1
|
Liontis T, Senchuk MM, Zhu S, Jacob-Tomas S, Anglas U, Traa A, Soo SK, Van Raamsdonk JM. Intestine-specific disruption of mitochondrial superoxide dismutase extends longevity. Free Radic Biol Med 2025; 229:195-205. [PMID: 39827921 DOI: 10.1016/j.freeradbiomed.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen containing molecules that are generated by normal metabolism. While ROS can cause damage to the building blocks that make up cells, these molecules can also act as intracellular signals that promote longevity. The levels of ROS within the cell can be regulated by antioxidant enzymes, such as superoxide dismutase (SOD), which converts superoxide to hydrogen peroxide. Interestingly, our previous work has shown that disruption of the mitochondrial SOD gene sod-2 results in increased lifespan, suggesting that elevating levels of mitochondrial superoxide can promote longevity. To explore the molecular mechanisms involved, we determined the tissues in which disruption of sod-2 is necessary for lifespan extension and the tissues in which disruption of sod-2 is sufficient to extend lifespan. We found that tissue-specific restoration of SOD-2 expression in worms lacking SOD-2 could partially revert changes in fertility, embryonic lethality and resistance to stress, but did not inhibit the effects of sod-2 deletion on lifespan. Knocking down sod-2 expression using RNA interference specifically in the intestine, but not other tissues, was sufficient to extend longevity. Intestine-specific knockdown of sod-2 also increased resistance to heat stress while decreasing resistance to oxidative stress. Combined, these results indicate that disruption of sod-2 in neurons, intestine, germline, or muscle is not required for lifespan extension, but that decreasing sod-2 expression in just the intestine extends lifespan. This work defines the conditions required for disruption of mitochondrial superoxide dismutase to increase longevity.
Collapse
Affiliation(s)
- Thomas Liontis
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Shusen Zhu
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Suleima Jacob-Tomas
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ulrich Anglas
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Litke R, Vicari J, Huang BT, Shapiro L, Roh KH, Silver A, Talreja P, Palacios N, Yoon Y, Kellner C, Kaniskan H, Vangeti S, Jin J, Ramos-Lopez I, Mobbs C. Novel small molecules inhibit proteotoxicity and inflammation: Mechanistic and therapeutic implications for Alzheimer's Disease, healthspan and lifespan- Aging as a consequence of glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544352. [PMID: 37398396 PMCID: PMC10312632 DOI: 10.1101/2023.06.12.544352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammation drives many age-related, especially neurological, diseases, and likely mediates age-related proteotoxicity. For example, dementia due to Alzheimer's Disease (AD), cerebral vascular disease, many other neurodegenerative conditions is increasingly among the most devastating burdens on the American (and world) health system and threatens to bankrupt the American health system as the population ages unless effective treatments are developed. Dementia due to either AD or cerebral vascular disease, and plausibly many other neurodegenerative and even psychiatric conditions, is driven by increased age-related inflammation, which in turn appears to mediate Abeta and related proteotoxic processes. The functional significance of inflammation during aging is also supported by the fact that Humira, which is simply an antibody to the pro-inflammatory cytokine TNF-a, is the best-selling drug in the world by revenue. These observations led us to develop parallel high-throughput screens to discover small molecules which inhibit age-related Abeta proteotoxicity in a C. elegans model of AD AND LPS-induced microglial TNF-a. In the initial screen of 2560 compounds (Microsource Spectrum library) to delay Abeta proteotoxicity, the most protective compounds were, in order, phenylbutyrate, methicillin, and quetiapine, which belong to drug classes (HDAC inhibitors, beta lactam antibiotics, and tricyclic antipsychotics, respectably) already robustly implicated as promising to protect in neurodegenerative diseases, especially AD. RNAi and chemical screens indicated that the protective effects of HDAC inhibitors to reduce Abeta proteotoxicity are mediated by inhibition of HDAC2, also implicated in human AD, dependent on the HAT Creb binding protein (Cbp), which is also required for the protective effects of both dietary restriction and the daf-2 mutation (inactivation of IGF-1 signaling) during aging. In addition to methicillin, several other beta lactam antibiotics also delayed Abeta proteotoxicity and reduced microglial TNF-a. In addition to quetiapine, several other tricyclic antipsychotic drugs also delayed age-related Abeta proteotoxicity and increased microglial TNF-a, leading to the synthesis of a novel congener, GM310, which delays Abeta as well as Huntingtin proteotoxicity, inhibits LPS-induced mouse and human microglial and monocyte TNF-a, is highly concentrated in brain after oral delivery with no apparent toxicity, increases lifespan, and produces molecular responses highly similar to those produced by dietary restriction, including induction of Cbp inhibition of inhibitors of Cbp, and genes promoting a shift away from glycolysis and toward metabolism of alternate (e.g., lipid) substrates. GM310, as well as FDA-approved tricyclic congeners, prevented functional impairments and associated increase in TNF-a in a mouse model of stroke. Robust reduction of glycolysis by GM310 was functionally corroborated by flux analysis, and the glycolytic inhibitor 2-DG inhibited microglial TNF-a and other markers of inflammation, delayed Abeta proteotoxicity, and increased lifespan. These results support the value of phenotypic screens to discover drugs to treat age-related, especially neurological and even psychiatric diseases, including AD and stroke, and to clarify novel mechanisms driving neurodegeneration (e.g., increased microglial glycolysis drives neuroinflammation and subsequent neurotoxicity) suggesting novel treatments (selective inhibitors of microglial glycolysis).
