1
|
Smyła-Gruca W, Szczurek-Wasilewicz W, Skrzypek M, Romuk E, Karmański A, Jurkiewicz M, Gąsior M, Osadnik T, Banach M, Jóźwiak JJ, Szyguła-Jurkiewicz B. Ceruloplasmin and Lipofuscin Serum Concentrations Are Associated with Presence of Hypertrophic Cardiomyopathy. Biomedicines 2024; 12:1767. [PMID: 39200231 PMCID: PMC11352126 DOI: 10.3390/biomedicines12081767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and cells' ability to neutralize them by antioxidant systems. The role of oxidative stress in hypertrophic cardiomyopathy (HCM) is not fully understood. The aim of the study was to examine selected parameters of oxidative stress in patients with HCM compared to the control group. We enrolled 85 consecutive HCM patients and 97 controls without HCM. The groups were matched for sex, the body mass index, and age. Oxidative stress markers included superoxide dismutase (SOD), ceruloplasmin (CER), and lipofuscin (LPS). The median age of the HCM patients was 53 (40-63) years, and 41.2% of them were male. HCM patients, compared to the control ones, had significantly increased levels of CER and LPS. The areas under the receiver operating characteristics curves (AUC) indicated a good discriminatory power of CER (AUC 0.924, sensitivity 84%, and specificity 88%), an acceptable discriminatory power of LPS (AUC 0.740, sensitivity 66%, and specificity 72%), and poor discriminatory power of SOD (AUC 0.556, sensitivity 34%, and specificity 94%) for HCM detection. CER with good predictive strength, as well as LPS with acceptable predictive power, allows for HCM detection. The utility of SOD for HCM detection is limited.
Collapse
Affiliation(s)
- Wiktoria Smyła-Gruca
- Student’s Scientific Society, 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (W.S.-G.); (M.J.)
| | | | - Michał Skrzypek
- Department of Biostatistics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Andrzej Karmański
- Department of Descriptive and Topographic Anatomy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Michał Jurkiewicz
- Student’s Scientific Society, 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (W.S.-G.); (M.J.)
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.G.); (B.S.-J.)
| | - Tadeusz Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
- Cardiology and Lipid Disorders Clinic, Independent Public Health Care Institution “REPTY” Upper Silesian Rehabilitation Centre, 42-600 Tarnowskie Góry, Poland
| | - Maciej Banach
- Polish Mothers Memorial Hospital Research Institute, 90-419 Łódź, Poland;
- Department of Hypertension, Medical University of Lodz, 90-419 Łódź, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Jacek J. Jóźwiak
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Opole, 45-040 Opole, Poland;
| | - Bożena Szyguła-Jurkiewicz
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.G.); (B.S.-J.)
| |
Collapse
|
2
|
Câmara N, Fernández A, Herráez P, Arbelo M, Andrada M, Suárez-Santana CM, Sierra E. Microscopic Findings in the Cardiac Muscle of Stranded Extreme Deep-Diving Cuvier's Beaked Whales ( Ziphius cavirostris). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-8. [PMID: 35467498 DOI: 10.1017/s1431927622000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Considerable information has been gained over the last few decades on several disease processes afflicting free-ranging cetaceans from a pathologist's point of view. Nonetheless, there is still a dearth of studies on the hearts of these species. For this reason, we aimed to improve our understanding of cardiac histological lesions occurring in free-ranging stranded cetaceans and, more specifically, in deep-diving Cuvier's beaked whales. The primary cardiac lesions that have been described include vascular changes, such as congestion, edema, hemorrhage, leukocytosis, and intravascular coagulation; acute degenerative changes, which consist of contraction band necrosis, wavy fibers, cytoplasmic hypereosinophilia, and perinuclear vacuolization; infiltration of inflammatory cells; and finally, the presence and/or deposition of different substances, such as interstitial myoglobin globules, lipofuscin pigment, polysaccharide complexes, and intra- and/or extravascular gas emboli and vessel dilation. This study advances our current knowledge about the histopathological findings in the cardiac muscle of cetaceans, and more specifically, of Cuvier's beaked whales.
