1
|
Yuan Y, Yasuda S, Funk KL, Kao W, Saika S, Kaufman A, Liu CY. Smad4 deficiency ameliorates the progressive corneal stroma thinning caused by the loss of Tbr1. Ocul Surf 2025; 36:181-189. [PMID: 39894408 DOI: 10.1016/j.jtos.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE To understand how Tbr1 and Smad4 play a pivotal role in controlling ECM synthesis versus degradation for maintaining corneal stromal homeostasis and otherwise leading to corneal ectasia. METHODS Keratocyte-specific and inducible knockout (iKO) of Tbr1, Smad4, or Tbr1/Smad4 double KO (iDKO) mice were generated. OCT was used to assess corneal thickness in vivo. Masson's trichrome and collagen hybridizing peptide stainings were performed to examine collagen expression. Immunostaining with an anti-cathepsin B antibody was used to assess ECM degradation. Cathepsin B inhibitor, CA-074Me, eyedrop was conducted to test its effect on treating stromal thinning in Tbr1 iKO mice. RESULTS Tbr1 iKO and Smad4 iKO displayed corneal thinning, but Tbr1 iKO revealed a progressive and more severe pathology than Smad4 iKO. Tbr1 iKO cornea lost most of its stroma and thus a dome shape. Collagen ECM is evenly distributed in Smad4 iKO as well as control littermates but was lost mainly in the anterior stroma of the Tbr1 iKO. Interestingly, Tbr1/Smad4 iDKO ameliorated Tbr1 iKO phenotype. The basal level of Cathepsin b (Ctsb) could be detected in the control stroma but was significantly increased in the Tbr1 iKO stromal cells and this effect was canceled in Tbr1/Smad4 iDKO. CA-074Me eyedrops administration significantly inhibited progressive corneal thinning caused by the Tbr1 iKO. CONCLUSION Our data from Tbr1/Smad4 iDKO argued that Smad4 played a pivotal role in controlling Tbr1-dependent ECM synthesis and Tbr1-independent ECM degradation to maintain corneal stromal integrity and homeostasis.
Collapse
Affiliation(s)
- Yong Yuan
- Edith Crawley Vision Research Center, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shingo Yasuda
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Kaitlyn L Funk
- Edith Crawley Vision Research Center, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Winston Kao
- Edith Crawley Vision Research Center, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Adam Kaufman
- Edith Crawley Vision Research Center, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Chia-Yang Liu
- Edith Crawley Vision Research Center, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Poole K, Iyer KS, Schmidtke DW, Petroll WM, Varner VD. Corneal Keratocytes, Fibroblasts, and Myofibroblasts Exhibit Distinct Transcriptional Profiles In Vitro. Invest Ophthalmol Vis Sci 2025; 66:28. [PMID: 40072446 PMCID: PMC11918030 DOI: 10.1167/iovs.66.3.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Purpose After stromal injury to the cornea, the release of growth factors and pro-inflammatory cytokines promotes the activation of quiescent keratocytes into a migratory fibroblast and/or fibrotic myofibroblast phenotype. Persistence of the myofibroblast phenotype can lead to corneal fibrosis and scarring, which are leading causes of blindness worldwide. This study aims to establish comprehensive transcriptional profiles for cultured corneal keratocytes, fibroblasts, and myofibroblasts to gain insights into the mechanisms through which these phenotypic changes occur. Methods Primary rabbit corneal keratocytes were cultured in either defined serum-free (SF) media, fetal bovine serum (FBS) containing media, or SF media supplemented with TGF-β1 to induce keratocyte, fibroblast, or myofibroblast phenotypes, respectively. Bulk RNA sequencing followed by bioinformatic analyses was performed to identify significant differentially expressed genes (DEGs) and enriched biological pathways for each phenotype. Results Genes commonly associated with keratocytes, fibroblasts, or myofibroblasts showed high relative expression in SF, FBS, or TGF-β1 culture conditions, respectively. Differential expression and functional analyses revealed novel DEGs for each cell type, as well as enriched pathways indicative of differences in proliferation, apoptosis, extracellular matrix (ECM) synthesis, cell-ECM interactions, cytokine signaling, and cell mechanics. Conclusions Overall, these data demonstrate distinct transcriptional differences among cultured corneal keratocytes, fibroblasts, and myofibroblasts. We have identified genes and signaling pathways that may play important roles in keratocyte differentiation, including many related to mechanotransduction and ECM biology. Our findings have revealed novel molecular markers for each cell type, as well as possible targets for modulating cell behavior and promoting physiological corneal wound healing.
