1
|
Tang H, Lin Y, Hu J. Long Non-Coding RNA Osr2 Promotes Fusarium solani Keratitis Inflammation via the miR-30a-3p/ Xcr1 Axis. Invest Ophthalmol Vis Sci 2025; 66:27. [PMID: 40067293 PMCID: PMC11918059 DOI: 10.1167/iovs.66.3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose Fungal keratitis (FK) is a challenging and sight-threatening corneal disease caused by fungal infections. Although long noncoding RNAs (lncRNAs) have been explored in various infectious diseases, their specific roles in FK remain largely unexplored. Methods A mouse model of FK was created by infecting corneal stromal cells with Fusarium solani. High-throughput lncRNA expression profiling was conducted on FK-affected corneal tissues to identify differentially expressed lncRNAs. Reverse transcription quantitative PCR (RT-qPCR) was used to validate the results. A competing endogenous RNA (ceRNA) network was constructed. Additionally, a specific antisense oligonucleotide (ASO) targeting lncRNA ENSMUST00000226838/Osr2 (Osr2) was developed for therapeutic evaluation. Inflammatory markers IL-1β, IL-6, and TNF-α were measured, and corneal inflammation was assessed through histological analysis and slit-lamp examination. Fluorescent in situ hybridization (FISH) was used to confirm Osr2 localization, whereas a dual-luciferase reporter assay verified interactions between Osr2 and miR-30a-3p. Results We identified 1143 differentially expressed lncRNAs in FK, with 701 upregulated and 442 downregulated. The ceRNA network analysis indicated that lncRNA Osr2 regulates Xcr1 expression through miR-30a-3p. Treatment with ASO-Osr2 significantly reduced corneal inflammation, and FISH confirmed lncRNA Osr2 distribution in both the nucleus and cytoplasm. Dual-luciferase assays demonstrated the interaction between Osr2 and miR-30a-3p, highlighting their potential roles in the progression of FK. Conclusions This study outlined the lncRNA expression profile in FK and established a ceRNA regulatory network, identifying lncRNA Osr2 as a crucial modulator of FK pathogenesis through its interaction with miR-30a-3p. These findings highlighted lncRNA Osr2 as a promising therapeutic target for the treatment of FK.
Collapse
Affiliation(s)
- Hanfeng Tang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Yi Lin
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
2
|
Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne) 2023; 10:1064938. [PMID: 37153108 PMCID: PMC10160402 DOI: 10.3389/fmed.2023.1064938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023] Open
Abstract
The cornea is the clear dome that covers the front portion of the globe. The primary functions of the cornea are to promote the refraction of light and to protect the eye from invading pathogens, both of which are essential for the preservation of vision. Homeostasis of each cellular layer of the cornea requires the orchestration of multiple processes, including the ability to respond to stress. One mechanism whereby cells respond to stress is autophagy, or the process of "self-eating." Autophagy functions to clear damaged proteins and organelles. During nutrient deprivation, amino acids released from protein breakdown via autophagy are used as a fuel source. Mitophagy, a selective form of autophagy, functions to clear damaged mitochondria. Thus, autophagy and mitophagy are important intracellular degradative processes that sustain tissue homeostasis. Importantly, the inhibition or excessive activation of these processes result in deleterious effects on the cell. In the eye, impairment or inhibition of these mechanisms have been associated with corneal disease, degenerations, and dystrophies. This review summarizes the current body of knowledge on autophagy and mitophagy at all layers in the cornea in both non-infectious and infectious corneal disease, dystrophies, and degenerations. It further highlights the critical gaps in our understanding of mitochondrial dysfunction, with implications for novel therapeutics in clinical practice.