Collapse
Affiliation(s)
- Nakita Câmara
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
- Plataforma Oceánica de Canarias (PLOCAN), Carretera de Taliarte s/n, Telde, Las Palmas, Gran Canaria35214, Spain
- Loro Parque Foundation, Avenida Loro Parque s/n, Puerto de la Cruz, Tenerife38400, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Pedro Herráez
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Cristian M Suárez-Santana
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Eva Sierra
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| |
Collapse
|
3
|
Ferroptosis as a Novel Determinant of β-Cell Death in Diabetic Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3873420. [PMID: 35320979 PMCID: PMC8938062 DOI: 10.1155/2022/3873420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
The main pathological hallmark of diabetes is the loss of functional β-cells. Among several types of β-cell death in diabetes, the involvement of ferroptosis remains elusive. Therefore, we investigated the potential of diabetes-mimicking factors: high glucose (HG), proinflammatory cytokines, hydrogen peroxide (H2O2), or diabetogenic agent streptozotocin (STZ) to induce ferroptosis of β-cells in vitro. Furthermore, we tested the contribution of ferroptosis to injury of pancreatic islets in an STZ-induced in vivo diabetic model. All in vitro treatments increased loss of Rin-5F cells along with the accumulation of reactive oxygen species, lipid peroxides and iron, inactivation of NF-E2-related factor 2 (Nrf2), and decrease in glutathione peroxidase 4 expression and mitochondrial membrane potential (MMP). Ferrostatin 1 (Fer-1), ferroptosis inhibitor, diminished the above-stated effects and rescued cells from death in case of HG, STZ, and H2O2 treatments, while failed to increase MMP and to attenuate cell death after the cytokines' treatment. Moreover, Fer-1 protected pancreatic islets from STZ-induced injury in diabetic in vivo model, since it decreased infiltration of macrophages and accumulation of lipid peroxides and increased the population of insulin-positive cells. Such results revealed differences between diabetogenic stimuli in determining the destiny of β-cells, emerging HG, H2O2, and STZ, but not cytokines, as contributing factors to ferroptosis and shed new light on an antidiabetic strategy based on Nrf2 activation. Thus, targeting ferroptosis in diabetes might be a promising new approach for preservation of the β-cell population. Our results obtained from in vivo study strongly justify this approach.
Collapse
|
4
|
Li WW, Wang HJ, Tan YZ, Wang YL, Yu SN, Li ZH. Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp Cell Res 2021; 403:112585. [PMID: 33811905 DOI: 10.1016/j.yexcr.2021.112585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/30/2022]
Abstract
Cardiomyocytes are particularly prone to lipofuscin accumulation. In the aging heart, lipofuscin accumulation is augmented. This study examined distribution of lipofuscin and senescent cardiomyocytes and evaluated improvement of lipofuscin accumulation and cardiomyocytic senescence of the aging heart after treatment with rapamycin. The results of Schmorl staining, Sudan black staining and autofluorescence detection showed that there was more lipofuscin in the myocardium of the ventricles especially in the left ventricle. The conductive tissue contained less lipofuscin than the myocardium. In the aged hearts, lipofuscin accumulation and senescent cardiomyocytes were increased, and the level of autophagy was reduced. In double staining of Sudan black B and senescence-associated β-galactosidase, 10%-20% lipofuscin-loaded cardiomyocytes became senescent. All senescent cardiomyocytes contained lipofuscin deposits. After enhancing autophagy with feed of rapamycin for six months, lipofuscin accumulation and senescence of cardiomyocytes were improved in old rats. Colocalization of autophagic structure and lipofuscin as well as electron micrographs showed that some lipofuscin-loaded lysosomes were sequestrated by autophagic structures. This study suggests that rapamycin-enhanced autopahgy is effective for reducing lipofuscinogenesis and promoting degradation of lipofuscin. Therefore, enhancing autophagy is a novel therapy for alleviating lipofuscin accumulation and myocardial senescence.
Collapse
Affiliation(s)
- Wen-Wen Li
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Shu-Na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Zhi-Hua Li
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| |
Collapse
|
5
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
6
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Bhuiyan MS. Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Front Physiol 2020; 11:1054. [PMID: 32982788 PMCID: PMC7481364 DOI: 10.3389/fphys.2020.01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the key to properly functioning energy generation in the metabolically demanding cardiomyocytes and thus essential to healthy heart contractility on a beat-to-beat basis. Mitochondria being the central organelle for cellular metabolism and signaling in the heart, its dysfunction leads to cardiovascular disease. The healthy mitochondrial functioning critical to maintaining cardiomyocyte viability and contractility is accomplished by adaptive changes in the dynamics, biogenesis, and degradation of the mitochondria to ensure cellular proteostasis. Recent compelling evidence suggests that the classical protein quality control system in cardiomyocytes is also under constant mitochondrial control, either directly or indirectly. Impairment of cytosolic protein quality control may affect the position of the mitochondria in relation to other organelles, as well as mitochondrial morphology and function, and could also activate mitochondrial proteostasis. Despite a growing interest in the mitochondrial quality control system, very little information is available about the molecular function of mitochondria in cardiac proteostasis. In this review, we bring together current understanding of the adaptations and role of the mitochondria in cardiac proteostasis and describe the adaptive/maladaptive changes observed in the mitochondrial network required to maintain proteomic integrity. We also highlight the key mitochondrial signaling pathways activated in response to proteotoxic stress as a cellular mechanism to protect the heart from proteotoxicity. A deeper understanding of the molecular mechanisms of mitochondrial adaptations and their role in cardiac proteostasis will help to develop future therapeutics to protect the heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