Collapse
Affiliation(s)
- Kara Poole
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Krithika S Iyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| | - W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
3
|
Chand R, Janarthanan G, Elkhoury K, Vijayavenkataraman S. Digital light processing 3D bioprinting of biomimetic corneal stroma equivalent using gelatin methacryloyl and oxidized carboxymethylcellulose interpenetrating network hydrogel. Biofabrication 2025; 17:025011. [PMID: 39819884 DOI: 10.1088/1758-5090/adab27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties. Using digital light processing (DLP) bioprinting, with tartrazine as a photoabsorber, we successfully biofabricated three-dimensional constructs with improved shape fidelity, high resolution, and excellent reproducibility. The bioprinted constructs mimic the native corneal stroma's curvature, with central and peripheral thicknesses of 478.9 ± 56.5µm and 864.0 ± 79.3µm, respectively. The dual crosslinking strategy, which combines Schiff base reaction and photocrosslinking, showed an improved compressive modulus (106.3 ± 7.7 kPa) that closely matched that of native tissues (115.3 ± 13.6 kPa), without relying on synthetic polymers, toxic crosslinkers, or nanoparticles. Importantly, the optical transparency of tartrazine-containing corneal constructs was comparable to the native cornea following phosphate-buffered saline washing. Morphological analyses using scanning electron microscopy confirmed the improved porosity, interconnected network, and structural integrity of the GelMA-OxiCMC hydrogel, facilitating better nutrient diffusion and cell viability.In vitrobiological assays demonstrated high cell viability (>93%) and desirable proliferation of human corneal keratocytes within the biofabricated constructs. Our findings indicate that the GelMA-OxiCMC hydrogel system for DLP bioprinting presents a promising alternative for corneal tissue engineering, offering a potential solution to the donor cornea shortage and advancing regenerative medicine for corneal repair.
Collapse
Affiliation(s)
- Rashik Chand
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| | - Gopinathan Janarthanan
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kamil Elkhoury
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sanjairaj Vijayavenkataraman
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
- Department of Mechanical & Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| |
Collapse
|
4
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Erkoc-Biradli FZ, Erenay B, Ozgun A, Öztatlı H, Işık F, Ateş U, Rasier R, Garipcan B. Mesenchymal stem cells derived-exosomes enhanced amniotic membrane extract promotes corneal keratocyte proliferation. Biotechnol Prog 2024; 40:e3465. [PMID: 38602120 DOI: 10.1002/btpr.3465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Amniotic membrane extract (AME) and Wharton's jelly mesenchymal stem cells derived-exosomes (WJ-MSC-Exos) are promising therapeutic solutions explored for their potential in tissue engineering and regenerative medicine, particularly in skin and corneal wound healing applications. AME is an extract form of human amniotic membrane and known to contain a plethora of cytokines and growth factors, making it a highly attractive option for topical applications. Similarly, WJ-MSC-Exos have garnered significant interest for their wound healing properties. Although WJ-MSC-Exos and AME have been used separately for wound healing research, their combined synergistic effects have not been studied extensively. In this study, we evaluated the effects of both AME and WJ-MSC-Exos, individually and together, on the proliferation of corneal keratocytes as well as their ability to promote in vitro cell migration, wound healing, and their impact on cellular morphology. Our findings indicated that the presence of both exosomes (3 × 105 Exo/mL) and AME (50 μg/mL) synergistically enhance the proliferation of corneal keratocytes. Combined use of these solutions (3 × 105 Exo/mL + 50 μg/mL) increased cell proliferation compared to only 50 μg/mL AME treatment on day 3 (**** p < 0.0001). This mixture treatment (3 × 105 Exo/mL + 50 μg/mL) increased wound closure rate compared to isolated WJ-MSC-Exo treatment (3 × 105 Exo/mL) (*p < 0.05). Overall, corneal keratocytes treated with AME and WJ-MSC-Exo (3 × 105 Exo/mL + 50 μg/mL) mixture resulted in enhanced proliferation and wound healing tendency. Utilization of combined use of AME and WJ-MSC-Exo can pave the way for a promising foundation for corneal repair research.
