
Zhang X, Jiang Y, Wang Q, An W, Zhang X, Xu M, Chen Y. Atypical U3 snoRNA Suppresses the Process of Pterygium Through Modulating 18S Ribosomal RNA Synthesis. Invest Ophthalmol Vis Sci 2022; 63:17. [PMID: 35472218 PMCID: PMC9055567 DOI: 10.1167/iovs.63.4.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background The progression and recurrence of pterygium mainly occur due to the abnormal proliferation and migration of stromal pterygium fibroblasts. This research explores the aberrant expression of small nucleolar RNA U3 (U3 snoRNA) in pterygium and elucidates the molecular mechanisms of U3 snoRNA in pterygium development. Methods Primary human conjunctival fibroblasts (HCFs) and human pterygium fibroblasts (HPFs) were separated and cultured from fresh conjunctiva grafts and pterygium tissues. The PLKO.1 lentiviral system and CRISPR/Cas9 recombinant construct were, respectively, used to overexpress and silence U3 snoRNA in HPFs and HCFs for further specific phenotype analysis. RNA-seq and TMT-labeled quantitative protein mass spectrometry were utilized to evaluate the effect of U3 snoRNA on mRNA transcripts and protein synthesis. Results Reduced U3 snoRNA in pterygium promotes HCF or HPF cells’ proliferation, migration, and cell cycle but has no significant effect on apoptosis. U3 snoRNA modulates 18S rRNA synthesis through shearing precursor ribosomal RNA 47S rRNA at the 5′ external transcribed spacer (5′ ETS). Moreover, the altered U3 snoRNA causes mRNA and protein differential expression in HCF or HPF cells. Conclusions The atypical U3 snoRNA regulates the translation of specific proteins to exert a suppressive function in pterygium through modulating the 18S rRNA synthesis. Here, we uncover a novel insight into U3 snoRNA biology in the development of pterygium.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weishu An
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Li J, Tao T, Yu Y, Xu N, Du W, Zhao M, Jiang Z, Huang L. Expression profiling suggests the involvement of hormone-related, metabolic, and Wnt signaling pathways in pterygium progression. Front Endocrinol (Lausanne) 2022; 13:943275. [PMID: 36187094 PMCID: PMC9515788 DOI: 10.3389/fendo.2022.943275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pterygium is an ocular surface disease that can cause visual impairment if it progressively invades the cornea. Although many pieces of research showed ultraviolet radiation is a trigger of pterygium pathological progress, the underlying mechanism in pterygium remains indistinct. METHODS In this study, we used microarray to evaluate the changes of transcripts between primary pterygium and adjacent normal conjunctiva samples in China. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Moreover, we constructed protein-protein interaction (PPI) and miRNA-mRNA regulatory networks to predict possible regulatory relationships. We next performed gene set enrichment analysis (GSEA) to explore the similarities and differences of transcripts between Asian studies from the Gene Expression Omnibus database. Furthermore, we took the intersection of differentially expressed genes (DEGs) with other data and identified hub genes of the development of pterygium. Finally, we utilized real-time quantitative PCR to verify the expression levels of candidate genes. RESULTS A total of 49 DEGs were identified. The enrichment analyses of DEGs showed that pathways such as the Wnt-signaling pathway and metabolism-related pathways were upregulated, while pathways such as hormone-related and transcription factor-associated pathways were downregulated. The PPI and miRNA-mRNA regulatory networks provide ideas for future research directions. The GSEA of selecting Asian data revealed that epithelial-mesenchymal transition and myogenesis existed in the pathology of pterygium in the Asian group. Furthermore, five gene sets (interferon-gamma response, Wnt beta-catenin signaling, oxidative phosphorylation, DNA repair, and MYC targets v2) were found only in our Chinese datasets. After taking an intersection between selecting datasets, we identified two upregulated (SPP1 and MYH11) and five downregulated (ATF3, FOS, EGR1, FOSB, and NR4A2) hub genes. We finally chose night genes to verify their expression levels, including the other two genes (SFRP2 and SFRP4) involved in Wnt signaling; Their expression levels were significantly different between pterygium and conjunctiva. CONCLUSIONS We consider hormone-related, metabolic, and Wnt signaling pathways may be important in the pathology of pterygium development. Nine candidate genes we identified deserve further study and can be potential therapeutic targets.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Tianchang Tao