7
|
Hofmann B, Gerull KA, Bloch K, Riemer M, Erbs C, Fröhlich A, Richter S, Ehrhardt M, Zitterbart C, Bartel FF, Siegel P, Wienke A, Silber RE, Simm A. It's all in our skin-Skin autofluorescence-A promising outcome predictor in cardiac surgery: A single centre cohort study. PLoS One 2020; 15:e0234847. [PMID: 32598375 PMCID: PMC7323943 DOI: 10.1371/journal.pone.0234847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The optimum risk score determining perioperative mortality and morbidity in cardiac surgery remains debated. Advanced glycation end products (AGEs) derived from glycaemic and oxidative stress accumulate to a comparable amount in skin and the cardiovascular system leading to a decline in organ function. We aimed to study the association between AGE accumulation measured as skin autofluorescence (sAF) and the outcome of cardiac surgery patients. METHODS Between April 2008 and November 2016, data from 758 consecutive patients undergoing coronary artery bypass grafting, aortic valve replacement or a combined procedure were analyzed. Skin autofluorescence was measured using an autofluorescence reader. Beside mortality, for the combined categorical morbidity outcome of each patient failure of the cardiac-, pulmonary-, renal- and cerebral system, as well as reoperation and wound healing disorders were counted. Patients without or with only one of the outcomes were assigned zero points whereas more than one outcome failure resulted in one point. Odds ratios (ORs) were estimated in multivariable logistic regression analysis with other preoperative parameters and the established cardiac surgery risk score systems EuroSCORE II and STS score. RESULTS Skin autofluorescence as non-invasive marker of tissue glycation provided the best prognostic value in identifying patients with major morbidity risks after cardiac surgery (OR = 3.13; 95%CI 2.16-4.54). With respect to mortality prediction the STS score (OR = 1.24; 95%CI 1.03-1.5) was superior compared to the EuroSCORE II (OR = 1.17: 95%CI 0.96-1.43), but not superior when compared to sAF (OR = 6.04; 95%CI 2.44-14.95). CONCLUSION This finding suggests that skin autofluorescence is a good biomarker candidate to assess the perioperative risk of patients in cardiac surgery. Since the EuroSCORE does not contain a morbidity component, in our view further sAF measurement is an option.
Collapse
Affiliation(s)
- Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Kristin Anja Gerull
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Katja Bloch
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Marcus Riemer
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
- Department of Gynecology, St. Elisabeth and St. Barbara Hospital Halle (Saale), Halle, Germany
| | - Christian Erbs
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
- Department of Surgery, Hospital Aarberg, Spital Netz Bern, Aarberg, Switzerland
| | - Anna Fröhlich
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Sissy Richter
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Martin Ehrhardt
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Christopher Zitterbart
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Friederike Fee Bartel
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Pauline Siegel
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Rolf-Edgar Silber
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
- * E-mail:
| |
Collapse
|
8
|
Zhao G, Zhang X, Wang H, Chen Z. Beta carotene protects H9c2 cardiomyocytes from advanced glycation end product-induced endoplasmic reticulum stress, apoptosis, and autophagy via the PI3K/Akt/mTOR signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:647. [PMID: 32566584 PMCID: PMC7290636 DOI: 10.21037/atm-20-3768] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Diabetic cardiomyopathy (DCM), which is associated with many pathological processes, commonly occurs when advanced glycation end products (AGEs) are present. β-carotene (BC) is a well-known vitamin A precursor that is found in many fruits and vegetables. BC can reduce the risk of cancer and cardiovascular disease. This study aimed to investigate the effect of BC on AGE-induced myocardial injury in vitro. Methods Cell viability test was used to select 40 µM concentrations of BC to treat AGE-induced H2c9 cells. The cell apoptosis was detected by flow cytometry. Western blotting was used to measure the protein expression levels of Bcl-2-associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), cleaved caspase-3, activating transcription factor 4 (ATF4), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), beclin 1, p62,microtubule-associated protein 1 light chain 3 (LC3), phosphorylated PI3K (p-PI3K), phosphorylated Akt (p-AKT), and phosphorylated mTOR (p-mTOR). Enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of lactate dehydrogenase (LDH) and cardiac troponin-1 (cTn-I). Reactive oxygen species (ROS) was detected by flow cytometry. The levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were used to determine MDA kits, SOD assay kit and GSH-Px kit, respectively. Results BC significantly inhibited AGE-induced cell death and apoptosis in H9c2 cells. BC had a suppressive effect on intracellular ROS production and antioxidative enzyme reduction. Moreover, BC decreased hyperactive endoplasmic reticulum (ER) stress and autophagy in H9c2 cells. Furthermore, BC exerted a cardioprotective effect in AGE-induced H9c2 cells via the activation of the PI3K/Akt/mTOR signaling pathway. Conclusions BC exhibited a cardioprotective effect AGE-induced apoptosis. Our study provides a foundation for further study into the potential value of BC for treating DCM or other heart diseases.