Collapse
|
3
|
Saraiva C, Lopes-Nunes J, Esteves M, Santos T, Vale A, Cristóvão AC, Ferreira R, Bernardino L. CtBP Neuroprotective Role in Toxin-Based Parkinson's Disease Models: From Expression Pattern to Dopaminergic Survival. Mol Neurobiol 2023; 60:4246-4260. [PMID: 37060501 PMCID: PMC10293336 DOI: 10.1007/s12035-023-03331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/07/2023] [Indexed: 04/16/2023]
Abstract
C-terminal binding proteins (CtBP) are transcriptional co-repressors regulating gene expression. CtBP promote neuronal survival through repression of pro-apoptotic genes, and may represent relevant targets for neurodegenerative disorders, such as Parkinson's disease (PD). Nevertheless, evidence of the role of CtBP1 and CtBP2 in neurodegeneration are scarce. Herein, we showed that CtBP1 and CtBP2 are expressed in neurons, dopaminergic neurons, astrocytes, and microglia in the substantia nigra (SN) and striatum of adult mice. Old mice showed a lower expression of CtBP1 in the SN and higher expression of CtPB2 in the SN and striatum compared with adult mice. In vivo models for PD (paraquat, MPTP, 6-OHDA) showed increased expression of CtBP1 in the SN and striatum while CtBP2 expression was increased in the striatum of paraquat-treated rats only. Moreover, an increased expression of both CtBP was found in a dopaminergic cell line (N27) exposed to 6-OHDA. In the 6-OHDA PD model, we found a dual effect using an unspecific ligand of CtBP, the 4-methylthio 2-oxobutyric acid (MTOB): higher concentrations (e.g. 2500 µM, 1000 µM) inhibited dopaminergic survival, while at 250 μM it counteracted cell death. In vitro, this latter protective role was absent after the siRNA silencing of CtBP1 or CtBP2. Altogether, this is the first report exploring the cellular and regional expression pattern of CtBP in the nigrostriatal pathway and the neuroprotective role in PD toxin-based models. CtBP could counteract dopaminergic cell death in the 6-OHDA PD model and, therefore, CtBP function and therapeutic potential in PD should be further explored.
Collapse
Affiliation(s)
- Cláudia Saraiva
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Present Address: Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue Des Hauts-Fourneaux, Esch-Sur-Alzette, Luxembourg
| | - Jéssica Lopes-Nunes
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Marta Esteves
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Tiago Santos
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Vale
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Clara Cristóvão
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Raquel Ferreira
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Present Address: CEDOC, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, Lisboa, Portugal
| | - Liliana Bernardino
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
4
|
Litke R, Vicari J, Huang BT, Gonzalez D, Grimaldi N, Sharma O, Ma G, Shapiro L, Yoon Y, Kellner C, Mobbs C. Diets, genes, and drugs that increase lifespan and delay age-related diseases: Role of nutrient-sensing neurons and Creb-binding protein. Pharmacol Biochem Behav 2022; 219:173428. [PMID: 35868565 DOI: 10.1016/j.pbb.2022.173428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Discovery of interventions that delay or minimize age-related diseases is arguably the major goal of aging research. Conversely discovery of interventions based on phenotypic screens have often led to further elucidation of pathophysiological mechanisms. Although most hypotheses to explain lifespan focus on cell-autonomous processes, increasing evidence suggests that in multicellular organisms, neurons, particularly nutrient-sensing neurons, play a determinative role in lifespan and age-related diseases. For example, protective effects of dietary restriction and inactivation of insulin-like signaling increase lifespan and delay age-related diseases dependent on Creb-binding protein in GABA neurons, and Nrf2/Skn1 in just 2 nutrient-sensing neurons in C. elegans. Screens for drugs that increase lifespan also indicate that such drugs are predominantly active through neuronal signaling. Our own screens also indicate that neuroactive drugs also delay pathology in an animal model of Alzheimer's Disease, as well as inhibit cytokine production implicated in driving many age-related diseases. The most likely mechanism by which nutrient-sensing neurons influence lifespan and the onset of age-related diseases is by regulating metabolic architecture, particularly the relative rate of glycolysis vs. alternative metabolic pathways such as ketone and lipid metabolism. These results suggest that neuroactive compounds are a most promising class of drugs to delay or minimize age-related diseases.
