1
|
He S, Yan L, Yuan C, Li W, Wu T, Chen S, Li N, Wu M, Jiang J. The role of cardiomyocyte senescence in cardiovascular diseases: A molecular biology update. Eur J Pharmacol 2024; 983:176961. [PMID: 39209099 DOI: 10.1016/j.ejphar.2024.176961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and advanced age is a main contributor to the prevalence of CVD. Cellular senescence is an irreversible state of cell cycle arrest that occurs in old age or after cells encounter various stresses. Senescent cells not only result in the reduction of cellular function, but also produce senescence-associated secretory phenotype (SASP) to affect surrounding cells and tissue microenvironment. There is increasing evidence that the gradual accumulation of senescent cardiomyocytes is causally involved in the decline of cardiovascular system function. To highlight the role of senescent cardiomyocytes in the pathophysiology of age-related CVD, we first introduced that senescent cardiomyoyctes can be identified by structural changes and several senescence-associated biomarkers. We subsequently provided a comprehensive summary of existing knowledge, outlining the compelling evidence on the relationship between senescent cardiomyocytes and age-related CVD phenotypes. In addition, we discussed that the significant therapeutic potential represented by the prevention of accelerated senescent cardiomyocytes, and the current status of some existing geroprotectors in the prevention and treatment of age-related CVD. Together, the review summarized the role of cardiomyocyte senescence in CVD, and explored the molecular knowledge of senescent cardiomyocytes and their potential clinical significance in developing senescent-based therapies, thereby providing important insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Pharmacy, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Chao Yuan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Suya Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Niansheng Li
- Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China
| | - Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Zhang S, Qiu B, Lv B, Yang G, Tao Y, Hu Y, Li K, Yu X, Tang C, Du J, Jin H, Huang Y. Endogenous sulfur dioxide deficiency as a driver of cardiomyocyte senescence through abolishing sulphenylation of STAT3 at cysteine 259. Redox Biol 2024; 71:103124. [PMID: 38503216 PMCID: PMC10963856 DOI: 10.1016/j.redox.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
OBJECTIVE Cardiomyocyte senescence is an important contributor to cardiovascular diseases and can be induced by stressors including DNA damage, oxidative stress, mitochondrial dysfunction, epigenetic regulation, etc. However, the underlying mechanisms for the development of cardiomyocyte senescence remain largely unknown. Sulfur dioxide (SO2) is produced endogenously by aspartate aminotransferase 2 (AAT2) catalysis and plays an important regulatory role in the development of cardiovascular diseases. The present study aimed to explore the effect of endogenous SO2 on cardiomyocyte senescence and the underlying molecular mechanisms. APPROACH AND RESULTS We interestingly found a substantial reduction in the expression of AAT2 in the heart of aged mice in comparison to young mice. AAT2-knockdowned cardiomyocytes exhibited reduced SO2 content, elevated expression levels of Tp53, p21Cip/Waf, and p16INk4a, enhanced SA-β-Gal activity, and elevated level of γ-H2AX foci. Notably, supplementation with a SO2 donor ameliorated the spontaneous senescence phenotype and DNA damage caused by AAT2 deficiency in cardiomyocytes. Mechanistically, AAT2 deficiency suppressed the sulphenylation of signal transducer and activator of transcription 3 (STAT3) facilitated its nuclear translocation and DNA-binding capacity. Conversely, a mutation in the cysteine (Cys) 259 residue of STAT3 blocked SO2-induced STAT3 sulphenylation and subsequently prevented the inhibitory effect of SO2 on STAT3-DNA-binding capacity, DNA damage, and cardiomyocyte senescence. Additionally, cardiomyocyte (cm)-specific AAT2 knockout (AAT2cmKO) mice exhibited a deterioration in cardiac function, cardiomegaly, and cardiac aging, whereas supplementation with SO2 donors mitigated the cardiac aging and remodeling phenotypes in AAT2cmKO mice. CONCLUSION Downregulation of the endogenous SO2/AAT2 pathway is a crucial pathogenic mechanism underlying cardiomyocyte senescence. Endogenous SO2 modifies STAT3 by sulphenylating Cys259, leading to the inhibition of DNA damage and the protection against cardiomyocyte senescence.
Collapse
Affiliation(s)
- Shangyue Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Bingquan Qiu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Guosheng Yang
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Yinghong Tao
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
3
|
Mackert O, Wirth EK, Sun R, Winkler J, Liu A, Renko K, Kunz S, Spranger J, Brachs S. Impact of metabolic stress induced by diets, aging and fasting on tissue oxygen consumption. Mol Metab 2022; 64:101563. [PMID: 35944898 PMCID: PMC9418990 DOI: 10.1016/j.molmet.2022.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Alterations in mitochondrial function play an important role in the development of various diseases, such as obesity, insulin resistance, steatohepatitis, atherosclerosis and cancer. However, accurate assessment of mitochondrial respiration ex vivo is limited and remains highly challenging. Using our novel method, we measured mitochondrial oxygen consumption (OCR) and extracellular acidification rate (ECAR) of metabolically relevant tissues ex vivo to investigate the impact of different metabolic stressors on mitochondrial function. METHODS Comparative analyses of OCR and ECAR were performed in tissue biopsies of young mice fed 12 weeks standard-control (STD), high-fat (HFD), high-sucrose (HSD), or western diet (WD), matured mice with HFD, and 2year-old mice aged on STD with and without fasting. RESULTS While diets had only marginal effects on mitochondrial respiration, respiratory chain complexes II and IV were reduced in adipose tissue (AT). Moreover, matured HFD-fed mice showed a decreased hepatic metabolic flexibility and prolonged aging increased OCR in brown AT. Interestingly, fasting boosted pancreatic and hepatic OCR while decreasing weight of those organs. Furthermore, ECAR measurements in AT could indicate its lipolytic capacity. CONCLUSION Using ex vivo tissue measurements, we could extensively analyze mitochondrial function of liver, AT, pancreas and heart revealing effects of metabolic stress, especially aging.