Collapse
Affiliation(s)
- Fatma Zehra Erkoc-Biradli
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Berkay Erenay
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Alp Ozgun
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - Hayriye Öztatlı
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Ferda Işık
- Stembio Cord Blood Cell & Tissue Center, Kocaeli, Turkey
| | - Utku Ateş
- Stembio Cord Blood Cell & Tissue Center, Kocaeli, Turkey
| | - Rıfat Rasier
- Department of Ophthalmology, İstinye University, Istanbul, Turkey
| | - Bora Garipcan
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| |
Collapse
|
6
|
Iyer KS, Maruri DP, Schmidtke DW, Petroll WM, Varner VD. Treatment with both TGF-β1 and PDGF-BB disrupts the stiffness-dependent myofibroblast differentiation of corneal keratocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582803. [PMID: 38496568 PMCID: PMC10942298 DOI: 10.1101/2024.02.29.582803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
During corneal wound healing, stromal keratocytes transform into a repair phenotype that is driven by the release of cytokines, like transforming growth factor-beta 1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB). Previous work has shown that TGF-β1 promotes the myofibroblast differentiation of corneal keratocytes in a manner that depends on PDGF signaling. In addition, changes in mechanical properties are known to regulate the TGF-β1-mediated differentiation of cultured keratocytes. While PDGF signaling acts synergistically with TGF-β1 during myofibroblast differentiation, how treatment with multiple growth factors affects stiffness-dependent differences in keratocyte behavior is unknown. Here, we treated primary corneal keratocytes with PDGF-BB and TGF-β1 and cultured them on polyacrylamide (PA) substrata of different stiffnesses. In the presence of TGF-β1 alone, the cells underwent stiffness-dependent myofibroblast differentiation. On stiff substrata, the cells developed robust stress fibers, exhibited high levels of ⍺-SMA staining, formed large focal adhesions (FAs), and exerted elevated contractile forces, whereas cells in a compliant microenvironment showed low levels of ⍺-SMA immunofluorescence, formed smaller focal adhesions, and exerted decreased contractile forces. When the cultured keratocytes were treated simultaneously with PDGF-BB however, increased levels of ⍺-SMA staining and stress fiber formation were observed on compliant substrata, even though the cells did not exhibit elevated contractility or focal adhesion size. Pharmacological inhibition of PDGF signaling disrupted the myofibroblast differentiation of cells cultured on substrata of all stiffnesses. These results indicate that treatment with PDGF-BB can decouple molecular markers of myofibroblast differentiation from the elevated contractile phenotype otherwise associated with these cells, suggesting that crosstalk in the mechanotransductive signaling pathways downstream of TGF-β1 and PDGF-BB can regulate the stiffness-dependent differentiation of cultured keratocytes. Statement of Significance In vitro experiments have shown that changes in ECM stiffness can regulate the differentiation of myofibroblasts. Typically, these assays involve the use of individual growth factors, but it is unclear how stiffness-dependent differences in cell behavior are affected by multiple cytokines. Here, we used primary corneal keratocytes to show that treatment with both TGF-β1 and PDGF-BB disrupts the dependency of myofibroblast differentiation on substratum stiffness. In the presence of both growth factors, keratocytes on soft substrates exhibited elevated ⍺-SMA immunofluorescence without a corresponding increase in contractility or focal adhesion formation. This result suggests that molecular markers of myofibroblast differentiation can be dissociated from the elevated contractile behavior associated with the myofibroblast phenotype, suggesting potential crosstalk in mechanotransductive signaling pathways downstream of TGF-β1 and PDGF-BB.
