1
|
Does behaviour predict weight gain during adulthood in captive group-living rhesus macaques? Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Zijlmans DGM, Maaskant A, Louwerse AL, Sterck EHM, Langermans JAM. Overweight Management through Mild Caloric Restriction in Multigenerational Long-Tailed Macaque Breeding Groups. Vet Sci 2022; 9:262. [PMID: 35737314 PMCID: PMC9230116 DOI: 10.3390/vetsci9060262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Caloric restriction (CR) is an effective method to reduce overweight in captive non-human primates (NHPs). CR has been applied to individually- and pair-housed NHPs, but whether applying CR can be effective and safe in group-housed NHPs has not yet been assessed. This study investigates the effect of mild (20%) CR on adult overweight and biochemical parameters, immature growth, veterinary consultations, and reproductive success in multigenerational long-tailed macaque (Macaca fascicularis) breeding groups. Data were derived from anthropometric measurements and blood samples during yearly health checks, complemented with retrospective data on veterinary consultations and reproductive success. Adult body measures decreased after CR, with heavier individuals and females losing more weight compared to leaner individuals and males. CR lowered cholesterol levels in adults but had no overall effect on other biochemical parameters. Yet, biochemical parameters of individuals with high baseline values were reduced more compared to individuals with low baseline values. Immature growth, veterinary consultations and reproductive success were not influenced by CR. Thus, CR targeted the right individuals, i.e., overweight adults, and had no adverse effects on the variables examined in this study. This implies that mild CR can be a valuable overweight management strategy in group-housed NHPs.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Annemiek Maaskant
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Annet L. Louwerse
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
| | - Elisabeth H. M. Sterck
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
3
|
Bakker J, de la Garza MA. Naturally Occurring Endocrine Disorders in Non-Human Primates: A Comprehensive Review. Animals (Basel) 2022; 12:407. [PMID: 35203115 PMCID: PMC8868238 DOI: 10.3390/ani12040407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/23/2023] Open
Abstract
Literature concerning veterinary medicine of non-human primates is continuously updated, yet endocrine disorders remain underreported. While case or survey reports of individual endocrinopathies are available, a comprehensive review is not. An exhaustive literature search on this subject via widely used academic search systems, (e.g., Google Scholar, PubMed, BioOne complete and Web of Science), and peer-reviewed publications, proceedings, and newsletters was performed. Selected major endocrine entities will be described with emphasis on clinical signs, morphologic appearances, concomitant diseases, as well as available treatment options. Mostly, no clinical signs were noted and on gross pathology, the endocrine organs were unremarkable. An endocrine-related diagnosis was frequently made as an incidental finding after standard histopathological examination. During the review, the pancreas represented the most affected endocrine organ and diabetes mellitus represented the most clinically significant disorder. Currently, no standard procedure for diagnosing, monitoring, or treating endocrine disorders in non-human primates exists.