Collapse
Affiliation(s)
- Olena Mackert
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Eva Katrin Wirth
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Rongwan Sun
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Jennifer Winkler
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Aoxue Liu
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Séverine Kunz
- Technology Platform for Electron Microscopy at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
4
|
Mahmoodzadeh S, Koch K, Schriever C, Xu J, Steinecker M, Leber J, Dworatzek E, Purfürst B, Kunz S, Recchia D, Canepari M, Heuser A, Di Francescantonio S, Morano I. Age-related decline in murine heart and skeletal muscle performance is attenuated by reduced Ahnak1 expression. J Cachexia Sarcopenia Muscle 2021; 12:1249-1265. [PMID: 34212535 PMCID: PMC8517348 DOI: 10.1002/jcsm.12749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Aging is associated with a progressive reduction in cellular function leading to poor health and loss of physical performance. Mitochondrial dysfunction is one of the hallmarks of aging; hence, interventions targeting mitochondrial dysfunction have the potential to provide preventive and therapeutic benefits to elderly individuals. Meta-analyses of age-related gene expression profiles showed that the expression of Ahnak1, a protein regulating several signal-transduction pathways including metabolic homeostasis, is increased with age, which is associated with low VO2MAX and poor muscle fitness. However, the role of Ahnak1 in the aging process remained unknown. Here, we investigated the age-related role of Ahnak1 in murine exercise capacity, mitochondrial function, and contractile function of cardiac and skeletal muscles. METHODS We employed 15- to 16-month-old female and male Ahnak1-knockout (Ahnak1-KO) and wild-type (WT) mice and performed morphometric, biochemical, and bioenergetics assays to evaluate the effects of Ahnak1 on exercise capacity and mitochondrial morphology and function in cardiomyocytes and tibialis anterior (TA) muscle. A human left ventricular (LV) cardiomyocyte cell line (AC16) was used to investigate the direct role of Ahnak1 in cardiomyocytes. RESULTS We found that the level of Ahnak1 protein is significantly up-regulated with age in the murine LV (1.9-fold) and TA (1.8-fold) tissues. The suppression of Ahnak1 was associated with improved exercise tolerance, as all aged adult Ahnak1-KO mice (100%) successfully completed the running programme, whereas approximately 31% male and 8% female WT mice could maintain the required running speed and distance. Transmission electron microscopic studies showed that LV and TA tissue specimens of aged adult Ahnak1-KO of both sexes have significantly more enlarged/elongated mitochondria and less small mitochondria compared with WT littermates (P < 0.01 and P < 0.001, respectively) at basal level. Further, we observed a shift in mitochondrial fission/fusion balance towards fusion in cardiomyocytes and TA muscle from aged adult Ahnak1-KO mice. The maximal and reserve respiratory capacities were significantly higher in cardiomyocytes from aged adult Ahnak1-KO mice compared with the WT counterparts (P < 0.05 and P < 0.01, respectively). Cardiomyocyte contractility and fatigue resistance of TA muscles were significantly increased in Ahnak1-KO mice of both sexes, compared with the WT groups. In vitro studies using AC16 cells have confirmed that the alteration of mitochondrial function is indeed a direct effect of Ahnak1. Finally, we presented Ahnak1 as a novel cardiac mitochondrial membrane-associated protein. CONCLUSIONS Our data suggest that Ahnak1 is involved in age-related cardiac and skeletal muscle dysfunction and could therefore serve as a promising therapeutical target.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Katharina Koch
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cindy Schriever
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jingman Xu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Heart Institute, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Maria Steinecker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joachim Leber
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Elke Dworatzek
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, and Berliner Institute of Health, Berlin, Germany
| | - Bettina Purfürst
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Severine Kunz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Deborah Recchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Silvia Di Francescantonio
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Ingo Morano
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
5
|
Remodeling of t-system and proteins underlying excitation-contraction coupling in aging versus failing human heart. NPJ Aging Mech Dis 2021; 7:16. [PMID: 34050186 PMCID: PMC8163749 DOI: 10.1038/s41514-021-00066-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/26/2021] [Indexed: 11/14/2022] Open
Abstract
It is well established that the aging heart progressively remodels towards a senescent phenotype, but alterations of cellular microstructure and their differences to chronic heart failure (HF) associated remodeling remain ill-defined. Here, we show that the transverse tubular system (t-system) and proteins underlying excitation-contraction coupling in cardiomyocytes are characteristically remodeled with age. We shed light on mechanisms of this remodeling and identified similarities and differences to chronic HF. Using left ventricular myocardium from donors and HF patients with ages between 19 and 75 years, we established a library of 3D reconstructions of the t-system as well as ryanodine receptor (RyR) and junctophilin 2 (JPH2) clusters. Aging was characterized by t-system alterations and sarcolemmal dissociation of RyR clusters. This remodeling was less pronounced than in HF and accompanied by major alterations of JPH2 arrangement. Our study indicates that targeting sarcolemmal association of JPH2 might ameliorate age-associated deficiencies of heart function.