Collapse
Affiliation(s)
- Rachel Litke
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America.
| | - James Vicari
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Bik Tzu Huang
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Damian Gonzalez
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Nicholas Grimaldi
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Ojee Sharma
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Gang Ma
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Lila Shapiro
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - YoneJung Yoon
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Christopher Kellner
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Charles Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| |
Collapse
|
5
|
Saul J, Hirose T, Horvitz HR. The transcriptional corepressor CTBP-1 acts with the SOX family transcription factor EGL-13 to maintain AIA interneuron cell identity in Caenorhabditis elegans. eLife 2022; 11:74557. [PMID: 35119366 PMCID: PMC8816384 DOI: 10.7554/elife.74557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cell identity is characterized by a distinct combination of gene expression, cell morphology, and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here, we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in later larval stage and adult worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Josh Saul
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - Takashi Hirose
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - H Robert Horvitz
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| |
Collapse
|
6
|
Wu C, Ding X, Li Z, Huang Y, Xu Q, Zou R, Zhao M, Chang H, Jiang C, La X, Lin G, Li W, Xue L. CtBP modulates Snail-mediated tumor invasion in Drosophila. Cell Death Discov 2021; 7:202. [PMID: 34349099 PMCID: PMC8339073 DOI: 10.1038/s41420-021-00516-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most fatal diseases that threaten human health, whereas more than 90% mortality of cancer patients is caused by tumor metastasis, rather than the growth of primary tumors. Thus, how to effectively control or even reverse the migration of tumor cells is of great significance for cancer therapy. CtBP, a transcriptional cofactor displaying high expression in a variety of human cancers, has become one of the main targets for cancer prediction, diagnosis, and treatment. The roles of CtBP in promoting tumorigenesis have been well studied in vitro, mostly based on gain-of-function, while its physiological functions in tumor invasion and the underlying mechanism remain largely elusive. Snail (Sna) is a well-known transcription factor involved in epithelial-to-mesenchymal transition (EMT) and tumor invasion, yet the mechanism that regulates Sna activity has not been fully understood. Using Drosophila as a model organism, we found that depletion of CtBP or snail (sna) suppressed RasV12/lgl-/--triggered tumor growth and invasion, and disrupted cell polarity-induced invasive cell migration. In addition, loss of CtBP inhibits RasV12/Sna-induced tumor invasion and Sna-mediated invasive cell migration. Furthermore, both CtBP and Sna are physiologically required for developmental cell migration during thorax closure. Finally, Sna activates the JNK signaling and promotes JNK-dependent cell invasion. Given that CtBP physically interacts with Sna, our data suggest that CtBP and Sna may form a transcriptional complex that regulates JNK-dependent tumor invasion and cell migration in vivo.
Collapse
Affiliation(s)
- Chenxi Wu
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiang Ding
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhuojie Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yuanyuan Huang
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qian Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Rui Zou
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingyang Zhao
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hong Chang
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Chunhua Jiang
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiaojin La
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wenzhe Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Lei Xue
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China. .,Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 51900, China.
| |
Collapse
|
7
|
Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 2017; 18:379-391. [PMID: 28532298 PMCID: PMC5536941 DOI: 10.1080/15384047.2017.1323586] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
C-terminal Binding Proteins (CtBP) 1 and 2 are oncogenic transcriptional co-regulators overexpressed in many cancer types, with their expression level correlating to worse prognostic outcomes and aggressive tumor features. CtBP negatively regulates the expression of many tumor suppressor genes, while coactivating genes that promote proliferation, epithelial-mesenchymal transition, and cancer stem cell self-renewal activity. In light of this evidence, the development of novel inhibitors that mitigate CtBP function may provide clinically actionable therapeutic tools. This review article focuses on the progress made in understanding CtBP structure, role in tumor progression, and discovery and development of CtBP inhibitors that target CtBP's dehydrogenase activity and other functions, with a focus on the theory and rationale behind the designs of current inhibitors. We provide insight into the future development and use of rational combination therapy that may further augment the efficacy of CtBP inhibitors, specifically addressing metastasis and cancer stem cell populations within tumors.