Collapse
Affiliation(s)
| | - Jose Marcos Sanches
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Dias-Teixeira KL, Sharifian Gh M, Romano J, Norouzi F, Laurie GW. Autophagy in the normal and diseased cornea. Exp Eye Res 2022; 225:109274. [PMID: 36252655 PMCID: PMC10083687 DOI: 10.1016/j.exer.2022.109274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023]
Abstract
The cornea and covering tear film are together the 'objective lens' of the eye through which 80% of light is refracted. Despite exposure to a physically harsh and at times infectious or toxic environment, transparency essential for sight is in most cases maintained. Such resiliency makes the avascular cornea a superb model for the exploration of autophagy in the regulation of homeostasis with relevancy to all organs. Nonetheless, missense mutations and inflammation respectively clog or apparently overwhelm autophagic flux to create dystrophies much like in neurodegenerative diseases or further exacerbate inflammation. Here there is opportunity to generate novel topical therapies towards the restoration of homeostasis with potential broad application.
Collapse
Affiliation(s)
| | | | - Jeff Romano
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gordon W Laurie
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Tang H, Huang L, Hu J. Inhibition of the m6A Methyltransferase METTL3 Attenuates the Inflammatory Response in Fusarium solani-Induced Keratitis via the NF-κB Signaling Pathway. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 36194423 PMCID: PMC9547362 DOI: 10.1167/iovs.63.11.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the effect of methyltransferase-like enzyme 3 (METTL3) on inflammation and the NF-κB signaling pathway in fungal keratitis (FK). Methods We established corneal stromal cell models and FK mouse models by incubation with Fusarium solani. The overall RNA N6-methyladenosine (m6A) level was determined using an m6A RNA methylation assay kit. The expression of METTL3 was quantified via real-time quantitative polymerase chain reaction (RT–PCR), Western blotting, and immunofluorescence. Subsequently, the level of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) was identified by Western blotting and immunofluorescence. Moreover, we assessed the effect of METTL3 by transfecting cells with siRNA (in vitro) or adeno-associated virus (in vivo). Hematoxylin and eosin (H&E) staining and slit-lamp biomicroscopy were performed to evaluate corneal damage. Furthermore, the state of NF-κB signaling pathway activation was examined by Western blotting. In addition, RT–PCR and enzyme-linked immunosorbent assays (ELISAs) were performed to evaluate levels of the pro-inflammatory factors interleukin-1β (IL-1β), interleukin-6 (IL-6) and TNF-ɑ. Results Our data demonstrated that the levels of the RNA m6A methylation and METTL3 were dramatically increased and that the NF-κB signaling pathway was activated in Fusarium solani-induced keratitis. Inhibition of METTL3 decreased the level of TRAF6, downregulated the phospho-p65(p-p65)/p65 and phospho-IκB(p-IκB)/IκB protein ratios, simultaneously attenuating the inflammatory response and fungal burden in FK. Conclusions Our research suggests that the m6A methyltransferase METTL3 regulates the inflammatory response in FK by modulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hanfeng Tang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Liwei Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
5
|
Chen K, Shao Y, Li C. miR-137 modulates coelomocytes autophagy by targeting Atg13 in the sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104486. [PMID: 35772590 DOI: 10.1016/j.dci.2022.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs), as important regulators of host immune responses, play an crucial position in the interaction between host and pathogen by inhibiting the target gene's transcriptional and post-transcriptional expression. A well-validated tumor suppressor, Previously, miR-137 was found to be variably expressed in the sick sea cucumber Apostichopus japonicus specimens by high-throughput sequencing. To further investigate the mechanism of miR-137 regulation of SUS, we identified Atg13 from sea cucumber by dual luciferase reporter assay and RACE (designated as AjAtg13) and was able to serve as a target gene for miR-137. The full-length cDNA of AjAtg13 is a 2197 bp fragment containing an ORF (open reading frame) of 1149 bp and encodes a total of 382 amino acid polypeptides with a predicted molecular weight of 41.7 kDa. Further expression profiling analysis showed increased mRNA levels of AjAtg13 and reduced expression levels of miR-137 in LPS-stimulated sea cucumber coelomocytes, hinting that miR-137 may negatively regulate AjAtg13. MiR-137 targets AjAtg13 through binding to the 3'UTR region by dual-luciferase reporter gene analysis. MiR-137 overexpression in coelomocytes repressed the expression of autophagy related genes, such as AjAtg13, AjLC3, at the same time, it significantly inhibited autophagy and reduced the ability to clear Vibrio splendidus. Conversely, inhibition of miR-137 significantly upregulated the expression of AjAtg13, promoted autophagy and increased clearance of V. splendidus. Subsequent interference with AjAtg13 also significantly inhibits autophagy. In summary, our results suggested that miR-137 could promote coelomocytes autophagy to restrict bacterial invasion by aiming at AjAtg13 in pathogen-stimulated sea cucumbers.
