1
|
Kelley J, Buchweitz N, Madden A, Fan H, Hepfer G, Kern M, Townsend DM, Ye T, Yao H, Wu Y. Effect of cigarette smoke exposure and cessation on regional diffusion properties in rat intervertebral discs. JOR Spine 2024; 7:e70015. [PMID: 39544353 PMCID: PMC11561800 DOI: 10.1002/jsp2.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Background Cigarette smoking is a recognized risk factor for orthopedic disorders, particularly intervertebral disc (IVD) degenerative disease. However, the IVD pathophysiology, especially the spatial-temporal remodeling progression in the context of cigarette smoking, remains unclear. This study aimed to address this knowledge gap through a quantitative assessment of IVD structural composition and diffusion properties using a Sprague-Dawley rat model. Methods Twenty-four rats were divided into control and smoke exposure cohorts, each with two sub-groups of six rats. One smoke exposure sub-group was sacrificed after 2 months of daily cigarette smoke exposure in a custom smoking apparatus, while the other was sacrificed after an additional 5 months of smoke cessation. The control groups were age-matched to the smoke exposure groups. A fluorescent recovery after photobleaching (FRAP) technique was used to determine solute diffusivities and multi-photon excitation (MPE) imaging was performed to characterize structural changes in the annulus fibrosus (AF), nucleus pulposus (NP), and cartilage endplate (CEP). Results A decrease in diffusivity was observed in the CEP and the AF (radial direction only) after 2 months of smoke exposure. MPE imaging showed aberrant CEP calcification and reduced AF radial collagen fiber bundle diameter, suggesting that the IVD exhibits regionally dependent structural remodeling due to smoke exposure. Furthermore, the smoke cessation group showed deteriorating alterations of structure and diffusivities in all three-disc regions, including the NP, indicating that five-month smoke cessation alone didn't reverse the progression of IVD degenerative remodeling during aging. Conclusion This study advances the understanding of IVD pathophysiology in the context of cigarette smoke exposure and cessation, laying the groundwork for potential earlier diagnosis and optimized interventions.
Collapse
Affiliation(s)
- Joshua Kelley
- Department of BioengineeringClemson UniversityCharlestonSouth CarolinaUSA
| | - Nathan Buchweitz
- Department of BioengineeringClemson UniversityCharlestonSouth CarolinaUSA
| | - Avery Madden
- Department of BioengineeringClemson UniversityCharlestonSouth CarolinaUSA
| | - Hongming Fan
- Department of BioengineeringClemson UniversityCharlestonSouth CarolinaUSA
| | - Glenn Hepfer
- Department of BioengineeringClemson UniversityCharlestonSouth CarolinaUSA
| | - Michael Kern
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Danyelle M. Townsend
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Tong Ye
- Department of BioengineeringClemson UniversityCharlestonSouth CarolinaUSA
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hai Yao
- Department of BioengineeringClemson UniversityCharlestonSouth CarolinaUSA
- Department of Oral Health SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Yongren Wu
- Department of BioengineeringClemson UniversityCharlestonSouth CarolinaUSA
- Department of Orthopaedics and Physical MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
2
|
Raiskup F, Herber R, Lenk J, Pillunat LE, Spoerl E. Crosslinking with UV-A and riboflavin in progressive keratoconus: From laboratory to clinical practice - Developments over 25 years. Prog Retin Eye Res 2024; 102:101276. [PMID: 38830532 DOI: 10.1016/j.preteyeres.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Changes in the biomechanical and biochemical properties of the human cornea play an important role in the pathogenesis of ectatic diseases. A number of conditions in primarily acquired (keratoconus or pellucid marginal degeneration) or secondarily induced (iatrogenic keratectasia after refractive laser surgeries) ectatic disorders lead to decreased biomechanical stability. Corneal collagen cross-linking (CXL) represents a technique to slow or even halt the progression of ectatic pathologies. In this procedure, riboflavin is applied in combination with ultraviolet A radiation. This interaction induces the production of reactive oxygen species, which leads to the formation of additional covalent bonds between collagen molecules and subsequent biomechanical corneal strengthening. This procedure is so far the only method that partially interferes etiopathogenetically in the treatment of ectatic diseases that slows or stops the process of corneal destabilization, otherwise leading to the need for corneal transplantation. Besides, CXL process increases markedly resistance of collagenous matrix against digesting enzymes supporting its use in the treatment of corneal ulcers. Since the discovery of this therapeutic procedure and the first laboratory experiments, which confirmed the validity of this method, and the first clinical studies that proved the effectiveness and safety of the technique, it has been spread and adopted worldwide, even with further modifications. Making use of the Bunsen-Roscoe photochemical law it was possible to shorten the duration of this procedure in accelerated CXL and thus improve the clinical workflow and patient compliance while maintaining the efficacy and safety of the procedure. The indication spectrum of CXL can be further expanded by combining it with other vision-enhancing procedures such as individualized topographically-guided excimer ablation. Complementing both techniques will allow a patient with a biomechanically stable cornea to regularize it and improve visual acuity without the need for tissue transplantation, leading to a long-term improvement in quality of life.
