1
|
Prokai-Tatrai K, Zaman K, Kapic A, Hogan K, Sanchez-Rodriguez G, Silverio AE, Nguyen V, Prokai L, Feola AJ. Retina-Targeted 17β-Estradiol by the DHED Prodrug Rescues Visual Function and Actuates Neuroprotective Protein Networks After Optic Nerve Crush in a Rat Model of Surgical Menopause. Int J Mol Sci 2025; 26:1846. [PMID: 40076480 PMCID: PMC11899211 DOI: 10.3390/ijms26051846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The association between 17β-estradiol (E2) deprivation, seen in menopause, and a risk for developing glaucoma has been shown. Thus, exogenous supplementation of E2 may protect against retinal ganglion cell (RGC) degradation and vision loss. Here, we investigated the utility of topical 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), a prodrug of E2 that selectively produces the neuroprotective hormone in the retina, on visual function after optic nerve crush (ONC) and ovariectomy (OVX). We used female Brown Norway rats that underwent either Sham or OVX surgeries. After ONC, OVX animals received DHED or vehicle eye drops for 12 weeks. Visual function, via the optomotor reflex, and retinal thickness, via optical coherence tomography, were followed longitudinally. Afterward, we performed mass spectrometry-based label-free retina proteomics to survey retinal protein interaction networks in our selected animal model and to identify E2-responsive proteins after OVX on neurodegeneration. We found that ONC with OVX caused a significant decline in visual functions that were ameliorated by DHED treatments. Discovery-driven retina proteomics identified numerous proteins associated with neurodegenerative processes due to ONC that were remediated by DHED eye drops. Altogether, our three-pronged phenotypic preclinical evaluation of the topical DHED in the OVX + ONC model of glaucoma reveals the therapeutic potential of the prodrug to prevent visual deficits after glaucomatous retinal injury.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (A.K.); (V.N.); (L.P.)
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (A.K.); (V.N.); (L.P.)
| | - Ammar Kapic
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (A.K.); (V.N.); (L.P.)
| | - Kelleigh Hogan
- Center for Visual and Neurocognitive Rehabilitation, Joseph M. Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- Department of Ophthalmology, Emory Eye Center, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Gabriela Sanchez-Rodriguez
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- Department of Ophthalmology, Emory Eye Center, School of Medicine, Emory University, Atlanta, GA 30322, USA;
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Anna E. Silverio
- Department of Ophthalmology, Emory Eye Center, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Vien Nguyen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (A.K.); (V.N.); (L.P.)
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (A.K.); (V.N.); (L.P.)
| | - Andrew J. Feola
- Center for Visual and Neurocognitive Rehabilitation, Joseph M. Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- Department of Ophthalmology, Emory Eye Center, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| |
Collapse
|
2
|
Sanchez-Rodriguez G, Lou L, Pardue MT, Feola AJ. RetOCTNet: Deep Learning-Based Segmentation of OCT Images Following Retinal Ganglion Cell Injury. Transl Vis Sci Technol 2025; 14:4. [PMID: 39903165 PMCID: PMC11801391 DOI: 10.1167/tvst.14.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/15/2024] [Indexed: 02/06/2025] Open
Abstract
Purpose We present RetOCTNet, a deep learning tool to segment the retinal nerve fiber layer (RNFL) and total retinal thickness automatically from optical coherence tomography (OCT) scans in rats following retinal ganglion cell (RGC) injury. Methods We created unilateral RGC injury by ocular hypertension (OHT) or optic nerve crush (ONC), and contralateral eyes were not injured. We manually segmented the RNFL and total retina of 3.0-mm radial OCT scans (1000 A-scans per B-scan, 20 frames per B-scan) as ground truth (n = 192 scans). We used these segmentations for training (80%), testing (10%), and validation (10%) to optimize the F1 score. To determine the generalizability of RetOCTNet, we tested it on volumetric scans of a separate cohort at baseline and 4, 8, and 12 weeks post-ONC. Results RetOCTNet's segmentations achieved high F1 scores relative to the ground-truth segmentations created by human annotators: 0.88 (RNFL) and 0.98 (retinal thickness) for control eyes, 0.84 and 0.98 for OHT eyes, and 0.78 and 0.96 for ONC eyes, respectively. On volumetric scans 12 weeks post-ONC, RetOCTNet calculated thinning of 29.49% and 10.82% in the RNFL and retina at the optic nerve head (ONH) and thinning of 38.34% and 9.85% in the RNFL and retina superior to the ONH. Conclusions RetOCTNet can segment the RNFL and total retinal thickness of both radial and volume OCT scans. RetOCTNet can be applied to longitudinally monitor RNFL in rodent models of RGC injury. Translational Relevance This tool automates RNFL and retinal thickness measurement for rat OCT scans following RGC injury, reducing analysis time and increasing the consistency between studies.