Collapse
|
6
|
Zeng Z, Yu K, Hu W, Cheng S, Gao C, Liu F, Chen J, Kong M, Zhang F, Liu X, Wang J. SRT1720 Pretreatment Promotes Mitochondrial Biogenesis of Aged Human Mesenchymal Stem Cells and Improves Their Engraftment in Postinfarct Nonhuman Primate Hearts. Stem Cells Dev 2021; 30:386-398. [PMID: 33567991 DOI: 10.1089/scd.2020.0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Declined function of aged mesenchymal stem cells (MSCs) diminishes the benefits of cell therapy for myocardial infarction (MI). Our previous study has demonstrated that SRT1720, a specific SIRT1 activator, could protect aged human MSCs (hMSCs) against apoptosis. The purpose of the present study was to investigate the role of mitochondria in the antiapoptotic effects of SRT1720. In addition, we established a nonhuman primate MI model to evaluate cell engraftment of SRT1720-pretreated aged hMSCs (SRT1720-OMSCs). A hydrogen peroxide (H2O2)-induced apoptosis model was established in vitro to mimic MI microenvironment. Compared with vehicle-treated aged hMSCs (Vehicle-OMSCs), SRT1720-OMSCs showed alleviated apoptosis level, significantly decreased caspase-3 and caspase-9 activation, and reduced release of cytochrome c when subjected to H2O2 treatment. Mitochondrial contents were compared between young and aged hMSCs and our data showed that aged hMSCs had lower mitochondrial DNA (mtDNA) copy numbers and protein expression levels of components of the mitochondrial electron transport chain (ETC) than young hMSCs. Also, treatment with SRT1720 resulted in enhanced MitoTracker staining, increased mtDNA levels and expression of mitochondrial ETC components in aged hMSCs. Furthermore, SRT1720-OMSCs exhibited elevated mitochondrial respiratory capacity and higher mitochondrial membrane potential. In vivo study demonstrated that SRT1720-OMSCs had higher engraftment rates than Vehicle-OMSCs at 3 days after transplantation into the infarcted nonhuman primate hearts. Taken together, these results suggest that SRT1720 promotes mitochondrial biogenesis and function of aged hMSCs, which is involved in its protective effects against H2O2-induced apoptosis. These findings encourage further exploration of the optimization of aged stem cells function via regulating mitochondrial function.
Collapse
Affiliation(s)
- Zhiru Zeng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Kaixiang Yu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Wangxing Hu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Si Cheng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Chenyang Gao
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Feng Liu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jinyong Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Minjian Kong
- Department of Cardiovascular Surgery and Zhejiang University School of Medicine, Hangzhou, China
| | - Fengjiang Zhang
- Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianbao Liu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Fernandes Vileigas D, Cicogna AC. Effects of obesity on the cardiac proteome. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2020.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
8
|
Hu D, Dong R, Zhang Y, Yang Y, Chen Z, Tang Y, Fu M, Xu X, Tu L. Age‑related changes in mineralocorticoid receptors in rat hearts. Mol Med Rep 2020; 22:1859-1867. [PMID: 32582979 PMCID: PMC7411371 DOI: 10.3892/mmr.2020.11260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related alterations in the renin-angiotensin-aldosterone system (RAAS) have been reported in the cardiovascular system; however, the detailed mechanism of the RAAS component mineralocorticoid receptors (MR) has not been elucidated. The present study aimed to investigate the associations between MR and cardiac aging in rats, as well as the regulatory effects of oxidative stress and mitochondrial abnormalities in the aging process. MR expression in the hearts of male Sprague-Dawley rats aged 3 months (young rats) and 24 months (old rats) was evaluated in vivo. In addition, in vitro, H9C2 cells were treated with a specific MR antagonist, eplerenone, in order to investigate the molecular mechanism underlying the inhibition of myocyte aging process. The results demonstrated that MR expression was significantly higher in 24-month-old rat hearts compared with in 3-month-old rat hearts. These changes were accompanied by increased p53 expression, decreased peroxisome proliferator-activated receptor γ coactivator-1α expression, decreased mitochondrial renewal as assessed by electron microscopy, increased oxidative stress and decreased superoxide dismutase. In vitro, selective antagonism of MR partially blocked H2O2-induced myocardial aging as assessed by p16, p21 and p53 expression levels and excessive reactive oxygen species (ROS) accumulation. These results indicated that increased MR expression may drive age-related cardiac dysfunction via mitochondrial damage, increased ROS accumulation and an imbalanced redox state.