Collapse
Affiliation(s)
- M Michael Dcona
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Benjamin L Morris
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Keith C Ellis
- c Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| | - Steven R Grossman
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
8
|
Alleva B, Balukoff N, Peiper A, Smolikove S. Regulating chromosomal movement by the cochaperone FKB-6 ensures timely pairing and synapsis. J Cell Biol 2017; 216:393-408. [PMID: 28077446 PMCID: PMC5294783 DOI: 10.1083/jcb.201606126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/07/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022] Open
Abstract
Dynein-mediated movement of microtubules is required for chromosome movement; its absence leads to aberrant segregation. Alleva et al. show that FKB-6, a cochaperone of Hsp-90, is required for proper chromosome movement through down-regulation of resting time between movements. In meiotic prophase I, homologous chromosome pairing is promoted through chromosome movement mediated by nuclear envelope proteins, microtubules, and dynein. After proper homologue pairing has been established, the synaptonemal complex (SC) assembles along the paired homologues, stabilizing their interaction and allowing for crossing over to occur. Previous studies have shown that perturbing chromosome movement leads to pairing defects and SC polycomplex formation. We show that FKB-6 plays a role in SC assembly and is required for timely pairing and proper double-strand break repair kinetics. FKB-6 localizes outside the nucleus, and in its absence, the microtubule network is altered. FKB-6 is required for proper movement of dynein, increasing resting time between movements. Attenuating chromosomal movement in fkb-6 mutants partially restores the defects in synapsis, in agreement with FKB-6 acting by decreasing chromosomal movement. Therefore, we suggest that FKB-6 plays a role in regulating dynein movement by preventing excess chromosome movement, which is essential for proper SC assembly and homologous chromosome pairing.
Collapse
Affiliation(s)
- Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Nathan Balukoff
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Amy Peiper
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
9
|
Reid A, Sherry TJ, Yücel D, Llamosas E, Nicholas HR. The C-terminal binding protein (CTBP-1) regulates dorsal SMD axonal morphology in Caenorhabditis elegans. Neuroscience 2015; 311:216-30. [PMID: 26480814 DOI: 10.1016/j.neuroscience.2015.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
C-terminal binding proteins (CtBPs) are transcriptional co-repressors which cooperate with a variety of transcription factors to repress gene expression. Caenorhabditis elegans CTBP-1 expression has been observed in the nervous system and hypodermis. In C. elegans, CTBP-1 regulates several processes including Acute Functional Tolerance to ethanol and functions in the nervous system to modulate both lifespan and expression of a lipase gene called lips-7. Incorrect structure and/or function of the nervous system can lead to behavioral changes. Here, we demonstrate reduced exploration behavior in ctbp-1 mutants. Our examination of a subset of neurons involved in regulating locomotion revealed that the axonal morphology of dorsal SMD (SMDD) neurons is altered in ctbp-1 mutants at the fourth larval (L4) stage. Expressing CTBP-1 under the control of the endogenous ctbp-1 promoter rescued both the exploration behavior phenotype and defective SMDD axon structure in ctbp-1 mutants at the L4 stage. Interestingly, the pre-synaptic marker RAB-3 was found to localize to the mispositioned portion of SMDD axons in a ctbp-1 mutant. Further analysis of SMDD axonal morphology at days 1, 3 and 5 of adulthood revealed that the number of ctbp-1 mutants showing an SMDD axonal morphology defect increases in early adulthood and the observed defect appears to be qualitatively more severe. CTBP-1 is prominently expressed in the nervous system with weak expression detected in the hypodermis. Surprisingly, solely expressing CTBP-1a in the nervous system or hypodermis did not restore correct SMDD axonal structure in a ctbp-1 mutant. Our results demonstrate a role for CTBP-1 in exploration behavior and the regulation of SMDD axonal morphology in C. elegans.
Collapse
Affiliation(s)
- A Reid
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - T J Sherry
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - D Yücel
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - E Llamosas
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - H R Nicholas
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|