1
|
Akther F, Sajin D, Moonshi SS, Pickett J, Wu Y, Zhang J, Nguyen NT, Ta HT. An intimal-lumen model in a microfluidic device: potential platform for atherosclerosis-related studies. LAB ON A CHIP 2025; 25:354-369. [PMID: 39698809 DOI: 10.1039/d4lc00868e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Atherosclerosis is a chronic inflammatory vascular disorder driven by factors such as endothelial dysfunction, hypertension, hyperlipidemia, and arterial calcification, and is considered a leading global cause of death. Existing atherosclerosis models have limitations due to the absence of an appropriate hemodynamic microenvironment in vitro and interspecies differences in vivo. Here, we develop a simple but robust microfluidic intimal-lumen model of early atherosclerosis using interconnected dual channels for studying monocyte transmigration and foam cell formation at an arterial shear rate. To the best of our knowledge, this is the first study that creates a physiologically relevant microenvironment under an arterial shear rate to modulate lipid-laden foam cells on a microfluidic platform. As a proof of concept, we use murine endothelial cells to develop a vascular lumen in one channel and collagen-embedded murine smooth muscle cells to mimic the subendothelial intimal layer in another channel. The model successfully triggers endothelial dysfunction upon TNF-α stimulation, initiating monocyte adhesion to the endothelial monolayer under the arterial shear rate. Unlike existing in vitro models, native low-density lipoprotein (LDL) is added in the culture media instead of ox-LDL to stimulate subendothelial lipid accumulation, thereby mimicking more accurate physiology. The subendothelial transmigration of adherent monocytes and subsequent foam cell formation is also achieved under flow conditions in the model. The model also investigates the inhibitory effect of aspirin in monocyte adhesion and transmigration. The model exhibits a significant dose-dependent reduction in monocyte adhesion and transmigration upon aspirin treatment, making it an excellent tool for drug testing.
Collapse
Affiliation(s)
- Fahima Akther
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dimple Sajin
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Shehzahdi S Moonshi
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Jessica Pickett
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
2
|
Akther F, Sajin D, Moonshi SS, Wu Y, Vazquez-Prada KX, Ta HT. Modeling Foam Cell Formation in A Hydrogel-Based 3D-Intimal Model: A Study of The Role of Multi-Diseases During Early Atherosclerosis. Adv Biol (Weinh) 2024; 8:e2300463. [PMID: 38200677 DOI: 10.1002/adbi.202300463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Monocyte recruitment and transmigration are crucial in atherosclerotic plaque development. The multi-disease complexities aggravate the situation and continue to be a constant concern for understanding atherosclerosis plaque development. Herein, a 3D hydrogel-based model that integrates disease-induced microenvironments is sought to be designed, allowing us to explore the early stages of atherosclerosis, specifically examining monocyte fate in multi-disease complexities. As a proof-of-concept study, murine cells are employed to develop the model. The model is constructed with collagen embedded with murine aortic smooth muscle cells and a murine endothelial monolayer lining. The model achieves in vitro disease complexities using external stimuli such as glucose and lipopolysaccharide (LPS). Hyperglycemia exhibits a significant increase in monocyte adhesion but no enhancement in monocyte transmigration and foam cell conversion compared to euglycemia. Chronic infection achieved by LPS stimulation results in a remarkable augment in initial monocyte attachment and a significant increment in monocyte transmigration and foam cells in all concentrations. Moreover, the model exhibits synergistic sensitivity under multi-disease conditions such as hyperglycemia and infection, enhancing initial monocyte attachment, cell transmigration, and foam cell formation. Additionally, western blot data prove the enhanced levels of inflammatory biomarkers, indicating the model's capability to mimic disease-induced complexities during early atherosclerosis progression.