Collapse
Affiliation(s)
- Frederik Raiskup
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Robert Herber
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Janine Lenk
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Lutz E Pillunat
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Eberhard Spoerl
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
3
|
Zheng X, Xin Y, Wang C, Fan Y, Yang P, Li L, Yin D, Zhang E, Hong Y, Bao H, Wang J, Bao F, Zhang W, Chen S, Elsheikh A, Swain M. Use of Nanoindentation in Determination of Regional Biomechanical Properties of Rabbit Cornea After UVA Cross-Linking. Invest Ophthalmol Vis Sci 2023; 64:26. [PMID: 37850947 PMCID: PMC10593136 DOI: 10.1167/iovs.64.13.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose To evaluate the regional effects of different corneal cross-linking (CXL) protocols on corneal biomechanical properties. Methods The study involved both eyes of 50 rabbits, and the left eyes were randomized to the five intervention groups, which included the standard CXL group (SCXL), which was exposed to 3-mW/cm2 irradiation, and three accelerated CXL groups (ACXL1-3), which were exposed to ultraviolet-A at irradiations of 9 mW/cm2, 18 mW/cm2, and 30 mW/cm2, respectively, but with the same total dose (5.4 J/cm2). A control (CO) group was not exposed to ultraviolet-A. No surgery was done on the contralateral eyes. The corneas of each group were evaluated by the effective elastic modulus (Eeff) and the hydraulic conductivity (K) within a 7.5-mm radius using nanoindentation measurements. Results Compared with the CO group, Eeff (in regions with radii of 0-1.5 mm, 1.5-3.0 mm, and 3.0-4.5 mm) significantly increased by 309%, 276%, and 226%, respectively, with SCXL; by 222%, 209%, and 173%, respectively, with ACXL1; by 111%, 109%, and 94%, respectively, with ACXL2; and by 59%, 41%, and 37%, respectively, with ACXL3 (all P < 0.05). K was also significantly reduced by 84%, 81%, and 78%, respectively, with SCXL; by 75%, 74%, and 70%, respectively, with ACXL1; by 64%, 62%, and 61%, respectively, with ACXL2; and by 33%, 36%, and 32%, respectively, with ACXL3 (all P < 0.05). For the other regions(with radii between 4.5 and 7.5 mm), the SCXL and ACXL1 groups (but not the ACXL2 and ACXL3 groups) still showed significant changes in Eeff and K. Conclusions CXL had a significant effect on corneal biomechanics in both standard and accelerated procedures that may go beyond the irradiated area. The effect of CXL in stiffening the tissue and reducing permeability consistently decreased with reducing the irradiance duration.