Collapse
Affiliation(s)
- Guochang Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoling Zhang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical College, Xinxiang 453100, China
| | - Hui Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Diallyl Trisulfide (DATS) Suppresses AGE-Induced Cardiomyocyte Apoptosis by Targeting ROS-Mediated PKCδ Activation. Int J Mol Sci 2020; 21:ijms21072608. [PMID: 32283691 PMCID: PMC7178155 DOI: 10.3390/ijms21072608] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic high-glucose exposure results in the production of advanced glycation end-products (AGEs) leading to reactive oxygen species (ROS) generation, which contributes to the development of diabetic cardiomyopathy. PKCδ activation leading to ROS production and mitochondrial dysfunction involved in AGE-induced cardiomyocyte apoptosis was reported in our previous study. Diallyl trisulfide (DATS) is a natural cytoprotective compound under various stress conditions. In this study, the cardioprotective effect of DATS against rat streptozotocin (STZ)-induced diabetic mellitus (DM) and AGE-induced H9c2 cardiomyoblast cell/neonatal rat ventricular myocyte (NRVM) damage was assessed. We observed that DATS treatment led to a dose-dependent increase in cell viability and decreased levels of ROS, inhibition of PKCδ activation, and recuded apoptosis-related proteins. Most importantly, DATS reduced PKCδ mitochondrial translocation induced by AGE. However, apoptosis was not inhibited by DATS in cells transfected with PKCδ-wild type (WT). Inhibition of PKCδ by PKCδ-kinase-deficient (KD) or rottlerin not only inhibited cardiac PKCδ activation but also attenuated cardiac cell apoptosis. Interestingly, overexpression of PKCδ-WT plasmids reversed the inhibitory effects of DATS on PKCδ activation and apoptosis in cardiac cells exposed to AGE, indicating that DATS may inhibit AGE-induced apoptosis by downregulating PKCδ activation. Similar results were observed in AGE-induced NRVM cells and STZ-treated DM rats following DATS administration. Taken together, our results suggested that DATS reduced AGE-induced cardiomyocyte apoptosis by eliminating ROS and downstream PKCδ signaling, suggesting that DATS has potential in diabetic cardiomyopathy (DCM) treatment.
Collapse
|
10
|
Kakimoto Y, Okada C, Kawabe N, Sasaki A, Tsukamoto H, Nagao R, Osawa M. Myocardial lipofuscin accumulation in ageing and sudden cardiac death. Sci Rep 2019; 9:3304. [PMID: 30824797 PMCID: PMC6397159 DOI: 10.1038/s41598-019-40250-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Lipofuscin is an intracellular aggregate of highly oxidized proteins that cannot be digested in the ubiquitin-proteasome system and accumulate mainly in lysosomes, especially in aged cells and pathological conditions. However, no systematic study has evaluated the cardiac accumulation of lipofuscin during human ageing and sudden cardiac death (SCD). Age estimation in unidentified bodies and postmortem SCD diagnosis are important themes in forensics. Thus, we aimed to elucidate their correlations with myocardial lipofuscin accumulation. We collected 76 cardiac samples from autopsy patients aged 20–97 years. After histopathological examination, myocardial lipofuscin was measured using its autofluorescence. Lipofuscin accumulated mainly in the perinuclear zone, and its accumulation rate positively correlated with chronological ageing (r = 0.82). Meanwhile, no significant change in lipofuscin level was observed with different causes of death, including SCD. There was also no significant change in lipofuscin level in relation to body mass index, serum brain natriuretic peptide level, or heart weight. Moreover, we performed LC3 and p62 immunoblotting to evaluate autophagic activity, and no change was observed in ageing. Therefore, lipofuscin accumulation more directly reflects chronological ageing rather than human cardiac pathology. Our study reveals the stability and utility of cardiac lipofuscin measurement for age estimation during autopsy.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Noboru Kawabe
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Ayumi Sasaki
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hideo Tsukamoto
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Ryoko Nagao
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
11
|
Rizou SV, Evangelou K, Myrianthopoulos V, Mourouzis I, Havaki S, Athanasiou A, Vasileiou PVS, Margetis A, Kotsinas A, Kastrinakis NG, Sfikakis P, Townsend P, Mikros E, Pantos C, Gorgoulis VG. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol Biol 2019; 1896:119-138. [PMID: 30474845 DOI: 10.1007/978-1-4939-8931-7_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipofuscin accumulation is a hallmark of senescence. This nondegradable material aggregates in the cytoplasm of stressed or damaged cells due to metabolic imbalance associated with aging and age-related diseases. Indications of a soluble state of lipofuscin have also been provided, rendering the perspective of monitoring such processes via lipofuscin quantification in liquids intriguing. Therefore, the development of an accurate and reliable method is of paramount importance. Currently available assays are characterized by inherent pitfalls which demote their credibility. We herein describe a simple, highly specific and sensitive protocol for measuring lipofuscin levels in any type of liquid. The current method represents an evolution of a previously described assay, developed for in vitro and in vivo senescent cell recognition that exploits a newly synthesized Sudan Black-B analog (GL13). Analysis of human clinical samples with the modified protocol provided strong evidence of its usefulness for the exposure and surveillance of age-related conditions.