Collapse
Affiliation(s)
- Kaiyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
6
|
Zhou D, Du M, Luo H, Ran F, Zhao X, Dong Y, Zhang T, Hao J, Li D, Li J. Multifunctional mesoporous silica-cerium oxide nanozymes facilitate miR129 delivery for high-quality healing of radiation-induced skin injury. J Nanobiotechnology 2022; 20:409. [PMID: 36104685 PMCID: PMC9476328 DOI: 10.1186/s12951-022-01620-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced skin injury (RISI) is an important challenge for clinical treatments. The main causes of RISI include hypoxia in the wound microenvironment, reactive oxygen species (ROS) activation, and downregulation of DNA repair proteins. Here, a multiple radioresistance strategy was designed for microRNA therapy and attenuating hypoxia. A novel mesoporous silica (MS) firmly anchored and dispersed cerium (IV) oxide (CeO2) nanoparticles to form MS-CeO2 nanocomposites, which exhibit superior activity in inhibiting radiation-induced ROS and HIF-1α activation and ultimately promote RISI wound healing. The miR129 serum concentrations in patients can promote radioresistance by directly targeting RAD17 and regulating the Chk2 pathway. Subsequently, MS-CeO2 nanocomposites with miR129 were conjugated with iRGD-grafted polyoxyethylene glycol (short for nano-miR129), which increased the stability and antibacterial character, efficiently delivered miR129 to wound blood capillaries, and exhibited low toxicity. Notably, nano-miR129 promoted radioresistance and enhanced anti-ROS therapeutic efficacy in a subcutaneous RISI mouse model. Overall, this MS-CeO2 nanozyme and miR129-based multiresistance radiotherapy protection strategy provided a promising therapeutic approach for RISI.
Collapse
|
7
|
Tang H, Lin Y, Huang L, Hu J. MiR-223-3p Regulates Autophagy and Inflammation by Targeting ATG16L1 in Fusarium solani-Induced Keratitis. Invest Ophthalmol Vis Sci 2022; 63:41. [PMID: 35089329 PMCID: PMC8802027 DOI: 10.1167/iovs.63.1.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Purpose Increasing evidence suggested that microRNAs (miRs) are implicated in the regulation of the inflammatory response and autophagy in multiple diseases. The present study aimed to explore the effect of miR-223-3p on inflammation and autophagy in fungal keratitis (FK). Methods An FK mouse model was established, and primary corneal stromal cells were isolated by inoculation with Fusarium solani. The expression of miR-223-3p was determined by quantitative RT-PCR. Subsequently, the target gene of miR-223-3p was identified by a dual-luciferase reporter assay. The levels of miR-223-3p were altered by transfecting miR agomir/antagomir to evaluate its effects. Slit-lamp biomicroscopy and hematoxylin and eosin staining were employed to detect corneal damage. The levels of autophagy were assessed by immunofluorescence, Western blotting, mRFP-GFP-LC3 fluorescence microscopy, and electron microscopy. In addition, inflammation was demonstrated by determining the proinflammatory mediators IL-1β and TNF-ɑ. Results Our data suggested that miR-223-3p was increased and that autophagic flux was impaired in mouse FK. Then, we confirmed that autophagy-related gene 16L1 (ATG16L1) was a potential target of miR-223-3p and that this miR negatively regulated the expression of ATG16L1. The inhibition of miR-223-3p attenuated inflammation in FK, reduced P62 expression, and increased the ratio of LC3-II/LC3-I, whereas the overexpression of miR-223-3p displayed the opposite results. Conclusions Taken together, miR-223-3p might regulate autophagy via targeting ATG16L1 in experimental F. solani keratitis and is associated with the inflammatory response. MiR-223-3p might be a potential therapeutic target for FK.
Collapse
Affiliation(s)
- Hanfeng Tang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Yi Lin
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Liwei Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|