Collapse
Affiliation(s)
- Gabriela Sanchez-Rodriguez
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Linjiang Lou
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Machelle T. Pardue
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Centre for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA
| | - Andrew J. Feola
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Centre for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA
| |
Collapse
|
3
|
Wong CA, Sanchez-Rodriguez G, Ethier CR, Wood LB, Feola AJ. Ovariectomy drives increase of an ECM transcription signature in the posterior eye and retina. Vision Res 2024; 225:108507. [PMID: 39476526 PMCID: PMC11771480 DOI: 10.1016/j.visres.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/12/2024]
Abstract
Increased risk of developing glaucoma has recently been associated with early age of menopause. Here, we examined how age and surgically-induced menopause via ovariectomy (OVX) impacted gene expression in gene pathways previously linked to glaucoma, such as extracellular matrix (ECM) remodeling and TGF-β signaling. Using bulk RNA sequencing, we analyzed changes in young (3-4 months) and middle-aged (9-10 months) Long-Evans rats. We focused on posterior pole tissues (sclera and optic nerve head) but also examined the retina to compare observed changes across different tissue regions. Our results demonstrated that aging and OVX significantly alter gene expression in the sclera and optic nerve head. Generally, OVX triggered the enrichment of immune-related processes. However, OVX in young rats also led to significant enrichment of ECM and TGF-β gene sets. At the same time, these effects were diminished in middle-aged rats, indicating an age dependency of the effects of OVX on matrix-related pathways. Notably, the transcriptional factor Fos was downregulated in the posterior eye and retina in aged and OVX animals. Fos is a major regulator of cell proliferation and survival, and its dysregulation may play an important role in aging and menopause for women. These findings underscore the important role of menopause timing in modulating molecular pathways associated with glaucoma, which is consistent with clinical studies showing that early menopause may heighten the risk of developing this condition. This study also highlights the importance of considering women's health factors, such as menopause, in understanding and managing glaucoma risk.
Collapse
Affiliation(s)
- Cydney A Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Gabriela Sanchez-Rodriguez
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Department of Ophthalmology, Emory University, Atlanta, GA, United States; George W. Woodruff School of Mechanical Engineering and Paker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; George W. Woodruff School of Mechanical Engineering and Paker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Department of Ophthalmology, Emory University, Atlanta, GA, United States; Center for Visual and Neurocognitive Rehabilitation, Joseph Maxwell Cleland Atlanta VA Medical Center, Atlanta, GA, United States.