Collapse
Affiliation(s)
- Fahima Akther
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Dimple Sajin
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Shehzahdi S Moonshi
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Karla X Vazquez-Prada
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
3
|
Zhou Y, Sekar NC, Thurgood P, Needham S, Peter K, Khoshmanesh K, Baratchi S. Bioengineered Vascular Model of Foam Cell Formation. ACS Biomater Sci Eng 2023; 9:6947-6955. [PMID: 38018792 DOI: 10.1021/acsbiomaterials.3c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Foam cell formation is a complex blood vessel pathology, which is characterized by a series of events, including endothelium dysfunction, inflammation, and accumulation of immune cells underneath the blood vessel walls. Novel bioengineered models capable of recapitulating these events are required to better understand the complex pathological processes underlying the development of foam cell formation and, consequently, advanced bioengineered platforms for screening drugs. Here, we generated a microfluidic blood vessel model, incorporating a three-dimensional (3D) extracellular matrix coated with an endothelial layer. This system enables us to perform experiments under a dynamic microenvironment that recapitulates the complexities of the native vascular regions. Using this model, we studied the effectors that regulate monocyte adhesion and migration, as well as foam cell formation inside vessel walls. We found that monocyte adhesion and migration are regulated by both the endothelium and monocytes themselves. Monocytes migrated into the extracellular matrix only when endothelial cells were cultured in the vessel model. In addition, the exposure of an endothelial layer to tumor necrosis factor α (TNF-α) and low shear stress both increased monocyte migration into the subendothelial space toward the matrix. Furthermore, we demonstrated the process of foam cell formation, 3 days after transmigration of peripheral blood mononuclear cells (PBMCs) into the vessel wall. We showed that pre-exposure of PBMCs to high shear rates increases their adhesion and migration through the TNF-α-treated endothelium but does not affect their capacity to form foam cells. The versatility of our model allows for mechanistic studies on foam cell formation under customized pathological conditions.
Collapse
Affiliation(s)
- Ying Zhou
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
| | - Peter Thurgood
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Scott Needham
- Leading Technology Group, Kew, Victoria 3101, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Khashayar Khoshmanesh
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Lázničková P, Bendíčková K, Kepák T, Frič J. Immunosenescence in Childhood Cancer Survivors and in Elderly: A Comparison and Implication for Risk Stratification. FRONTIERS IN AGING 2022; 2:708788. [PMID: 35822014 PMCID: PMC9261368 DOI: 10.3389/fragi.2021.708788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The population of childhood cancer survivors (CCS) has grown rapidly in recent decades. Although cured of their original malignancy, these individuals are at increased risk of serious late effects, including age-associated complications. An impaired immune system has been linked to the emergence of these conditions in the elderly and CCS, likely due to senescent immune cell phenotypes accompanied by low-grade inflammation, which in the elderly is known as "inflammaging." Whether these observations in the elderly and CCS are underpinned by similar mechanisms is unclear. If so, existing knowledge on immunosenescent phenotypes and inflammaging might potentially serve to benefit CCS. We summarize recent findings on the immune changes in CCS and the elderly, and highlight the similarities and identify areas for future research. Improving our understanding of the underlying mechanisms and immunosenescent markers of accelerated immune aging might help us to identify individuals at increased risk of serious health complications.
Collapse
Affiliation(s)
- Petra Lázničková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomáš Kepák
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Pediatric Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
5
|
Li PH, Zhang R, Cheng LQ, Liu JJ, Chen HZ. Metabolic regulation of immune cells in proinflammatory microenvironments and diseases during ageing. Ageing Res Rev 2020; 64:101165. [PMID: 32898718 DOI: 10.1016/j.arr.2020.101165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The process of ageing includes molecular changes within cells and interactions between cells, eventually resulting in age-related diseases. Although various cells (immune cells, parenchymal cells, fibroblasts and endothelial cells) in tissues secrete proinflammatory signals in age-related diseases, immune cells are the major contributors to inflammation. Many studies have emphasized the role of metabolic dysregulation in parenchymal cells in age-related inflammatory diseases. However, few studies have discussed metabolic modifications in immune cells during ageing. In this review, we introduce the metabolic dysregulation of major nutrients (glucose, lipids, and amino acids) within immune cells during ageing, which leads to dysfunctional NAD + metabolism that increases immune cell senescence and leads to the acquisition of the corresponding senescence-associated secretory phenotype (SASP). We then focus on senescent immune cell interactions with parenchymal cells and the extracellular matrix and their involvement in angiogenesis, which lead to proinflammatory microenvironments in tissues and inflammatory diseases at the systemic level. Elucidating the roles of metabolic modifications in immune cells during ageing will provide new insights into the mechanisms of ageing and therapeutic directions for age-related inflammatory diseases.