Collapse
|
7
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
8
|
Bao L, Zhong M, Zhang Z, Yu X, You B, You Y, Gu M, Zhang Q, Chen W, Lei W, Hu S. Stiffness promotes cell migration, invasion, and invadopodia in nasopharyngeal carcinoma by regulating the WT-CTTN level. Cancer Sci 2024; 115:836-846. [PMID: 38273817 PMCID: PMC10920987 DOI: 10.1111/cas.16075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Matrix stiffness potently promotes the malignant phenotype in various biological contexts. Therefore, identification of gene expression to participate in mechanical force signals transduced into downstream biochemical signaling will contribute substantially to the advances in nasopharyngeal carcinoma (NPC) treatment. In the present study, we detected that cortactin (CTTN) played an indispensable role in matrix stiffness-induced cell migration, invasion, and invadopodia formation. Advances in cancer research have highlighted that dysregulated alternative splicing contributes to cancer progression as an oncogenic driver. However, whether WT-CTTN or splice variants (SV1-CTTN or SV2-CTTN) regulate matrix stiffness-induced malignant phenotype is largely unknown. We proved that alteration of WT-CTTN expression modulated matrix stiffness-induced cell migration, invasion, and invadopodia formation. Considering that splicing factors might drive cancer progression through positive feedback loops, we analyzed and showed how the splicing factor PTBP2 and TIA1 modulated the production of WT-CTTN. Moreover, we determined that high stiffness activated PTBP2 expression. Taken together, our findings showed that the PTBP2-WT-CTTN level increases upon stiffening and then promotes cell migration, invasion, and invadopodia formation in NPC.
Collapse
Affiliation(s)
- Lili Bao
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Ming Zhong
- Department of Otorhinolaryngology Head and Neck SurgeryThe People's Hospital of RugaoRugaoJiangsu ProvinceChina
| | - Zixiang Zhang
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Xiangqing Yu
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Bo You
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Wenhui Chen
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Wei Lei
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| | - Songqun Hu
- Department of Otorhinolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Medical College of Nantong UniversityNantongJiangsu ProvinceChina
| |
Collapse
|
9
|
Feliciano AJ, Grant R, Fernández-Pérez J, Giselbrecht S, Baker MB. Introducing Dynamicity: Engineering Stress Relaxation Into Hydrogels Via Thiol-Ene Modified Alginate for Mechanobiological in vitro Modeling of the Cornea. Macromol Biosci 2024; 24:e2300109. [PMID: 37401723 DOI: 10.1002/mabi.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/11/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Developing biomaterials for corneal repair and regeneration is crucial for maintaining clear vision. The cornea, a specialized tissue, relies on corneal keratocytes, that respond to their mechanical environment. Altering stiffness affects keratocyte behavior, but static stiffness alone cannot capture the dynamic properties of in vivo tissue. This study proposes that the cornea exhibits time-dependent mechanical properties, similar to other tissues, and aims to replicate these properties in potential therapeutic matrices. First, the cornea's stress relaxation properties are investigated using nanoindentation, revealing 15% relaxation within 10 seconds. Hydrogel dynamicity is then modulated using a specially formulated alginate-PEG and alginate-norbornene mixture. The tuning of the hydrogel's dynamicity is achieved through a photoinitiated norbornene-norbornene dimerization reaction, resulting in relaxation times ranging from 30 seconds to 10 minutes. Human primary corneal keratocytes are cultured on these hydrogels, demonstrating reduced αSMA (alpha smooth muscle actin) expression and increased filopodia formation on slower relaxing hydrogels, resembling their native phenotype. This in vitro model can enable the optimization of stress relaxation for various cell types, including corneal keratocytes, to control tissue formation. Combining stress relaxation optimization with stiffness assessment provides a more accurate tool for studying cell behavior and reduces mechanical mismatch with native tissues in implanted constructs.