Collapse
Affiliation(s)
- Xiaobo Zheng
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Xin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Dalian Medical University, Affiliated Dalian No. 3 People's Hospital, Dalian, China
| | - Chong Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiwen Fan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peng Yang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lingqiao Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Danping Yin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Erchi Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuxin Hong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Han Bao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junjie Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fangjun Bao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weiwei Zhang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, China
| | - Shihao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Michael Swain
- AMME, Biomechanics Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Hatami-Marbini H, Emu ME. Effect of corneal collagen crosslinking on viscoelastic shear properties of the cornea. J Mech Behav Biomed Mater 2022; 133:105300. [PMID: 35749931 PMCID: PMC10826593 DOI: 10.1016/j.jmbbm.2022.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
The cornea is responsible for most of the refractive power in the eye and acts as a protective layer for internal contents of the eye. The cornea requires mechanical strength for maintaining its precise shape and for withstanding external and internal forces. Corneal collagen crosslinking (CXL) is a treatment option to improve corneal mechanical properties. The primary objective of this study was to characterize CXL effects on viscoelastic shear properties of the porcine cornea as a function of compressive strain. For this purpose, corneal buttons were prepared and divided into three groups: control group (n = 5), pseudo-crosslinked group (n = 5), and crosslinked group (n = 5). A rheometer was used to perform dynamics torsional shear experiments on corneal disks at different levels of compressive strain (0%-40%). Specifically, strain sweep experiments and frequency sweep tests were done in order to determine the range of linear viscoelasticity and frequency dependent shear properties, respectively. It was found that the shear properties of all samples were dependent on the shear strain magnitude, loading frequency, and compressive strain. With increasing the applied shear strain, all samples showed a nonlinear viscoelastic response. Furthermore, the shear modulus of samples increased with increasing the frequency of the applied shear strain and/or increasing the compressive strain. Finally, the CXL treatment significantly increased the shear storage and loss moduli when the compressive strain was varied from 0% to 30% (p < 0.05); larger shear moduli were observed at compressive 40% strain but the difference was not significant (P = 0.12).
Collapse
Affiliation(s)
- Hamed Hatami-Marbini
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA.
| | - Md Esharuzzaman Emu
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Miao Y, Liu J, Akella SS, Wang J, Li S, Chuck RS, Zhang C. Changes in Rat Scleral Collagen Structure Induced by UVA-Riboflavin Crosslinking at Various Tissue Depths in Whole Globe Versus Scleral Patch. Transl Vis Sci Technol 2022; 11:2. [PMID: 35913416 PMCID: PMC9351595 DOI: 10.1167/tvst.11.8.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate structural changes in scleral collagen fibers at various tissue depths before and after photosensitized crosslinking (CXL) both isolated scleral patch versus whole globe using second-harmonic generation (SHG) imaging. Methods Scleral tissues were harvested from Sprague-Dawley rats and separated into three groups: untreated sclera (control), full-thickness scleral patch for CXL (Free Scleral CXL group), and sclera in intact globe for CXL (Globe CXL group). The CXL groups were soaked in 0.1% riboflavin and irradiated with 365 nm ultraviolet-A light (power, 0.45 mW/cm2) for 30 minutes. SHG images were acquired every 5 µm between 10 and 60 µm from the outer scleral surface. Collagen fiber waviness was calculated as the ratio of the total length of a traced fiber and the length of a straight path between the fiber ends. Results In the Free Scleral CXL group, collagen waviness was significantly increased compared to the control group at 35 to 50 µm (P < 0.05). In the Globe CXL group, collagen waviness was decreased compared to control at all depths with statistical significance (P < 0.05) achieved from 10 to 45 µm. Conclusions Depending upon its initial state (i.e., free scleral patch versus mechanically loaded intact globe under pressure), collagen may experience different structural changes after CXL. In addition, the extent of the CXL effects may vary at different depths away from the surface. Translational Relevance Understanding the CXL effects on collagen structure may be important in optimizing the scleral crosslinking protocol for future clinical applications such as preventing myopic progression.
Collapse
Affiliation(s)
- Yuan Miao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.,Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Liu
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Sruti S Akella
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessie Wang
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shaowei Li
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Roy S Chuck
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Cheng Zhang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Li Q, Zhao H, Wang H, Zhao G. Properties of the acellular porcine cornea crosslinked with UVA/riboflavin as scaffolds for Boston Keratoprosthesis. BIOMATERIALS ADVANCES 2022; 137:212822. [PMID: 35929237 DOI: 10.1016/j.bioadv.2022.212822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The Boston Keratoprosthesis type I (B-KPro) is widely used in the world, but the lack of donor corneas limits its application. This study aims to prepare the acellular porcine cornea (APC) crosslinked with ultraviolet A (UVA)/riboflavin instead of donor corneas as the scaffold for B-KPro. Decellularization of freeze-thaw combined with biological enzymes resulted in approximately 5 ng/mg DNA residue, the a-Gal removal rate of 99%, and glycosaminoglycans retention at a high level of 46.66 ± 2.59 mg/mg. UVA/ riboflavin cross-linking was adopted to induce the formation of new chemical bonds between adjacent collagen chains in the corneal stroma to improve the mechanical properties and resistance to enzymatic hydrolysis. Through comprehensive analysis of the biomechanics, enzyme degradation, immunogenicity and histological structure of the APC crosslinked at different times, CL3 (irradiation conditions, 365 nm, 3 mW/cm, 80 min, both sides) was selected and transplanted into the rabbit cornea model through interlamellar keratoplasty and penetrating keratoplasty as the scaffold of the B-KPro. Compared with the native porcine cornea (NPC) and APC, the experiment of interlamellar pocket indicated that the structure of CL3 was homogeneous without degradation and vascularization in vivo at 12 weeks after surgery. Simultaneously, the results of transplantation of B-KPro showed complete epithelialization of CL3 within 1 week, and neovascularization of the cornea indicated rejection but could be controlled with immunosuppressants. At 3 months postoperatively, the lens of B-KPro remained transparent, and the structure of CL3 was compact and uniform, accompanied by the migration and proliferation of a large number of stromal cells without degradation, suggesting the CL3 could be a promising corneal substitute.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Haibin Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, China.