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wei Du
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Lvzhen Huang, ; Zhengxuan Jiang,
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- *Correspondence: Lvzhen Huang, ; Zhengxuan Jiang,
| |
Collapse
|
11
|
Transcriptome Analysis of Pterygium and Pinguecula Reveals Evidence of Genomic Instability Associated with Chronic Inflammation. Int J Mol Sci 2021; 22:ijms222112090. [PMID: 34769520 PMCID: PMC8584501 DOI: 10.3390/ijms222112090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Solar damage due to ultraviolet radiation (UVR) is implicated in the development of two proliferative lesions of the ocular surface: pterygium and pinguecula. Pterygium and pinguecula specimens were collected, along with adjacent healthy conjunctiva specimens. RNA was extracted and sequenced. Pairwise comparisons were made of differentially expressed genes (DEGs). Computational methods were used for analysis. Transcripts from 18,630 genes were identified. Comparison of two subgroups of pterygium specimens uncovered evidence of genomic instability associated with inflammation and the immune response; these changes were also observed in pinguecula, but to a lesser extent. Among the top DEGs were four genes encoding tumor suppressors that were downregulated in pterygium: C10orf90, RARRES1, DMBT1 and SCGB3A1; C10orf90 and RARRES1 were also downregulated in pinguecula. Ingenuity Pathway Analysis overwhelmingly linked DEGs to cancer for both lesions; however, both lesions are clearly still benign, as evidenced by the expression of other genes indicating their well-differentiated and non-invasive character. Pathways for epithelial cell proliferation were identified that distinguish the two lesions, as well as genes encoding specific pathway components. Upregulated DEGs common to both lesions, including KRT9 and TRPV3, provide a further insight into pathophysiology. Our findings suggest that pterygium and pinguecula, while benign lesions, are both on the pathological pathway towards neoplastic transformation.
Collapse
|
12
|
Chhunchha B, Kubo E, Kompella UB, Singh DP. Engineered Sumoylation-Deficient Prdx6 Mutant Protein-Loaded Nanoparticles Provide Increased Cellular Defense and Prevent Lens Opacity. Antioxidants (Basel) 2021; 10:antiox10081245. [PMID: 34439493 PMCID: PMC8389307 DOI: 10.3390/antiox10081245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant Sumoylation-mediated protein dysfunction is involved in a variety of oxidative and aging pathologies. We previously reported that Sumoylation-deficient Prdx6K(lysine)122/142R(Arginine) linked to the TAT-transduction domain gained stability and protective efficacy. In the present study, we formulated wild-type TAT-HA-Prdx6WT and Sumoylation-deficient Prdx6-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) to further enhance stability, protective activities, and sustained delivery. We found that in vitro and subconjuctival delivery of Sumoylation-deficient Prdx6-NPs provided a greater protection of lens epithelial cells (LECs) derived from human and Prdx6-/--deficient mouse lenses against oxidative stress, and it also delayed the lens opacity in Shumiya cataract rats (SCRs) than TAT-HA-Prdx6WT-NPs. The encapsulation efficiencies of TAT-HA-Prdx6-NPs were ≈56%-62%. Dynamic light scattering (DLS) and atomic force microscopy (AFM) analyses showed that the NPs were spherical, with a size of 50-250 nm and a negative zeta potential (≈23 mV). TAT-HA-Prdx6 analog-NPs released bioactive TAT-HA-Prdx6 (6%-7%) within 24 h. Sumoylation-deficient TAT-HA-Prdx6-NPs provided 35% more protection by reducing the oxidative load of LECs exposed to H2O2 compared to TAT-HA-Prdx6WT-NPs. A subconjuctival delivery of TAT-HA-Prdx6 analog-NPs demonstrated that released TAT-HA-Prdx6K122/142R could reduce lens opacity by ≈60% in SCRs. Collectively, our results demonstrate for the first time that the subconjuctival delivery of Sumoylation-deficient Prdx6-NPs is efficiently cytoprotective and provide a proof of concept for potential use to delay cataract and oxidative-related pathobiology in general.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (B.C.); (D.P.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200265, Ishikawa, Japan;
| | - Uday B. Kompella
- Departments of Pharmaceutical Sciences, Ophthalmology, and Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Dhirendra P. Singh
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (B.C.); (D.P.S.)