Collapse
Affiliation(s)
- Antonio J Feliciano
- Department of Complex Tissue Regeneration, MERLN Institute, Maastricht University, Maastricht, Netherlands
| | - Rhiannon Grant
- Department of Instructive Biomaterials Engineering, MERLN Institute, Maastricht University, Maastricht, Netherlands
| | - Julia Fernández-Pérez
- Department of Complex Tissue Regeneration, MERLN Institute, Maastricht University, Maastricht, Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute, Maastricht University, Maastricht, Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
Petroll WM, Miron-Mendoza M, Sunkara Y, Ikebe HR, Sripathi NR, Hassaniardekani H. The impact of UV cross-linking on corneal stromal cell migration, differentiation and patterning. Exp Eye Res 2023; 233:109523. [PMID: 37271309 PMCID: PMC10825899 DOI: 10.1016/j.exer.2023.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK + CXL, haze was derived primarily from highly reflective necrotic "ghost cells" in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK + CXL (P < 0.001) and was over 35 μm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model.
Collapse
Affiliation(s)
- W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, USA.
| | | | - Yukta Sunkara
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hikaru R Ikebe
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nishith R Sripathi
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
11
|
Zhang R, Li B, Li H. Extracellular-Matrix Mechanics Regulate the Ocular Physiological and Pathological Activities. J Ophthalmol 2023; 2023:7626920. [PMID: 37521908 PMCID: PMC10386902 DOI: 10.1155/2023/7626920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The extracellular matrix (ECM) is a noncellular structure that plays an indispensable role in a series of cell life activities. Accumulating studies have demonstrated that ECM stiffness, a type of mechanical forces, exerts a pivotal influence on regulating organogenesis, tissue homeostasis, and the occurrence and development of miscellaneous diseases. Nevertheless, the role of ECM stiffness in ophthalmology is rarely discussed. In this review, we focus on describing the important role of ECM stiffness and its composition in multiple ocular structures (including cornea, retina, optic nerve, trabecular reticulum, and vitreous) from a new perspective. The abnormal changes in ECM can trigger physiological and pathological activities of the eye, suggesting that compared with different biochemical factors, the transmission and transduction of force signals triggered by mechanical cues such as ECM stiffness are also universal in different ocular cells. We expect that targeting ECM as a therapeutic approach or designing advanced ECM-based technologies will have a broader application prospect in ophthalmology.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan, China
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| | - Bo Li
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| | - Heng Li
- Department of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan, China
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| |
Collapse
|
12
|
Pot SA, Lin Z, Shiu J, Benn MC, Vogel V. Growth factors and mechano-regulated reciprocal crosstalk with extracellular matrix tune the keratocyte-fibroblast/myofibroblast transition. Sci Rep 2023; 13:11350. [PMID: 37443325 PMCID: PMC10345140 DOI: 10.1038/s41598-023-37776-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Improper healing of the cornea after injury, infections or surgery can lead to corneal scar formation, which is associated with the transition of resident corneal keratocytes into activated fibroblasts and myofibroblasts (K-F/M). Myofibroblasts can create an extracellular matrix (ECM) niche in which fibrosis is promoted and perpetuated, resulting in progressive tissue opacification and vision loss. As a reversion back to quiescent keratocytes is essential to restore corneal transparency after injury, we characterized how growth factors with demonstrated profibrotic effects (PDGF, FGF, FBS, TGFβ1) induce the K-F/M transition, and whether their withdrawal can revert it. Indeed, the upregulated expression of αSMA and the associated changes in cytoskeletal architecture correlated with increases in cell contractility, fibronectin (Fn) and collagen matrix density and Fn fiber strain, as revealed by 2D cell culture, nanopillar cellular force mapping and a FRET-labeled Fn tension probe. Substrate mechanosensing drove a more complete K-F/M transition reversal following growth factor withdrawal on nanopillar arrays than on planar glass substrates. Using decellularized ECM scaffolds, we demonstrated that the K-F/M transition was inhibited in keratocytes reseeded onto myofibroblast-assembled, and/or collagen-1-rich ECM. This supports the presence of a myofibroblast-derived ECM niche that contains cues favoring tissue homeostasis rather than fibrosis.