| | - Hongmei Wang
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, Shandong, China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Gerberich BG, Wood-Yang AJ, Radmand A, Nichols LM, Hejri A, Echeverri ES, Gersch HG, Prausnitz MR. Computational modeling of corneal and scleral collagen photocrosslinking. J Control Release 2022; 347:314-329. [PMID: 35513208 DOI: 10.1016/j.jconrel.2022.04.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
Scleral photocrosslinking is increasingly investigated for treatment of myopia and glaucoma. In this study a computational model was developed to predict crosslinking efficiency of visible/near infrared photosensitizers in the sclera. Photocrosslinking was validated against riboflavin corneal crosslinking experimental studies and subsequently modeled for the sensitizer, methylene blue, administered by retrobulbar injection to the posterior sclera and irradiated with a transpupillary light beam. Optimal ranges were determined for treatment parameters including light intensity, methylene blue concentration, injection volume, and inspired oxygen concentration. Additionally, sensitivity of crosslinking to various parameters was quantified. The most sensitive parameters (in order of greatest to least sensitive) were tissue parameters (including scleral thickness and choroidal melanin concentration), treatment parameters (including treatment duration and inspired oxygen concentration), and sensitizer parameters (including triplet quantum yield).
Collapse
Affiliation(s)
- Brandon G Gerberich
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Amy J Wood-Yang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Afsane Radmand
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Lauren M Nichols
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Amir Hejri
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Hannah G Gersch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Mark R Prausnitz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
8
|
Lenk J, Herber R, Raiskup F, Pillunat LE, Spörl E. [Principles of corneal cross-linking : Presentation based on the development of the various treatment protocols]. Ophthalmologe 2021; 119:332-341. [PMID: 34882268 DOI: 10.1007/s00347-021-01538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Corneal cross-linking (CXL) is used to treat corneal ectatic diseases. The aim is to improve the reduced consolidation of the cornea in order to halt further corneal protrusion and therefore subsequent deterioration of the optical imaging proportions. MATERIAL AND METHODS In this article the principles of corneal cross-linking based on riboflavin and UV light are presented including recent research results. Furthermore, the most important treatment protocols including standard CXL (S-CXL), accelerated CXL (A-CXL), transepithelial CXL (TE-CXL) and the approach of the CXL procedure for thin corneas are explained. RESULTS The CXL method depends on four major components, the riboflavin solution, oxygen, UV light and the availability of cross-linking sites on the collagen tissue. According to the present state of knowledge, the photochemical process of the CXL method induces covalent bonds between the fibrils and proteoglycans and thus stabilizes the collagen fibers, resulting in corneal consolidation. In addition to the S‑CXL, which has proven its effectiveness and safety in a large number of studies, there are other treatment protocols that have been developed based on the Bunsen-Roscoe law of reciprocity. The A‑CXL protocol has the advantage of having a shorter irradiation time but it seems to be less effective than the S‑CXL protocol concerning the increase in corneal stiffness. The use of TE-CXL has so far not yet gained acceptance in the clinical practice. CONCLUSION The CXL procedures primarily aim to stabilize the cornea. In the future, in addition to stabilization of the cornea, simultaneous improvement of visual acuity will be the main focus.
Collapse
Affiliation(s)
- Janine Lenk
- Augenklinik, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - Robert Herber
- Augenklinik, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Frederik Raiskup
- Augenklinik, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Lutz E Pillunat
- Augenklinik, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Eberhard Spörl
- Augenklinik, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| |
Collapse
|