Collapse
Affiliation(s)
- Jaco Bakker
- Biomedical Primate Research Centre (BPRC), Animal Science Department (ASD), 2288GJ Rijswijk, The Netherlands
| | | |
Collapse
|
4
|
Zijlmans DGM, Meijer L, Vernes MK, Wubben JAM, Hofman L, Louwerse AL, Sterck EHM, Langermans JAM, Stammes MA. Effect of Housing Conditions on Cortisol and Body Fat Levels in Female Rhesus Macaques. BIOLOGY 2021; 10:744. [PMID: 34439976 PMCID: PMC8389645 DOI: 10.3390/biology10080744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022]
Abstract
Macaques are among the most commonly used non-human primates in biomedical research. They are highly social animals, yet biomedical studies often require group-living animals to be pair-housed in a controlled environment. A change in environment causes only short-term stress in adapting individuals, while non-adapting animals may experience long-term stress that can adversely affect study results. Individuals likely differ in their ability to adapt depending on individual characteristics. Changes in cortisol and body fat levels may reflect these different individual responses. Here, we investigate the long-term effect of a change from group- to pair-housing on cortisol and body fat levels in 32 female rhesus macaques, exploring whether age, dominance rank, original cortisol, and body fat levels are related to long-term stress in pair-housing. Hair samples were analyzed for cortisol levels, while anthropometric measurements and computed tomography were performed to quantify body fat. Monkeys served as their own control with a 7.5-month period between the measurements. Cortisol levels increased, while average body fat levels did not differ when individuals were moved from group- to pair-housing. Cortisol and body fat levels were not significantly correlated. Changes in cortisol were independent of age and dominance rank, whereas individual variation in body fat alterations was related to the group-housed body fat level and dominance rank. Although this study did not identify individual characteristics related to long-term stress in pair-housing, the individual variation confirms that some individuals are more resilient to change than others and provides possibilities for future refinement studies.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Lisette Meijer
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Marit K. Vernes
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Jacqueline A. M. Wubben
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Linda Hofman
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Annet L. Louwerse
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Elisabeth H. M. Sterck
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
- Department Population Health Sciences, Unit Animals in Science & Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Marieke A. Stammes
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| |
Collapse
|
5
|
Sun Y, Guo C, Yuan L, Li W, Wang ZY, Yue F, Li JY. Cynomolgus Monkeys With Spontaneous Type-2-Diabetes-Mellitus-Like Pathology Develop Alpha-Synuclein Alterations Reminiscent of Prodromal Parkinson's Disease and Related Diseases. Front Neurosci 2020; 14:63. [PMID: 32116510 PMCID: PMC7019001 DOI: 10.3389/fnins.2020.00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Available evidence suggests that diabetes mellitus (DM) is a non-genetic risk factor for Parkinson’s disease (PD). PD and DM have shared similarities in pathogenetic mechanisms, including age, environmental factors, inflammatory reaction, and protein aggregation, etc. α-Synuclein is the primary protein component in the protein inclusions in PD, while islet amyloid polypeptide (IAPP) aggregates to form amyloid structures in β cells in type 2 diabetes mellitus (T2DM). Pancreatic and cerebral functions, pancreas and brain α-synuclein deposition as well as striatal alterations, were assessed in spontaneously developed T2DM monkeys and age-matched normal monkeys. We demonstrated increased accumulation, aggregation, and phosphorylation of α-synuclein, and IAPP in the pancreatic islets of spontaneously developed T2DM monkeys, compared to the age-matched normal subjects. Double immunofluorescence analyses showed complete overlap between α-synuclein and IAPP in the pancreatic islets. In addition, in T2DM monkeys’ brain, we observed concomitantly increased accumulation and phosphorylation of α-synuclein in the cortex, pre-commissural putamen and dopaminergic neurons in the substantia nigra, which interestingly showed high correlation with levels of fasting plasma glucose (FPG), triglyceride (TG), and high density lipoprotein (HDL). Our data indicates the close association between IAPP and α-synuclein and the potential link between T2DM and PD, which implies that T2DM may facilitate PD disease onset and progress by interfering with the pathological protein aggregation both in the pancreatic islets and the brain.