| |
Collapse
|
4
|
Epardo D, Balderas-Márquez JE, Rodríguez-Arzate CA, Thébault SC, Carranza M, Luna M, Ávila-Mendoza J, Calderón-Vallejo D, Quintanar JL, Arámburo C, Martínez-Moreno CG. Growth Hormone Neuroprotective Effects After an Optic Nerve Crush in the Male Rat. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 39504048 PMCID: PMC11549927 DOI: 10.1167/iovs.65.13.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/12/2024] [Indexed: 11/11/2024] Open
Abstract
Purpose Growth hormone (GH) has neuroprotective effects that have not been evaluated in the mammalian visual system. This study tested the hypothesis that GH administration can promote retinal neuroprotection in an optic nerve crush (ONC) model in male rats. Methods The ON was compressed for 10 seconds, and bovine GH was injected concomitantly to injury for 14 days (0.5 µg/g every 12 hours). At 24 hours and 14 days after ONC, we evaluated the effects of GH upon several markers by quantitative PCR (qPCR), Western blot, and immunohistochemistry; the ON integrity was assessed using CTB Alexa 488 anterograde tracer, and retinal function was tested by full-field electroretinogram. Results GH partially prevented the ONC-induced death of retinal ganglion cells (RGCs), as well as the increase in gliosis marker GFAP at 14 days. Most of the ONC-induced changes in mRNA retinal levels of several neurotrophic, survival, synaptogenic, gliosis, and excitotoxicity markers were prevented by GH, both at 24 hours and 14 days, and treatment also stimulated the expression of antiapoptotic proteins Bcl-2 and Bcl-xL at 24 hours. Additionally, GH partially maintained the ON integrity and active anterograde transport, as well as retinal function by avoiding the reduced amplitude and slowing of the A- and B-waves and oscillatory potentials associated with the ONC at 14 days. Conclusions GH has neuroprotective effects in the ONC model in male rats, it promoted RGC survival, gliosis reduction, and axonal transport increase, likely through the regulation of genes involved in neuroprotection, survival, and synaptogenesis. Furthermore, GH prevented functional impairment, indicating its potential as a therapeutic option for retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- David Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - Jerusa E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - Cynthia A Rodríguez-Arzate
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - Stéphanie C Thébault
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ags., México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ags., México
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| |
Collapse
|
5
|
Hogan K, Cui X, Giangiacomo A, Feola AJ. Postmenopausal Hormone Therapy Was Associated With Later Age of Onset Among Glaucoma Cases. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 39172461 PMCID: PMC11346078 DOI: 10.1167/iovs.65.10.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Hormonal therapy (HT) has been suggested to lower the risk of developing glaucoma. Our goal was to investigate the association between HT use and the onset of glaucoma diagnosis in postmenopausal women. Methods This retrospective case-only study included female veterans with open-angle glaucoma from VA records between 2000 to 2019. Propensity score matching was used to match HT (n = 1926) users to untreated (n = 1026) women on multiple covariates (e.g., age of menopause, BMI, blood pressure, antihypertensive medications, and a co-morbidity index). A simple linear regression was used to evaluate the impact of HT duration on the age of glaucoma diagnosis, and multivariate linear regression analysis was used to determine which factors contributed to the age at diagnosis of glaucoma. Results We found a linear relationship between the age at diagnosis of glaucoma and menopause in women with (r = 0.54) and without HT (r = 0.57) use. HT users tended to have a later diagnosis of glaucoma. Our multivariate analysis found that 0-2 years, 2-5 years, and >5 years of HT use were associated with a 2.20 [confidence interval (CI), 1.64, 2.76], 3.74 [CI, 3.02, 4.46], and 4.51 [CI, 3.84, 5.18] years later diagnosis of glaucoma. An interaction (-0.009 [-0.015, -0.003]) was observed between HT duration and age of menopause diagnosis, with the impact of HT decreasing for later menopause ages. Conclusions Longer duration of HT use was associated with a later diagnosis of glaucoma in postmenopausal women in this case-only analysis. The impact of HT may be modulated by menopausal age, although further study is needed. The findings support a protective role of estrogen in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Kelleigh Hogan
- Center for Visual and Neurocognitive Rehabilitation Atlanta VA Medical Center Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, United States
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiangqin Cui
- Center for Visual and Neurocognitive Rehabilitation Atlanta VA Medical Center Atlanta, GA, United States
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, United States
| | - Annette Giangiacomo
- Technology-Based Eye Care Services Section, Regional Telehealth Services, VISN 7, Atlanta Veteran Affairs Health Care System, Atlanta, GA, United States
| | - Andrew J. Feola
- Center for Visual and Neurocognitive Rehabilitation Atlanta VA Medical Center Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, United States
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
Hogan K, Cui X, Giangiacomo A, Feola AJ. Association of Age of Menopause and Glaucoma Diagnosis in Female Veterans. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 39172460 PMCID: PMC11346079 DOI: 10.1167/iovs.65.10.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Age of menopause has been associated with the risk of developing glaucoma; however, it is unclear if the onset of menopause is directly associated with the development of glaucoma. Our objective was to determine if there is an association between the age at diagnosis of menopause and glaucoma. Methods This retrospective, case-only analysis was performed using the Veterans Affairs (VA) Corporate Data Warehouse of female veterans from 2000 to 2019. Women with both menopause and glaucoma diagnoses were matched based on covariates. The two matched cohorts were early menopause-early comparative (EM-EC; n = 1075) and late menopause-late comparative (LM-LC; n = 1050) women. We used a Pearson correlation to examine the linear relationship between age at diagnosis of menopause and glaucoma. Afterward, we used a multivariate linear regression model with age at diagnosis of glaucoma serving as the outcome variable to account for the covariates. Results We found that EM women developed glaucoma 6.0 years (interquartile range [IQR], 5.1-6.5) earlier than the EC group (P < 0.001), and LM women developed glaucoma an average of 5.2 years (IQR, 4.8-5.7) later than the LC group (P < 0.001). There was a modest linear relationship between the age of menopause and glaucoma diagnoses in the EM-EC (r = 0.40) and LM-LC (r = 0.46) cohorts. In our multivariate analysis, age at diagnosis of menopause was the largest factor related to age at diagnosis of glaucoma while accounting for our covariates. Our models predicted a 0.67-year delay in age at diagnosis of glaucoma with each additional premenopausal year. Conclusions This case-only analysis elucidates a temporal association between menopause and glaucoma, highlighting the need to characterize the role of menopause in the onset of glaucoma for women.