Collapse
Affiliation(s)
- Simon A Pot
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
- Ophthalmology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| | - Zhe Lin
- Ruisi (Fujian) Biomedical Engineering Research Center Co Ltd, 26-1 Wulongjiang Road, Fuzhou, 350100, People's Republic of China
| | - Jauye Shiu
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd, North District, Taichung City, Taiwan
| | - Mario C Benn
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Karamichos D, Nicholas SE, Khan A, Riaz KM. Collagen Crosslinking for Keratoconus: Cellular Signaling Mechanisms. Biomolecules 2023; 13:696. [PMID: 37189443 PMCID: PMC10135890 DOI: 10.3390/biom13040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Collagen crosslinking (CXL) is a widely used treatment to halt the progression of keratoconus (KC). Unfortunately, a significant number of patients with progressive KC will not qualify for CXL, including those with corneas thinner than 400 µm. The present study aimed to investigate the molecular effects of CXL using in vitro models, mirroring the normal, as well as thinner corneal stroma seen in KCs. Primary human corneal stromal cells were isolated from healthy (HCFs) and keratoconus (HKCs) donors. Cells were cultured and stimulated with stable Vitamin C resulting in 3D self-assembled extracellular matrix (ECM), cell-embedded, constructs. CXL was performed on (a) thin ECM with CXL performed at week 2 and (b) normal ECM with CXL performed at week 4. Constructs without CXL served as controls. All constructs were processed for protein analysis. The results showed modulation of Wnt signaling, following CXL treatment, as measured by the protein levels of Wnt7b and Wnt10a, correlated to the expression of α-smooth muscle actin (SMA). Further, the expression of a recently identified KC biomarker candidate, prolactin-induced protein (PIP), was positively impacted by CXL in HKCs. CXL-driven upregulation of PGC-1 and the downregulation of SRC and Cyclin D1 in HKCs were also noted. Although the cellular/molecular impacts of CXL are largely understudied, our studies provide an approximation to the complex mechanisms of KC and CXL. Further studies are warranted to determine factors influencing CXL outcomes.
Collapse
Affiliation(s)
- Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, IREB-505, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, IREB-505, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Asher Khan
- Dean McGee Eye Institute, University of Oklahoma, 608 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
- College of Medicine, University of Oklahoma, 800 Stanton L Young Blvd, Oklahoma City, OK 73117, USA
| | - Kamran M. Riaz
- Dean McGee Eye Institute, University of Oklahoma, 608 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Iyer KS, Maruri DP, Peak KE, Schmidtke DW, Petroll WM, Varner VD. ECM stiffness modulates the proliferation but not the motility of primary corneal keratocytes in response to PDGF-BB. Exp Eye Res 2022; 220:109112. [PMID: 35595094 PMCID: PMC10163834 DOI: 10.1016/j.exer.2022.109112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
Abstract
During corneal wound healing, keratocytes present within the corneal stroma become activated into a repair phenotype upon the release of growth factors, such as transforming growth factor-beta 1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB). The process of injury and repair can lead to changes in the mechanical properties of the tissue, and previous work has shown that the TGF-β1-mediated myofibroblast differentiation of corneal keratocytes depends on substratum stiffness. It is still unclear, however, if changes in stiffness can modulate keratocyte behavior in response to other growth factors, such as PDGF-BB. Here, we used a polyacrylamide (PA) gel system to determine whether changes in stiffness influence the proliferation and motility of primary corneal keratocytes treated with PDGF-BB. In the presence of PDGF-BB, cells on stiffer substrata exhibited a more elongated morphology and had higher rates of proliferation than cells in a more compliant microenvironment. Using a freeze-injury to assay cell motility, however, we did not observe any stiffness-dependent differences in the migration of keratocytes treated with PDGF-BB. Taken together, these data highlight the importance of biophysical cues during corneal wound healing and suggest that keratocytes respond differently to changes in ECM stiffness in the presence of different growth factors.