Collapse
Affiliation(s)
- Sophia V Rizou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vassilios Myrianthopoulos
- Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- PharmaInformatics Unit, Athena Research Center, Athens, Greece
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggelos Margetis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Kastrinakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Sfikakis
- First Department of Propaedeutic Internal Medicine and Rheumatology Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Paul Townsend
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- PharmaInformatics Unit, Athena Research Center, Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
12
|
LeWinter MM, Taatjes D, Ashikaga T, Palmer B, Bishop N, VanBuren P, Bell S, Donaldson C, Meyer M, Margulies KB, Redfield M, Bull DA, Zile M. Abundance, localization, and functional correlates of the advanced glycation end-product carboxymethyl lysine in human myocardium. Physiol Rep 2018; 5:5/20/e13462. [PMID: 29066596 PMCID: PMC5661230 DOI: 10.14814/phy2.13462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end‐products (AGEs) play a role in the pathophysiology of diabetes mellitus (DM) and possibly hypertension (HTN). In experimental DM, AGEs accumulate in myocardium. Little is known about AGEs in human myocardium. We quantified abundance, localization, and functional correlates of the AGE carboxymethyl lysine (CML) in left ventricular (LV) myocardium from patients undergoing coronary bypass grafting (CBG). Immunoelectron microscopy was used to quantify CML in epicardial biopsies from 98 patients (71 M, 27 F) with HTN, HTN + DM or neither (controls), all with normal LV ejection fraction. Myofilament contraction‐relaxation function was measured in demembranated myocardial strips. Echocardiography was used to quantify LV structure and function. We found that CML was abundant within cardiomyocytes, but minimally associated with extracellular collagen. CML counts/μm2 were 14.7% higher in mitochondria than the rest of the cytoplasm (P < 0.001). There were no significant sex or diagnostic group differences in CML counts [controls 45.6 ± 3.6/μm2 (±SEM), HTN 45.8 ± 3.6/μm2, HTN + DM 49.3 ± 6.2/μm2; P = 0.85] and no significant correlations between CML counts and age, HgbA1c or myofilament function indexes. However, left atrial volume was significantly correlated with CML counts (r = 0.41, P = 0.004). We conclude that in CBG patients CML is abundant within cardiomyocytes but minimally associated with collagen, suggesting that AGEs do not directly modify the stiffness of myocardial collagen. Coexistent HTN or HTN + DM do not significantly influence CML abundance. The correlation of CML counts with LAV suggests an influence on diastolic function independent of HTN, DM or sex whose mechanism remains to be determined.