Collapse
Affiliation(s)
- Kelleigh Hogan
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, Georgia, United States
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Xiangqin Cui
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, Georgia, United States
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States
| | - Annette Giangiacomo
- Technology-Based Eye Care Services Section, Regional Telehealth Services, VISN 7, Atlanta Veteran Affairs Health Care System, Atlanta, Georgia, United States
| | - Andrew J. Feola
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, Georgia, United States
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Feola AJ, Allen RS, Chesler KC, Pardue MT. Development of an Automated Electroretinography Analysis Approach. Transl Vis Sci Technol 2023; 12:14. [PMID: 37943551 PMCID: PMC10637214 DOI: 10.1167/tvst.12.11.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose Electroretinography (ERG) is used to assess retinal function in ophthalmology clinics and animal models of ocular disease; however, analyzing ERG waveforms can be a time-intensive process with interobserver variability. We developed ERGAssist, an automated approach, to perform non-subjective and repeatable feature identification ("marking") of the ERG waveform. Methods The automated approach denoised the recorded waveforms and then located the b-wave after applying a lowpass filter. If an a-wave was present, the lowpass filter wave was also used to help locate the a-wave, which was considered the initial large negative response after the flash stimuli. Oscillatory potentials (OPs) were found using a bandpass filter on the denoised waveform. We used two cohorts. One was a Coherence cohort that consisted of ERGs with eight dark-adapted and three light-adapted stimuli in Brown Norway rats (-6 to 1.5 log cd·s/m2). The Verification cohort consisted of control and diabetic (DM) Long Evans rats. We examined retinal function using a five-step dark-adapted protocol (-3 to 1.9 log cd·s/m2). Results ERGAssist showed a strong correlation with manual markings of ERG features in our Coherence dataset, including the amplitudes (a-wave: r2 = 0.99; b-wave: r2 = 0.99; OP: r2 = 0.92) and implicit times (a-wave: r2 = 0.96; b-wave: r2 = 0.90; OP: r2 = 0.96). In the Verification cohort, both approaches detected differences between control and DM animals and found longer OP implicit times (P < 0.0001) in DM animals. Conclusions These results provide verification of ERGAssist to identify features of the full-field ERG. Translational Relevance This ERG analysis approach can increase the rigor of basic science studies designed to investigate retinal function using full-field ERG. To aid the community, we have developed an open-source graphical user interface (GUI) implementing the methods presented.