Collapse
Affiliation(s)
- Danli Hu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yanjun Zhang
- Department of Internal Medicine, Division of Cardiology, General Hospital of Puyang Oil Field, Puyang, Henan 457001, P.R. China
| | - Yan Yang
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhihui Chen
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying Tang
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xizhen Xu
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
9
|
No MH, Heo JW, Yoo SZ, Kim CJ, Park DH, Kang JH, Seo DY, Han J, Kwak HB. Effects of aging and exercise training on mitochondrial function and apoptosis in the rat heart. Pflugers Arch 2020; 472:179-193. [PMID: 32048000 DOI: 10.1007/s00424-020-02357-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Aging is associated with vulnerability to cardiovascular diseases, and mitochondrial dysfunction plays a critical role in cardiovascular disease pathogenesis. Exercise training is associated with benefits against chronic cardiac diseases. The purpose of this study was to determine the effects of aging and treadmill exercise training on mitochondrial function and apoptosis in the rat heart. Fischer 344 rats were divided into young sedentary (YS; n = 10, 4 months), young exercise (YE; n = 10, 4 months), old sedentary (OS; n = 10, 20 months), and old exercise (OE; n = 10, 20 months) groups. Exercise training groups ran on a treadmill at 15 m/min (young) or 10 m/min (old), 45 min/day, 5 days/week for 8 weeks. Morphological parameters, mitochondrial function, mitochondrial dynamics, mitophagy, and mitochondria-mediated apoptosis were analyzed in cardiac muscle. Mitochondrial O2 respiratory capacity and Ca2+ retention capacity gradually decreased, and mitochondrial H2O2 emitting potential significantly increased with aging. Exercise training attenuated aging-induced mitochondrial H2O2 emitting potential and mitochondrial O2 respiratory capacity, while protecting Ca2+ retention in the old groups. Aging triggered imbalanced mitochondrial dynamics and excess mitophagy, while exercise training ameliorated the aging-induced imbalance in mitochondrial dynamics and excess mitophagy. Aging induced increase in Bax and cleaved caspase-3 protein levels, while decreasing Bcl-2 levels. Exercise training protected against the elevation of apoptotic signaling markers by decreasing Bax and cleaved caspase-3 and increasing Bcl-2 protein levels, while decreasing the Bax/Bcl-2 ratio and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive myonuclei. These data demonstrate that regular exercise training prevents aging-induced impairment of mitochondrial function and mitochondria-mediated apoptosis in cardiac muscles.
Collapse
Affiliation(s)
- Mi-Hyun No
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Su-Zi Yoo
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, Kyung Hee University, Seoul, South Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University School of Medicine, Incheon, South Korea
| | - Dae-Yun Seo
- Department of Physiology and Cardiovascular and Metabolic Disease Center, Inje University School of Medicine, Busan, South Korea
| | - Jin Han
- Department of Physiology and Cardiovascular and Metabolic Disease Center, Inje University School of Medicine, Busan, South Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
10
|
Zhao ZA, Han X, Lei W, Li J, Yang Z, Wu J, Yao M, Lu XA, He L, Chen Y, Zhou B, Hu S. Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts. Circ Res 2019; 123:e21-e31. [PMID: 30359191 DOI: 10.1161/circresaha.118.313005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Aging is one of the most significant risk factors for cardiovascular diseases, and the incidence of myocardial ischemia increases dramatically with age. Some studies have reported that cardiosphere-derived cells (CDCs) could benefit the injured heart. Nevertheless, the convincing evidence on CDC-induced improvement of aging heart is still limited. OBJECTIVE In this study, we tested whether the CDCs isolated from neonatal mice could benefit cardiac function in aging mice. METHODS AND RESULTS We evaluated cardiac function of PBS- (n=15) and CDC-injected (n=19) aging mice. Echocardiography indicated that left ventricular (LV) ejection fraction (57.46%±3.57% versus 57.86%±2.44%) and LV fraction shortening (30.67%±2.41% versus 30.51%±1.78%) showed similar values in PBS- and CDC-injected mice. The diastolic wall thickness of LV was significantly increased after CDC injection, resulting in reduced diastolic LV volume. The pulse-wave Doppler and tissue Doppler imaging indicated that aging mice receiving PBS or CDC injection presented similar values of the peak early transmitral flow velocity, the peak late transmitral flow velocity, the ratio of the peak early transmitral flow velocity to the peak late transmitral flow velocity, and the ratio of the peak early transmitral flow velocity to the peak early diastolic mitral annular velocity, respectively. Pressure-volume loop experiment indicated that the LV end-diastolic pressure-volume relationship and end-systolic pressure-volume relationship were comparable in both PBS- and CDC-injected mice. Postmortem analysis of aging mouse hearts showed similar fibrotic degree in the 2 groups. In addition, the aging markers showed comparable expression levels in both PBS- and CDC-injected mice. The systemic aging performance measures, including exercise capacity, hair regrowth capacity, and inflammation, showed no significant improvement in CDC-injected mice. Finally, the telomere length was comparable between PBS- and CDC-injected mice. CONCLUSIONS Together, these results indicate that CDCs do not improve heart function and systemic performances in aging mice.
Collapse
Affiliation(s)
- Zhen-Ao Zhao
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Xinglong Han
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Wei Lei
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Jingjing Li
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Zhuangzhuang Yang
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Jie Wu
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Mengchao Yao
- School of Life Science, Shanghai University, China (M.Y.)
| | - Xing-Ai Lu
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Lingjuan He
- the State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (L.H., B.Z.)
| | - Yihuan Chen
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Bin Zhou
- the State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (L.H., B.Z.)