Collapse
Affiliation(s)
- Martin M LeWinter
- Cardiology Unit University of Vermont College of Medicine, Burlington, Vermont .,NHLBI Heart Failure Research Network, Bethesda, Maryland
| | - Douglas Taatjes
- Cardiology Unit University of Vermont College of Medicine, Burlington, Vermont
| | - Takamaru Ashikaga
- Cardiology Unit University of Vermont College of Medicine, Burlington, Vermont
| | - Bradley Palmer
- Cardiology Unit University of Vermont College of Medicine, Burlington, Vermont
| | - Nicole Bishop
- Cardiology Unit University of Vermont College of Medicine, Burlington, Vermont
| | - Peter VanBuren
- Cardiology Unit University of Vermont College of Medicine, Burlington, Vermont.,NHLBI Heart Failure Research Network, Bethesda, Maryland
| | - Stephen Bell
- Cardiology Unit University of Vermont College of Medicine, Burlington, Vermont
| | - Cameron Donaldson
- Cardiology Unit University of Vermont College of Medicine, Burlington, Vermont
| | - Markus Meyer
- Cardiology Unit University of Vermont College of Medicine, Burlington, Vermont
| | | | | | - David A Bull
- NHLBI Heart Failure Research Network, Bethesda, Maryland
| | - Michael Zile
- Cardiology Division, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
13
|
Oikonomou E, Mourouzis K, Fountoulakis P, Papamikroulis GA, Siasos G, Antonopoulos A, Vogiatzi G, Tsalamadris S, Vavuranakis M, Tousoulis D. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2018; 23:389-408. [PMID: 29453696 DOI: 10.1007/s10741-018-9682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a common cardiac syndrome, whose pathophysiology involves complex mechanisms, some of which remain unknown. Diabetes mellitus (DM) constitutes not only a glucose metabolic disorder accompanied by insulin resistance but also a risk factor for cardiovascular disease and HF. During the last years though emerging data set up, a bidirectional interrelationship between these two entities. In the case of DM impaired calcium homeostasis, free fatty acid metabolism, redox state, and advance glycation end products may accelerate cardiac dysfunction. On the other hand, when HF exists, hypoperfusion of the liver and pancreas, b-blocker and diuretic treatment, and autonomic nervous system dysfunction may cause impairment of glucose metabolism. These molecular pathways may be used as therapeutic targets for novel antidiabetic agents. Peroxisome proliferator-activated receptors (PPARs) not only improve insulin resistance and glucose and lipid metabolism but also manifest a diversity of actions directly or indirectly associated with systolic or diastolic performance of left ventricle and symptoms of HF. Interestingly, they may beneficially affect remodeling of the left ventricle, fibrosis, and diastolic performance but they may cause impaired water handing, sodium retention, and decompensation of HF which should be taken into consideration in the management of patients with DM. In this review article, we present the pathophysiological data linking HF with DM and we focus on the molecular mechanisms of PPARs agonists in left ventricle systolic and diastolic performance providing useful insights in the molecular mechanism of this class of metabolically active regiments.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece.
| | - Konstantinos Mourouzis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Petros Fountoulakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgios Angelos Papamikroulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Alexis Antonopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgia Vogiatzi
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Sotiris Tsalamadris
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Manolis Vavuranakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| |
Collapse
|
14
|
Zha Z, Wang J, Wang X, Lu M, Guo Y. Involvement of PINK1/Parkin-mediated mitophagy in AGE-induced cardiomyocyte aging. Int J Cardiol 2016; 227:201-208. [PMID: 27839819 DOI: 10.1016/j.ijcard.2016.11.161] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/06/2016] [Indexed: 12/19/2022]
Abstract
CONTEXT AND OBJECTIVES Advanced glycation end products (AGEs) can induce senescence in cardiomyocytes. However, its underlying molecular mechanisms remain unknown. METHODS Neonatal rat cardiomyocytes were incubated with AGEs, and cellular senescence was evaluated by senescence-associated beta-galactosidase (SA-β-gal) activity and aging-associated p16 expression. In addition, mitophagic activity was evaluated by measuring the expression of the PINK1, Parkin, LC3 and p62 proteins. The mitophagy inhibitor cyclosporine A (CsA) or PINK1 siRNAs was then administered to cardiomyocytes to study the role of mitophagy in AGE-induced aging. RESULTS A significantly increased number of SA-β-gal positive cells and increased p16 protein levels were observed in cardiomyocytes treated with AGEs. Moreover, AGEs significantly increased the protein levels of PINK1 and Parkin as well as the LC3-II/LC3-I ratio, which occurred in a dose-dependent manner. However, the expression of p62 decreased significantly in the AGE group compared to the control. Surprisingly, both CsA and the knockdown of PINK1 by small-interfering RNA (siRNA) significantly decreased the LC3-II/LC3-I ratio and the PINK1 and Parkin protein levels in AGE-treated cardiomyocytes. Moreover, CsA treatment or knockdown of PINK1 expression attenuated the increased number of SA-β-gal positive cells and the upregulated p16 level in cardiomyocytes induced by AGEs. CONCLUSIONS PINK1/Parkin-mediated mitophagy is involved in the process of cardiomyocyte senescence induced by AGEs, and a reduction in mitophagic activity might be a promising approach to block the senescent state in cardiomyocytes.
Collapse
Affiliation(s)
- Zhimin Zha
- Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junhong Wang
- Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangming Wang
- Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Miao Lu
- Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Cardiology, Shengze Hospital of Jiangsu Province, Suzhou, China.
| |
Collapse
|
15
|
Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Res Cardiol 2016; 111:16. [PMID: 26830603 DOI: 10.1007/s00395-016-0534-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/27/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022]
Abstract
Cardiovascular aging is a physiological process affecting all components of the heart. Despite the interest and experimental effort lavished on aging of cardiac cells, increasing evidence is pointing at the pivotal role of extracellular matrix (ECM) in cardiac aging. Structural and molecular changes in ECM composition during aging are at the root of significant functional modifications at the level of cardiac valve apparatus. Indeed, calcification or myxomatous degeneration of cardiac valves and their functional impairment can all be explained in light of age-related ECM alterations and the reciprocal interplay between altered ECM and cellular elements populating the leaflet, namely valvular interstitial cells and valvular endothelial cells, is additionally affecting valve function with striking reflexes on the clinical scenario. The initial experimental findings on this argument are underlining the need for a more comprehensive understanding on the biological mechanisms underlying ECM aging and remodeling as potentially constituting a pharmacological therapeutic target or a basis to improve existing prosthetic devices and treatment options. Given the lack of systematic knowledge on this topic, this review will focus on the ECM changes that occur during aging and on their clinical translational relevance and implications in the bedside scenario.