Collapse
Affiliation(s)
- Andrew J. Feola
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachael S. Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, GA, USA
| | - Kyle C. Chesler
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, GA, USA
| | - Machelle T. Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Douglass A, Dattilo M, Feola AJ. Evidence for Menopause as a Sex-Specific Risk Factor for Glaucoma. Cell Mol Neurobiol 2023; 43:79-97. [PMID: 34981287 PMCID: PMC9250947 DOI: 10.1007/s10571-021-01179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive loss of visual function and retinal ganglion cells (RGC). Current epidemiological, clinical, and basic science evidence suggest that estrogen plays a role in the aging of the optic nerve. Menopause, a major biological life event affecting all women, coincides with a decrease in circulating sex hormones, such as estrogen. While 59% of the glaucomatous population are females, sex is not considered a risk factor for developing glaucoma. In this review, we explore whether menopause is a sex-specific risk factor for glaucoma. First, we investigate how menopause is defined as a sex-specific risk factor for other pathologies, including cardiovascular disease, osteoarthritis, and bone health. Next, we discuss clinical evidence that highlights the potential role of menopause in glaucoma. We also highlight preclinical studies that demonstrate larger vision and RGC loss following surgical menopause and how estrogen is protective in models of RGC injury. Lastly, we explore how surgical menopause and estrogen signaling are related to risk factors associated with developing glaucoma (e.g., intraocular pressure, aqueous outflow resistance, and ocular biomechanics). We hypothesize that menopause potentially sets the stage to develop glaucoma and therefore is a sex-specific risk factor for this disease.
Collapse
Affiliation(s)
- Amber Douglass
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Michael Dattilo
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
- Department of Ophthalmology, Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
- Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrew J Feola
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA.
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA, 30322, USA.
- Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Surgical Menopause Impairs Retinal Conductivity and Worsens Prognosis in an Acute Model of Rat Optic Neuropathy. Cells 2022; 11:cells11193062. [PMID: 36231022 PMCID: PMC9564175 DOI: 10.3390/cells11193062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Deficiency of estradiol during the menopausal period is an important risk factor for neurodegenerative diseases, including various optic neuropathies. The aim of this study was to evaluate the impact of surgical menopause on the function and survival ratio of RGCs in the rat model of ONC (optic nerve crush). We used eight-week-old female Long Evans rats, divided into two main groups depending on the time between ovariectomy procedure (OVA) and euthanasia (two weeks vs. seven weeks), and subgroups—OVA, OVA + ONC, or ONC. Retinal function was assessed with electroretinography (ERG). RGC loss ratio was evaluated using immunolabelling and counting of RGCs. Seven weeks after OVA, the menopause morphologically affected interneurons but not RGC; however, when the ONC procedure was applied, RGCs appeared to be more susceptible to damage in case of deprivation of estrogens. In our analysis, PhNR (photopic negative responses) were severely diminished in the OVA + ONC group. A deprivation of estrogens in menopause results in accelerated retinal neurodegeneration that firstly involves retinal interneurons. The lack of estrogens increases the susceptibility of RGCs to insults.
Collapse
|
10
|
Prokai-Tatrai K, Zaman K, Nguyen V, De La Cruz DL, Prokai L. Proteomics-Based Retinal Target Engagement Analysis and Retina-Targeted Delivery of 17β-Estradiol by the DHED Prodrug for Ocular Neurotherapy in Males. Pharmaceutics 2021; 13:1392. [PMID: 34575465 PMCID: PMC8466286 DOI: 10.3390/pharmaceutics13091392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022] Open
Abstract
We examined the impact of 17β-estradiol (E2) eye drops on the modulation of the proteome profile in the male rat retina. With discovery-driven proteomics, we have identified proteins that were regulated by our treatment. These proteins were assembled to several bioinformatics-based networks implicating E2's beneficial effects on the male rat retina in a broad context of ocular neuroprotection including the maintenance of retinal homeostasis, facilitation of efficient disposal of damaged proteins, and mitochondrial respiratory chain biogenesis. We have also shown for the first time that the hormone's beneficial effects on the male retina can be constrained to this target site by treatment with the bioprecursor prodrug, DHED. A large concentration of E2 was produced after DHED eye drops not only in male rat retinae but also in those of rabbits. However, DHED treatment did not increase circulating E2 levels, thereby ensuring therapeutic safety in males. Targeted proteomics focusing on selected biomarkers of E2's target engagement further confirmed the prodrug's metabolism to E2 in the male retina and indicated that the retinal impact of DHED treatment was identical to that of the direct E2 treatment. Altogether, our study shows the potential of topical DHED therapy for an efficacious and safe protection of the male retina without the unwanted hormonal side-effects associated with current estrogen therapies.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.); (D.L.D.L.C.); (L.P.)
| | | | | | | | | |
Collapse
|