Collapse
Affiliation(s)
- Krithika S Iyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Daniel P Maruri
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kara E Peak
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA; Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA; Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Maruri DP, Iyer KS, Schmidtke DW, Petroll WM, Varner VD. Signaling Downstream of Focal Adhesions Regulates Stiffness-Dependent Differences in the TGF- β1-Mediated Myofibroblast Differentiation of Corneal Keratocytes. Front Cell Dev Biol 2022; 10:886759. [PMID: 35693927 PMCID: PMC9177138 DOI: 10.3389/fcell.2022.886759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 12/05/2022] Open
Abstract
Following injury and refractive surgery, corneal wound healing can initiate a protracted fibrotic response that interferes with ocular function. This fibrosis is related, in part, to the myofibroblast differentiation of corneal keratocytes in response to transforming growth factor beta 1 (TGF-β1). Previous studies have shown that changes in the mechanical properties of the extracellular matrix (ECM) can regulate this process, but the mechanotransductive pathways that govern stiffness-dependent changes in keratocyte differentiation remain unclear. Here, we used a polyacrylamide (PA) gel system to investigate how mechanosensing via focal adhesions (FAs) regulates the stiffness-dependent myofibroblast differentiation of primary corneal keratocytes treated with TGF-β1. Soft (1 kPa) and stiff (10 kPa) PA substrata were fabricated on glass coverslips, plated with corneal keratocytes, and cultured in defined serum free media with or without exogenous TGF-β1. In some experiments, an inhibitor of focal adhesion kinase (FAK) activation was also added to the media. Cells were fixed and stained for F-actin, as well as markers for myofibroblast differentiation (α-SMA), actomyosin contractility phosphorylated myosin light chain (pMLC), focal adhesions (vinculin), or Smad activity (pSmad3). We also used traction force microscopy (TFM) to quantify cellular traction stresses. Treatment with TGF-β1 elicited stiffness-dependent differences in the number, size, and subcellular distribution of FAs, but not in the nuclear localization of pSmad3. On stiff substrata, cells exhibited large FAs distributed throughout the entire cell body, while on soft gels, the FAs were smaller, fewer in number, and localized primarily to the distal tips of thin cellular extensions. Larger and increased numbers of FAs correlated with elevated traction stresses, increased levels of α-SMA immunofluorescence, and more prominent and broadly distributed pMLC staining. Inhibition of FAK disrupted stiffness-dependent differences in keratocyte contractility, FA patterning, and myofibroblast differentiation in the presence of TGF-β1. Taken together, these data suggest that signaling downstream of FAs has important implications for the stiffness-dependent myofibroblast differentiation of corneal keratocytes.
Collapse
Affiliation(s)
- Daniel P. Maruri
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Krithika S. Iyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - W. Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States,*Correspondence: Victor D. Varner,
| |
Collapse
|
16
|
Advances in Regulatory Strategies of Differentiating Stem Cells towards Keratocytes. Stem Cells Int 2022; 2022:5403995. [PMID: 35140792 PMCID: PMC8820938 DOI: 10.1155/2022/5403995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Corneal injury is a commonly encountered clinical problem which led to vision loss and impairment that affects millions of people worldwide. Currently, the available treatment in clinical practice is corneal transplantation, which is limited by the accessibility of donors. Corneal tissue engineering appears to be a promising alternative for corneal repair. However, current experimental strategies of corneal tissue engineering are insufficient due to inadequate differentiation of stem cell into keratocytes and thus cannot be applied in clinical practice. In this review, we aim to clarify the role and effectiveness of both biochemical factors, physical regulation, and the combination of both to induce stem cells to differentiate into keratocytes. We will also propose novel perspectives of differentiation strategy that may help to improve the efficiency of corneal tissue engineering.
Collapse
|