| |
Collapse
|
13
|
Kim M, Chun YS, Kim KW. Evaluation of Primary Pterygia on Basis of the Loss of Vertical Length of Plica Semilunaris. Transl Vis Sci Technol 2021; 10:18. [PMID: 34279539 PMCID: PMC8297423 DOI: 10.1167/tvst.10.8.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose To propose a new grading system for primary pterygia based on the morphological loss of vertical length of plica semilunaris (LPS). Methods We included 50 eyes from 41 patients with primary pterygium. LPS was defined and quantified as the ratio of the length of loss of the normal vertical morphology at plica semilunaris to the vertical corneal diameter using anterior-segment photographs. Grades of tear metalloproteinase 9 (MMP-9) expression by point-of-care immunoassay, which is a well-known biomarker for inflammation, was correlated with the extent of LPS (%) of pterygia. Then, LPS was paralleled with the pre-established grading systems on the basis of tissue translucency (i.e., T grade) and vascularity (i.e., V grade) of the pterygium body. Results MMP-9 grades was 2.39 ± 1.12 in the group with LPS ≥50% and was 1.56 ± 1.12 in the group with LPS <50% (P = 0.016). In a linear regression, the extent of LPS was positively correlated with MMP-9 grades (r = 0.315, P = 0.026). MMP-9 expression did not differ between T grades or V grades. The extents of LPS were well correlated positively with both T grades (r = 0.495 and P < 0.001) and V grades (r = 0.344 and P = 0.015). Conclusions We devised a new grading system using LPS on the basis of morphological loss of the normal vertical plica semilunaris in primary pterygia. The extent of LPS correlated well with T grades and V grades and also reflected the expression of MMP-9 in tears. Translational Relevance The new clinical LPS grading system reflects severity and MMP-9 expression in tears in primary pterygia.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Ophthalmology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yeoun Sook Chun
- Department of Ophthalmology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Woo Kim
- Department of Ophthalmology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Hatsusaka N, Yamamoto N, Miyashita H, Shibuya E, Mita N, Yamazaki M, Shibata T, Ishida H, Ukai Y, Kubo E, Cheng HM, Sasaki H. Association among pterygium, cataracts, and cumulative ocular ultraviolet exposure: A cross-sectional study in Han people in China and Taiwan. PLoS One 2021; 16:e0253093. [PMID: 34129614 PMCID: PMC8205177 DOI: 10.1371/journal.pone.0253093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Pterygium is an ocular surface disorder mainly caused by ultraviolet (UV) light exposure. This study explored the relationships between six cataract types with pterygium and UV exposure. Methods We have previously studied cataracts in residents of three regions in China and Taiwan with different UV intensities. From that study, we identified 1,547 subjects with information on the presence or absence of pterygium. Pterygium severity was graded by corneal progress rate. Cataracts were graded by classification systems as three main types (cortical, nuclear, posterior subcapsular) and three subtypes (retrodots, waterclefts, fiber folds) with high prevalence in middle-aged and elderly people. We calculated the cumulative ocular UV exposure (COUV) based on subject data and National Aeronautics and Space Administration data on UV intensities and used logistic regression to calculate odds ratios for the associations of COUV, cataract, and pterygium. Results We found an overall pterygium prevalence of 23.3%, with significant variation among the three regions. Four cataract types (cortical, nuclear, posterior subcapsular, and retrodots) were significantly associated with the presence of pterygium. Conclusions There was a significant association between COUV and pterygium, indicating that COUV is associated with the risk of pterygium development and that pterygium is useful as an index of UV exposure. Furthermore, the type of cataract in eyes with pterygium may indicate the level of UV exposure.
Collapse
Affiliation(s)
- Natsuko Hatsusaka
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Vision Research for Environmental Health, Project Research Center, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Naoki Yamamoto
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Vision Research for Environmental Health, Project Research Center, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Hisanori Miyashita
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Eri Shibuya
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Norihiro Mita
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Mai Yamazaki
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Hidetoshi Ishida
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuki Ukai
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | | | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Vision Research for Environmental Health, Project Research Center, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- * E-mail:
| |
Collapse
|