Collapse
Affiliation(s)
- Pei-Heng Li
- Department of Internal Medicine, Peking Union Medical college Hospital, Beijing, China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ran Zhang
- Buck Institute for Research on Ageing, Novato, United States
| | - Li-Qin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jin-Jing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China.
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Monocytes from men living with HIV exhibit heightened atherogenic potential despite long-term viral suppression with antiretroviral therapy. AIDS 2020; 34:513-518. [PMID: 32108672 DOI: 10.1097/qad.0000000000002460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE People living with HIV have an increased risk of cardiovascular disease (CVD) despite effective antiretroviral therapy (ART). Monocytes play a key role in the early stages of atherosclerosis-driven CVD by forming lipid-laden foam cells within artery walls. HIV infection potentiates foam cell formation ex vivo, but the mechanisms contributing to this are not known. METHODS We investigated the atherosclerosis-promoting potential of monocytes from 39 virologically suppressed men living with HIV (MLHIV) on ART and no evidence of CVD, and 25 HIV-uninfected controls of comparable age, sex, smoking status and CVD risk. RESULTS Despite absence of clinical atherosclerosis in both MLHIV and uninfected cohorts (evidenced by a carotid intima-media thickness of 0.6 mm for both groups; P = 0.254), monocytes from MLHIV showed increased potential to form atherosclerosis-promoting foam cells compared with controls in an ex-vivo assay (36.6% vs. 27.6%, respectively, P = 0.003). Consistent with observations of persistent inflammation and immune/endothelial activation in ART-treated HIV infection, levels of soluble tumour necrosis factor receptor II, CXCL10 and soluble VCAM-1 were elevated in MLHIV (P ≤ 0.005 for all), but were not significantly associated with foam cell formation. Foam cell formation was associated with an impaired ability of monocytes to undergo reverse transmigration, and a reduced ability to efflux cholesterol ex vivo (P < 0.05 for both). Importantly, foam cell formation declined significantly with duration of viral suppression (P = 0.004). CONCLUSION These findings highlight the persistence of HIV-related changes to the atherogenic potential of monocytes despite long-term viral suppression, and provide insights into mechanisms potentially driving increased CVD in ART-treated HIV infection.