Collapse
|
16
|
Hofmann B, Jacobs K, Navarrete Santos A, Wienke A, Silber R, Simm A. Relationship between cardiac tissue glycation and skin autofluorescence in patients with coronary artery disease. DIABETES & METABOLISM 2015; 41:410-5. [DOI: 10.1016/j.diabet.2014.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022]
|
17
|
Feng FK, E LL, Kong XP, Wang DS, Liu HC. Lipofuscin in saliva and plasma and its association with age in healthy adults. Aging Clin Exp Res 2015; 27:573-80. [PMID: 25736395 DOI: 10.1007/s40520-015-0326-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/28/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM To compare blood and salivary levels of lipofuscin in healthy adults and to analyze the relationship between the lipofuscin level and the healthy adults' age. METHODS One hundred and twenty-two healthy volunteers were recruited and divided into three groups according to their age: young (n = 42, 20-44 years old), middle-aged (n = 51, 45-59 years old), and elderly (n = 29, 60-74 years old). One ml saliva and 5 ml whole blood were collected from each person. An ELISA kit was used to measure both the plasma and salivary lipofuscin levels. The differences between the groups were compared with independent-sample t test, and the relationship between the salivary lipofuscin level and the age was assessed with linear regression analysis. RESULTS The mean ± SD of the lipofuscin level in the saliva and plasma of 122 subjects was 68.93 ± 1.32 and 78.05 ± 1.75 μmol/l, respectively. No gender-dependent differences were observed in either the salivary or the plasma lipofuscin level (saliva: p = 0.443, plasma: p = 0.459). The salivary and plasma lipofuscin levels of the elderly subjects were significantly higher than those of the young (saliva: 80.72 ± 13.53 mmol/l versus 59.12 ± 1.92 mmol/l, p = 0.0003; plasma: 93.31 ± 3.14 mmol/l versus 67.43 ± 2.54 mmol/l, p = 0.0002) and middle-aged (saliva: 80.72 ± 13.53 mmol/l versus 70.31 ± 11.17 mmol/l, p = 0.0004; plasma: 93.31 ± 3.14 mmol/l versus 78.12 ± 2.40 mmol/l, p = 0.0002) subjects. Similarly, the salivary and plasma lipofuscin levels of the middle-aged subjects were significantly higher than those of the young subjects (saliva: 70.31 ± 11.17 mmol/l versus 59.12 ± 1.92 mmol/l, p < 0.0001; plasma: 78.12 ± 2.40 mmol/l versus 67.43 ± 2.54 mmol/l, p = 0.0019). The lipofuscin levels in the saliva and plasma were significantly positively correlated with the subject age (r = 0.551, p = 0.0001; r = 0.528, p < 0.0001). Furthermore, the salivary lipofuscin level and plasma lipofuscin level also were found to have a positive correlation (r = 0.621, p < 0.0001). CONCLUSION No gender-dependent differences were observed in either the salivary or plasma lipofuscin levels. The salivary and plasma lipofuscin levels were positively correlated, and the age is positively correlated with lipofuscin content in saliva.