| | - Shijun Hu
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| |
Collapse
|
11
|
Ibrahim A, Grigorian-Shamagian L, Rogers RG, Marbán E. Letter by Ibrahim et al Regarding Article, "Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts". Circ Res 2019; 123:e65-e66. [PMID: 30566047 DOI: 10.1161/circresaha.118.314147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Russell G Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
12
|
Kwak SE, Cho SC, Bae JH, Lee J, Shin HE, Di Zhang D, Lee YI, Song W. Effects of exercise-induced apelin on muscle function and cognitive function in aged mice. Exp Gerontol 2019; 127:110710. [PMID: 31473200 DOI: 10.1016/j.exger.2019.110710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Seong Eun Kwak
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Sung Chun Cho
- Well Aging Research Center, DGIST, Daegu, South Korea
| | - Jun Hyun Bae
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Jihyun Lee
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Hyung Eun Shin
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Di Di Zhang
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, South Korea; Department of New Biology, DGIST, Daegu, South Korea.
| | - Wook Song
- Institute of Sport Science, Seoul National University, Seoul, South Korea; Institue on Aging, Seoul National University, Seoul, South Korea.
| |
Collapse
|
13
|
Al-Gebaly AS. Ameliorating role of whey syrup against ageing-related damage of myocardial muscle of Wistar Albino rats. Saudi J Biol Sci 2018; 26:950-956. [PMID: 31303824 PMCID: PMC6600591 DOI: 10.1016/j.sjbs.2018.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/10/2022] Open
Abstract
Age-ing is involved in gradual breakdown of biological structure and function of body organs. The heart represents the main organ responsible for pumping the main issues of life which involving oxygen, nutrients and bioactive molecules necessary for maintaining the body functions. The present study has been conducted to assess the anti-aging properties of whey syrup collected from fermented milk in 4, 18 and 30-months-old rats. The histopathological and histochemical changes of carbohydrates and proteins were investigated. Immunohistochemical expression of smooth muscle actin and P53 was performed to assess the function of cardiomyocytes. Furthermore, Annexin v and biochemical changes of different cardio-biomarkers were carried out to evaluate the effects of aging. The present result of 30 months-old rats revealed myocardial infarction assessed by widening of myocardial fibers, diffused with numerous blood capillaries and dense leukocytic infiltration. The assessed biochemical markers confirmed myocardial damage. Whey supplementation improved the myocardial structure, but less improvement was observed for the 30-months-old rats. The author recommended supplementation with whey is beneficial in giving a body the demand for amino acids and minerals essential for supporting the myocardium and also provides protection against age-ing.
Collapse
Affiliation(s)
- Asma S Al-Gebaly
- Department of Biology, Faculty of Sciences, Princess Nourah Bint Abdulrahman, University, 11474 Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Matsumoto C, Jiang Y, Emathinger J, Quijada P, Nguyen N, De La Torre A, Moshref M, Nguyen J, Levinson AB, Shin M, Sussman MA, Hariharan N. Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. Stem Cells 2018; 36:868-880. [PMID: 29441645 DOI: 10.1002/stem.2793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/07/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Aging severely limits myocardial repair and regeneration. Delineating the impact of age-associated factors such as short telomeres is critical to enhance the regenerative potential of cardiac progenitor cells (CPCs). We hypothesized that short telomeres activate p53 and induce autophagy to elicit the age-associated change in CPC fate. We isolated CPCs and compared mouse strains with different telomere lengths for phenotypic characteristics of aging. Wild mouse strain Mus musculus castaneus (CAST) possessing short telomeres exhibits early cardiac aging with cardiac dysfunction, hypertrophy, fibrosis, and senescence, as compared with common lab strains FVB and C57 bearing longer telomeres. CAST CPCs with short telomeres demonstrate altered cell fate as characterized by cell cycle arrest, senescence, basal commitment, and loss of quiescence. Elongation of telomeres using a modified mRNA for telomerase restores youthful properties to CAST CPCs. Short telomeres induce autophagy in CPCs, a catabolic protein degradation process, as evidenced by reduced p62 and increased accumulation of autophagic puncta. Pharmacological inhibition of autophagosome formation reverses the cell fate to a more youthful phenotype. Mechanistically, cell fate changes induced by short telomeres are partially p53 dependent, as p53 inhibition rescues senescence and commitment observed in CAST CPCs, coincident with attenuation of autophagy. In conclusion, short telomeres activate p53 and autophagy to tip the equilibrium away from quiescence and proliferation toward differentiation and senescence, leading to exhaustion of CPCs. This study provides the mechanistic basis underlying age-associated cell fate changes that will enable identification of molecular strategies to prevent senescence of CPCs. Stem Cells 2018;36:868-880.
Collapse
Affiliation(s)
- Collin Matsumoto
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Yan Jiang
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | | | - Pearl Quijada
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Nathalie Nguyen
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andrea De La Torre
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Maryam Moshref
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Jonathan Nguyen
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Aimee B Levinson
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Minyoung Shin
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Mark A Sussman
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Nirmala Hariharan
- Department of Pharmacology, University of California at Davis, Davis, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
15
|
The effect of the JAK2 inhibitor TG101209 against T cell acute lymphoblastic leukemia (T-ALL) is mediated by inhibition of JAK-STAT signaling and activation of the crosstalk between apoptosis and autophagy signaling. Oncotarget 2017; 8:106753-106763. [PMID: 29290986 PMCID: PMC5739771 DOI: 10.18632/oncotarget.22053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/23/2017] [Indexed: 01/15/2023] Open
Abstract
Previous reports have shown that active JAK2 contributes to T cell acute lymphoblastic leukaemia (T-ALL) development and that JAK inhibitors may be a potential treatment for T-ALL. In the current study, the JAK2 inhibitor TG101209 was used to treat T-ALL cell lines and primary T-ALL cells. The effects of TG101209 on T-ALL cells were determined, and the signaling proteins related to cell growth, apoptosis and autophagy were analysed. The results indicated that TG101209 significantly inhibited T-ALL cell proliferation and induced cell apoptosis in a dose-dependent manner. The mechanisms involved the suppression of the JAK2-STAT signaling pathway and activation of apoptosis or autophagy. Additionally, a JAK2 gene copy gain (FISH) and up-regulated JAK2, LC3 and Beclin1 expression (western blotting) were observed in T-ALL samples compared with healthy controls, which implied that JAK2 is a target for T-ALL treatment. TG101209 initiated apoptosis and autophagy in T-ALL cells; therefore, this JAK2 inhibitor may be a potential drug or alternative therapy for T-ALL.