Collapse
|
7
|
Jaworowski A, Hearps AC, Angelovich TA, Hoy JF. How Monocytes Contribute to Increased Risk of Atherosclerosis in Virologically-Suppressed HIV-Positive Individuals Receiving Combination Antiretroviral Therapy. Front Immunol 2019; 10:1378. [PMID: 31275317 PMCID: PMC6593090 DOI: 10.3389/fimmu.2019.01378] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
Combination antiretroviral therapy (ART) is effective at suppressing HIV viremia to achieve persistently undetectable levels in peripheral blood in the majority of individuals with access and ability to maintain adherence to treatment. However, evidence suggests that ART is less effective at eliminating HIV-associated inflammation and innate immune activation. To the extent that residual inflammation and immune activation persist, virologically suppressed people living with HIV (PLWH) may have increased risk of inflammatory co-morbidities, and adjunctive therapies may need to be considered to reduce HIV-related inflammation and fully restore the health of virologically suppressed HIV+ individuals. Cardiovascular disease (CVD) is the single leading cause of death in the developed world and is becoming more important in PLWH with access to ART. Arterial disease due to atherosclerosis, leading to acute myocardial infarction (AMI) and stroke, is a major component of CVD. Atherosclerosis is an inflammatory disease, and epidemiological comparisons of atherosclerosis and AMI show a higher prevalence and suggest a greater risk in PLWH compared to the general population. The reasons for greater prevalence of CVD in PLWH can be broadly grouped into four categories: (a) the higher prevalence of traditional risk factors e.g., smoking and hypertension (b) dyslipidemia (also a traditional risk factor) caused by off-target effects of ART drugs (c) HIV-related inflammation and immune activation and (d) other undefined HIV-related factors. Management strategies aimed at reducing the impact of traditional risk factors in PLWH are similar to those for the general population and their effectiveness is currently being evaluated. Together with improvements in ART regimens and guidelines for treatment, and a greater awareness of its impact on CVD, the HIV-related risk of AMI and stroke is decreasing but remains elevated compared to the general community. Monocytes are key effector cells which initiate the formation of atherosclerotic plaques by migrating into the intima of coronary arteries and accumulating as foam cells full of lipid droplets. This review considers the specific role of monocytes as effector cells in atherosclerosis which progresses to AMI and stroke, and explores mechanisms by which HIV may promote an atherogenic phenotype and function independent of traditional risk factors. Altered monocyte function may represent a distinct HIV-related factor which increases risk of CVD in PLWH.
Collapse
Affiliation(s)
- Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Anna C Hearps
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Thomas A Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Jennifer F Hoy
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Angelovich TA, Hearps AC, Maisa A, Kelesidis T, Jaworowski A. Quantification of Monocyte Transmigration and Foam Cell Formation from Individuals with Chronic Inflammatory Conditions. J Vis Exp 2017:56293. [PMID: 29155735 PMCID: PMC5752417 DOI: 10.3791/56293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Atherosclerosis, a leading cause of CAD, is initiated by the transmigration of innate immune monocytes to inflammatory sites of deposited lipid called fatty streaks, which are present in arterial walls of medium to large arteries. The key pathogenic feature of lesions at this early stage of atherosclerosis is the maturation of monocytes which migrate into arteries to form foam cells or lipid-laden macrophages. Considerable evidence supports the hypothesis that risk of atherosclerosis is increased by chronic inflammatory conditions accompanying diseases such as rheumatoid arthritis and HIV, as well as general ageing, and that this risk is predicted by monocyte activation. While mouse models provide a good platform to investigate the role of monocytes in atherogenesis in vivo, they require genetic alteration of natural cholesterol metabolism and drastic alteration of normal mouse diets, and have limited suitability for the study of atherogenic influences of human comorbid diseases. This motivated us to develop a human in vitro model to measure the atherogenic potential of monocytes isolated from individuals with defined disease states. Currently, human in vitro models are limiting in that they evaluate monocyte transmigration and foam cell formation in isolation. Here we describe a protocol in which monocytes isolated from patient blood transmigrate across human endothelial cells into a type 1 collagen matrix, and their propensity to mature into foam cells in the presence or absence of exogenous lipid is measured. The protocol has been validated for the use of human monocytes purified from individuals with HIV infection and elderly HIV uninfected individuals. This model is versatile and allows monocyte transmigration and foam cell formation to be evaluated using either microscopy or flow cytometry as well as allowing the assessment of atherogenic factors present in serum or plasma.
Collapse
Affiliation(s)
- Thomas A Angelovich
- Centre for Biomedical Research, Burnet Institute; School of Health and Biomedical Sciences, RMIT University
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute; Department of Infectious Diseases, Monash University
| | - Anna Maisa
- Centre for Biomedical Research, Burnet Institute
| | | | - Anthony Jaworowski
- Centre for Biomedical Research, Burnet Institute; Department of Infectious Diseases, Monash University;
| |
Collapse
|