Collapse
Affiliation(s)
- Fu-Kui Feng
- Institute of Stomatology, General Hospital of People's Liberation Army, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Nankai University, Tianjin, 300073, China
| | - Ling-Ling E
- Institute of Stomatology, General Hospital of People's Liberation Army, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang-Pan Kong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Dong-Sheng Wang
- Institute of Stomatology, General Hospital of People's Liberation Army, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hong-Chen Liu
- Institute of Stomatology, General Hospital of People's Liberation Army, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
18
|
Nowotny K, Jung T, Grune T, Höhn A. Reprint of "accumulation of modified proteins and aggregate formation in aging". Exp Gerontol 2014; 59:3-12. [PMID: 25308087 DOI: 10.1016/j.exger.2014.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
Increasing cellular damage during the aging process is considered to be one factor limiting the lifespan of organisms. Besides the DNA and lipids, proteins are frequent targets of non-enzymatic modifications by reactive substances including oxidants and glycating agents. Non-enzymatic protein modifications may alter the protein structure often leading to impaired functionality. Although proteolytic systems ensure the removal of modified proteins, the activity of these proteases was shown to decline during the aging process. The additional age-related increase of reactive compounds as a result of impaired antioxidant systems leads to the accumulation of damaged proteins and the formation of protein aggregates. Both, non-enzymatic modified proteins and protein aggregates impair cellular functions and tissue properties by a variety of mechanisms. This is increasingly important in aging and age-related diseases. In this review, we will give an overview on oxidation and glycation of proteins and the function of modified proteins in aggregate formation. Furthermore, their effects as well as their role in aging and age-related diseases will be highlighted.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tobias Jung
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Annika Höhn
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| |
Collapse
|
19
|
Accumulation of modified proteins and aggregate formation in aging. Exp Gerontol 2014; 57:122-31. [PMID: 24877899 DOI: 10.1016/j.exger.2014.05.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
Increasing cellular damage during the aging process is considered to be one factor limiting the lifespan of organisms. Besides the DNA and lipids, proteins are frequent targets of non-enzymatic modifications by reactive substances including oxidants and glycating agents. Non-enzymatic protein modifications may alter the protein structure often leading to impaired functionality. Although proteolytic systems ensure the removal of modified proteins, the activity of these proteases was shown to decline during the aging process. The additional age-related increase of reactive compounds as a result of impaired antioxidant systems leads to the accumulation of damaged proteins and the formation of protein aggregates. Both, non-enzymatic modified proteins and protein aggregates impair cellular functions and tissue properties by a variety of mechanisms. This is increasingly important in aging and age-related diseases. In this review, we will give an overview on oxidation and glycation of proteins and the function of modified proteins in aggregate formation. Furthermore, their effects as well as their role in aging and age-related diseases will be highlighted.
Collapse
|
20
|
Hofmann B, Yakobus Y, Indrasari M, Nass N, Santos AN, Kraus FB, Silber RE, Simm A. RAGE influences the development of aortic valve stenosis in mice on a high fat diet. Exp Gerontol 2014; 59:13-20. [PMID: 24818652 DOI: 10.1016/j.exger.2014.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 11/26/2022]
Abstract
Advanced glycation end product (AGE) accumulations as well as a high fat diet are associated with cardiovascular diseases. AGEs are recognized by several receptor molecules of which the receptor of AGEs (RAGE) is currently the most intensively studied. Activation of RAGE causes an unfavorable pro-inflammatory state. The hypothesis of this study was that metabolic stress due to a high fat diet results in the development of aortic valve stenosis and that knockout of RAGE should be protective. Six week old male C57BL/6N and C57BL/6N RAGE-/- mice (n=28) were randomly assigned to 4 groups and fed with normal or high fat diet for 32weeks. Weight gain was determined weekly. At the start of the experiment and after 2, 4 and 7months, echocardiographic assessments of the aortic valve were made. At the end of the experiment, plasma lipid levels and histological changes of the valves were determined. The high fat diet resulted in accelerated weight gain. However, after 7month, only C57BL/6 mice developed increased trans-aortic-valve velocities, leaflet thickness and reduced valve area index (p<0.0001). Immunohistochemistry of the aortic valves revealed in C57BL/6N mice on a high fat diet more calcification, AGE accumulation and RAGE expression when compared to normal fed control. Hearts and aortic valves of RAGE-/- mice showed less morphometric changes, calcification and AGE accumulation. After 7months of high fat feeding C57BL/6 mice (p<0.0001) as well as RAGE-/- mice (p=0.007) had significantly increased cholesterol levels compared to normal fed control, however RAGE-/- mice were probably protected due to a better HDL/LDL ratio when compared to wild type animals (p=0.003). These data suggest that AGEs and RAGE are involved in the development of obesity, hypercholesterolemia and aortic valve changes due to metabolic stress from high fat intake.
Collapse
Affiliation(s)
- Britt Hofmann
- Department of Cardiothoracic Surgery, University Hospital, Halle (Saale), Germany.
| | - Yuliana Yakobus
- Department of Cardiothoracic Surgery, University Hospital, Halle (Saale), Germany
| | - Mailiza Indrasari
- Department of Internal Medicine, St. Marien Hospital Siegen, Germany
| | - Norbert Nass
- Institute of Pathology, Otto von Guericke University, Magdeburg, Germany
| | | | | | - Rolf-Edgar Silber
- Department of Cardiothoracic Surgery, University Hospital, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiothoracic Surgery, University Hospital, Halle (Saale), Germany
| |
Collapse
|
21
|
Protein glycation during aging and in cardiovascular disease. J Proteomics 2013; 92:248-59. [DOI: 10.1016/j.jprot.2013.05.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/08/2013] [Accepted: 05/12/2013] [Indexed: 01/11/2023]
|