Collapse
|
16
|
Anderson R, Richardson GD, Passos JF. Mechanisms driving the ageing heart. Exp Gerontol 2017; 109:5-15. [PMID: 29054534 DOI: 10.1016/j.exger.2017.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. One of the main risk factors for CVD is age, however the biological processes that occur in the heart during ageing are poorly understood. It is therefore important to understand the fundamental mechanisms driving heart ageing to enable the development of preventions and treatments targeting these processes. Cellular senescence is often described as the irreversible cell-cycle arrest which occurs in somatic cells. Emerging evidence suggests that cellular senescence plays a key role in heart ageing, however the cell-types involved and the underlying mechanisms are not yet elucidated. In this review we discuss the current understanding of how mechanisms known to contribute to senescence impact on heart ageing and CVD. Finally, we evaluate recent data suggesting that targeting senescent cells may be a viable therapy to counteract the ageing of the heart.
Collapse
Affiliation(s)
- Rhys Anderson
- The Randall Division, King's College London, London, UK; Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Gavin D Richardson
- Cardiovascular Research Centre, Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Cheng Z, Peng HL, Zhang R, Fu XM, Zhang GS. Rejuvenation of Cardiac Tissue Developed from Reprogrammed Aged Somatic Cells. Rejuvenation Res 2017; 20:389-400. [PMID: 28478705 DOI: 10.1089/rej.2017.1930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived via somatic cell reprogramming have been reported to reset aged somatic cells to a more youthful state, characterized by elongated telomeres, a rearranged mitochondrial network, reduced oxidative stress, and restored pluripotency. However, it is still unclear whether the reprogrammed aged somatic cells can function normally as embryonic stem cells (ESCs) during development and be rejuvenated. In the current study, we applied the aggregation technique to investigate whether iPSCs derived from aged somatic cells could develop normally and be rejuvenated. iPSCs derived from bone marrow myeloid cells of 2-month-old (2 M) and 18-month-old (18 M) C57BL/6-Tg (CAG-EGFP)1Osb/J mice were aggregated with embryos derived from wild-type ICR mice to produce chimeras (referred to as 2 M CA and 18 M CA, respectively). Our observations focused on comparing the ability of the iPSCs derived from 18 M and 2 M bone marrow cells to develop rejuvenated cardiac tissue (the heart is the most vital organ during aging). The results showed an absence of p16 and p53 upregulation, telomere length shortening, and mitochondrial gene expression and deletion in 18 M CA, whereas slight changes in mitochondrial ultrastructure, cytochrome C oxidase activity, ATP production, and reactive oxygen species production were observed in CA cardiac tissues. The data implied that all of the aging characteristics observed in the newborn cardiac tissue of 18 M CA were comparable with those of 2 M CA newborn cardiac tissue. This study provides the first direct evidence of the aging-related characteristics of cardiac tissue developed from aged iPSCs, and our observations demonstrate that partial rejuvenation can be achieved by reprogramming aged somatic cells to a pluripotent state.
Collapse
Affiliation(s)
- Zhao Cheng
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Hong-Ling Peng
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Rong Zhang
- 2 Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwanoha, Kashiwa, Japan
| | - Xian-Ming Fu
- 3 Department of Cardiac Surgery, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Guang-Sen Zhang
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| |
Collapse
|
18
|
Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017; 8:349-369. [PMID: 28432755 PMCID: PMC5476857 DOI: 10.1002/jcsm.12178] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/23/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best-known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high-energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Maik Kosiol
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
19
|
Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1919-1932. [PMID: 28347844 DOI: 10.1016/j.bbadis.2017.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 02/07/2023]
Abstract
Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a cascade of biological processes including aging. A number of autophagy regulators have been identified. Here we demonstrated that mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme with the most common single point mutation in humans, governs cardiac aging through regulation of autophagy. Myocardial mechanical and autophagy properties were examined in young (4months) and old (26-28months) wild-type (WT) and global ALDH2 transgenic mice. ALDH2 overexpression shortened lifespan by 7.7% without affecting aging-associated changes in plasma metabolic profiles. Myocardial function was compromised with aging associated with cardiac hypertrophy, the effects were accentuated by ALDH2. Aging overtly suppressed autophagy and compromised autophagy flux, the effects were exacerbated by ALDH2. Aging dampened phosphorylation of JNK, Bcl-2, IKKβ, AMPK and TSC2 while promoting phosphorylation of mTOR, the effects of which were exaggerated by ALDH2. Co-immunoprecipitation revealed increased dissociation between Bcl-2 and Beclin-1 (result of decreased Bcl-2 phosphorylation) in aging, the effect of which was exacerbated with ALDH2. Chronic treatment of the autophagy inducer rapamycin alleviated aging-induced cardiac dysfunction in both WT and ALDH2 mice. Moreover, activation of JNK and inhibition of either Bcl-2 or IKKβ overtly attenuated ALDH2 activation-induced accentuation of cardiomyocyte aging. Examination of the otherwise elderly individuals revealed a positive correlation between cardiac function/geometry and ALDH2 gene mutation. Taken together, our data revealed that ALDH2 enzyme may suppress myocardial autophagy possibly through a complex JNK-Bcl-2 and IKKβ-AMPK-dependent mechanism en route to accentuation of myocardial remodeling and contractile dysfunction in aging. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
|
20
|
Kannappan R, Matsuda A, Ferreira-Martins J, Zhang E, Palano G, Czarna A, Cabral-Da-Silva MC, Bastos-Carvalho A, Sanada F, Ide N, Rota M, Blasco MA, Serrano M, Anversa P, Leri A. p53 Modulates the Fate of Cardiac Progenitor Cells Ex Vivo and in the Diabetic Heart In Vivo. EBioMedicine 2017; 16:224-237. [PMID: 28163043 PMCID: PMC5474510 DOI: 10.1016/j.ebiom.2017.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/01/2022] Open
Abstract
p53 is an important modulator of stem cell fate, but its role in cardiac progenitor cells (CPCs) is unknown. Here, we tested the effects of a single extra-copy of p53 on the function of CPCs in the presence of oxidative stress mediated by doxorubicin in vitro and type-1 diabetes in vivo. CPCs were obtained from super-p53 transgenic mice (p53-tg), in which the additional allele is regulated in a manner similar to the endogenous protein. Old CPCs with increased p53 dosage showed a superior ability to sustain oxidative stress, repair DNA damage and restore cell division. With doxorubicin, a larger fraction of CPCs carrying an extra-copy of the p53 allele recruited γH2A.X reestablishing DNA integrity. Enhanced p53 expression resulted in a superior tolerance to oxidative stress in vivo by providing CPCs with defense mechanisms necessary to survive in the milieu of the diabetic heart; they engrafted in regions of tissue injury and in three days acquired the cardiomyocyte phenotype. The biological advantage provided by the increased dosage of p53 in CPCs suggests that this genetic strategy may be translated to humans to increase cellular engraftment and growth, critical determinants of successful cell therapy for the failing heart. p53 improves the ability of CPCs to sustain oxidative stress. p53 promotes the restoration of DNA integrity and cell division. p53 enhances the engraftment of CPCs in the diabetic heart.
Ongoing clinical trials with autologous cardiac stem cells (CSCs) are faced with a critical limitation which is related to the modest amount of retained cells within the damaged myocardium. We have developed a strategy that overcomes in part this problem enhancing the number of CSCs able to engraft within the pathologic organ. Additionally, these genetically modified CSCs can be generated in large number, raising the possibility that multiple temporally distinct deliveries of cells can be introduced to restore the structural and functional integrity of the decompensated heart.
Collapse
Affiliation(s)
- Ramaswamy Kannappan
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Matsuda
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - João Ferreira-Martins
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Zhang
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giorgia Palano
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Czarna
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - Mauricio Castro Cabral-Da-Silva
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adriana Bastos-Carvalho
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fumihiro Sanada
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Noriko Ide
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcello Rota
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria A Blasco
- Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Manuel Serrano
- Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Piero Anversa
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland.
| |
Collapse
|
21
|
Bakeeva LE. Age-Related Changes in Ultrastructure of Mitochondria. Effect of SkQ1. BIOCHEMISTRY (MOSCOW) 2016; 80:1582-8. [PMID: 26638683 DOI: 10.1134/s0006297915120068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For many years, investigators have attempted to identify unique ultrastructural conditions of mitochondria related to aging. However, this did not result in definitive results. At present, this issue has again become of topical interest due to development of the mitochondrial theory of aging and of engineering of a novel antioxidant class known as mitochondria-targeted antioxidants. The review briefly discusses experimental results that, from our perspective, allow the most objective understanding regarding age-related changes in mitochondrial ultrastructure.
Collapse
Affiliation(s)
- L E Bakeeva
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| |
Collapse
|
22
|
Isobe KI, Cheng Z, Nishio N, Suganya T, Tanaka Y, Ito S. Reprint of "iPSCs, aging and age-related diseases". N Biotechnol 2015; 32:169-79. [PMID: 25479728 DOI: 10.1016/j.nbt.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human histocompatibility antigens are quite heterogeneous and promote the rejection of transplanted tissue. Recent advances in stem cell research that enable the use of a patient's own stem cells for transplantation are very important because rejection could be avoided. In particular, Yamanaka’s group in Japan gave new hope to patients with incurable diseases when they developed induced murine pluripotent stem cells (iPSCs) in 2006 and human iPSCs in 2007. Whereas embryonic stem cells (ESCs) are derived from the inner cell mass and are supported in culture by LIF, iPSCs are derived from fetal or adult somatic cells. Through the application of iPSC technology, adult somatic cells can develop a pluripotent state. One advantage of using iPSCs instead of ESCs in regenerative medicine is that (theoretically) immune rejection could be avoided, although there is some debate about immune rejection of a patient's own iPSCs. Many diseases occur in elderly patients. In order to use regenerative medicine with the elderly, it is important to demonstrate that iPSCs can indeed be generated from older patients. Recent findings have shown that iPSCs can be established from aged mice and aged humans. These iPSCs can differentiate to cells from all three germ layers. However, it is not known whether iPSCs from aged mice or humans show early senescence. Before clinical use of iPSCs, issues related to copy number variation, tumorigenicity and immunogenicity must be resolved. It is particularly important that researchers have succeeded in generating iPSCs that have differentiated to somatic cells related to specific diseases of the elderly, including atherosclerosis, diabetes, Alzheimer's disease and Parkinson's disease. These efforts will facilitate the use of personalized stem cell transplantation therapy for currently incurable diseases.
Collapse
Affiliation(s)
- Ken-ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Lessard-Beaudoin M, Laroche M, Demers MJ, Grenier G, Graham RK. Characterization of age-associated changes in peripheral organ and brain region weights in C57BL/6 mice. Exp Gerontol 2015; 63:27-34. [PMID: 25597278 DOI: 10.1016/j.exger.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
|
24
|
Feng W, Xu X, Zhao G, Zhao J, Dong R, Ma B, Zhang Y, Long G, Wang DW, Tu L. Increased Age-Related Cardiac Dysfunction in Bradykinin B2 Receptor–Deficient Mice. J Gerontol A Biol Sci Med Sci 2014; 71:178-87. [DOI: 10.1093/gerona/glu210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/14/2014] [Indexed: 01/11/2023] Open
|
25
|
Isobe KI, Cheng Z, Nishio N, Suganya T, Tanaka Y, Ito S. iPSCs, aging and age-related diseases. N Biotechnol 2014; 31:411-21. [PMID: 24784583 DOI: 10.1016/j.nbt.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023]
Abstract
Human histocompatibility antigens are quite heterogeneous and promote the rejection of transplanted tissue. Recent advances in stem cell research that enable the use of a patient's own stem cells for transplantation are very important because rejection could be avoided. In particular, Yamanaka's group in Japan gave new hope to patients with incurable diseases when they developed induced murine pluripotent stem cells (iPSCs) in 2006 and human iPSCs in 2007. Whereas embryonic stem cells (ESCs) are derived from the inner cell mass and are supported in culture by LIF, iPSCs are derived from fetal or adult somatic cells. Through the application of iPSC technology, adult somatic cells can develop a pluripotent state. One advantage of using iPSCs instead of ESCs in regenerative medicine is that (theoretically) immune rejection could be avoided, although there is some debate about immune rejection of a patient's own iPSCs. Many diseases occur in elderly patients. In order to use regenerative medicine with the elderly, it is important to demonstrate that iPSCs can indeed be generated from older patients. Recent findings have shown that iPSCs can be established from aged mice and aged humans. These iPSCs can differentiate to cells from all three germ layers. However, it is not known whether iPSCs from aged mice or humans show early senescence. Before clinical use of iPSCs, issues related to copy number variation, tumorigenicity and immunogenicity must be resolved. It is particularly important that researchers have succeeded in generating iPSCs that have differentiated to somatic cells related to specific diseases of the elderly, including atherosclerosis, diabetes, Alzheimer's disease and Parkinson's disease. These efforts will facilitate the use of personalized stem cell transplantation therapy for currently incurable diseases.
Collapse
Affiliation(s)
- Ken-Ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Zhao Cheng
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Naomi Nishio
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Thanasegan Suganya
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuriko Tanaka
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
26
|
Bakeeva LE, Vays VB, Vangely IM. Age-related alterations of mitochondria from muscle tissue. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2014. [DOI: 10.1134/s1990747813050024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Wang CH, Wu SB, Wu YT, Wei YH. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood) 2013; 238:450-60. [PMID: 23856898 DOI: 10.1177/1535370213493069] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess ROS may induce irreversible damage to cellular components and lead to cell death by promoting the intrinsic apoptotic pathway through mitochondria. In the aging process, accumulation of mitochondria DNA mutations, impairment of oxidative phosphorylation as well as an imbalance in the expression of antioxidant enzymes result in further overproduction of ROS. This mitochondrial dysfunction-elicited ROS production axis forms a vicious cycle, which is the basis of mitochondrial free radical theory of aging. In addition, several lines of evidence have emerged recently to demonstrate that ROS play crucial roles in the regulation of cellular metabolism, antioxidant defence and posttranslational modification of proteins. We first discuss the oxidative stress responses, including metabolites redistribution and alteration of the acetylation status of proteins, in human cells with mitochondrial dysfunction and in aging. On the other hand, autophagy and mitophagy eliminate defective mitochondria and serve as a scavenger and apoptosis defender of cells in response to oxidative stress during aging. These scenarios mediate the restoration or adaptation of cells to respond to aging and age-related disorders for survival. In the natural course of aging, the homeostasis in the network of oxidative stress responses is disturbed by a progressive increase in the intracellular level of the ROS generated by defective mitochondria. Caloric restriction, which is generally thought to promote longevity, has been reported to enhance the efficiency of this network and provide multiple benefits to tissue cells. In this review, we emphasize the positive and integrative roles of mild oxidative stress elicited by mitochondria in the regulation of adaptation, anti-aging and scavenging pathway beyond their roles in the vicious cycle of mitochondrial dysfunction in the aging process.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | |
Collapse
|