Collapse
Affiliation(s)
- Yan Sun
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Chuang Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Liaoning, China
| | - Lin Yuan
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Wen Li
- Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Zhan-You Wang
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Feng Yue
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jia-Yi Li
- Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Purnell JQ, Urbanski HF, Kievit P, Roberts CT, Bethea CL. Estradiol Replacement Timing and Obesogenic Diet Effects on Body Composition and Metabolism in Postmenopausal Macaques. Endocrinology 2019; 160:899-914. [PMID: 30753523 PMCID: PMC6435013 DOI: 10.1210/en.2018-00884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/02/2019] [Indexed: 12/14/2022]
Abstract
Whether hormone replacement therapy has beneficial metabolic effects in postmenopausal women remains controversial because of between-study differences in menopausal duration, estrogen formulations, and diet. Additionally, animal studies have not reflected the typical human obesogenic, Western-style diet (WSD). In this study, we determined the effects of immediate 17β-estradiol (ImE) or delayed 17β-estradiol treatment on weight and metabolism parameters in old ovo-hysterectomized rhesus macaques consuming a WSD over a 30-month period. The placebo and ImE groups exhibited progressive gains in weight and fat mass, which ImE initially attenuated but did not prevent. Progression of insulin resistance (IR) was lessened by ImE compared with placebo under both fasting and IV glucose-stimulated conditions, plateauing in all groups between 24 and 30 months. Consequently, relative euglycemia was maintained through lower stimulated insulin levels with ImE than with placebo. Bone mineral density decreased in the placebo group but was maintained in the ImE group, whereas bone mineral content was unaffected by placebo and increased with ImE. Daily activity was reduced while macaques consumed a WSD and was not affected by ImE. Over time, total cholesterol, triglyceride, very-low-density cholesterol, high-density lipoprotein cholesterol (HDL-C), non-HDL-C, and IL-8 levels increased or trended upward in all animals, with only the change in HDL-C affected by ImE. Delayed estrogen treatment (months 24 to 30) had no significant impact on body composition or glucometabolic parameters. In summary, detrimental WSD-induced changes in body composition and metabolism were only temporarily ameliorated by ImE, with the important exception of glucose homeostasis, which benefited from E replacement even as body composition worsened.
Collapse
Affiliation(s)
- Jonathan Q Purnell
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
- Division of Endocrinology, Diabetes, Clinical Nutrition, Oregon Health & Science University, Portland, Oregon
- Correspondence: Jonathan Q. Purnell, MD, Oregon Health & Science University, Mailstop MDYMI, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239. E-mail:
| | - Henryk F Urbanski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Charles T Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Cynthia L Bethea
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
7
|
Coleman K, Robertson ND, Maier A, Bethea CL. Effects of Immediate or Delayed Estradiol on Behavior in Old Menopausal Macaques on Obesogenic Diet. J Obes 2018; 2018:1810275. [PMID: 30363801 PMCID: PMC6181005 DOI: 10.1155/2018/1810275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/12/2018] [Accepted: 07/22/2018] [Indexed: 01/05/2023] Open
Abstract
Macaques have served as effective models of human disease, including pathological processes associated with obesity and the metabolic syndrome. This study approached several questions: (1) does a western-style diet (WSD) contribute to sedentary behavior or is sedentary behavior a consequence of obesity and (2) does estradiol (E) hormone therapy offset WSD or ameliorate sedentary behavior? We further questioned whether the timing of E administration (immediately following hysterectomy, ImE; or after a 2-year delay, DE) would impact behavior. Focal observations were taken on the animals in social housing over a period of 2.5 years before and after initiation of the WSD and hysterectomy. In addition, anxiety was assessed through the Human Intruder and Novel Object Tests. All animals gained weight, but ImE delayed the time to maximum weight achieved at 18 months. Over the course of the study, ImE-treated monkeys spent more time "alone" and less time in "close social" contact than placebo-controls. The DE-treated monkeys were not different from placebo-controls in these 2 outcomes. The placebo-control group exhibited more "self-groom" behavior, an indicator of anxiety, than did the ImE-treated group, and DE-treated animals approached levels observed in the ImE-treated animals. All animals exhibited an increase in "consume" behavior over time with no statistical difference between the groups. By the end of the protocol, the placebo-control group exhibited less activity compared to ImE + DE-treated animals combined. Animals also showed increased anxiety after starting on the WSD in the Human Intruder Test and the Novel Object Test. In summary, the data indicated that WSD per se promoted increased consummatory behavior, sedentary behavior, and anxiety-type behaviors, whereas ImE promoted activity. Thus, WSD may precipitate the behaviors observed in humans who then become obese, sedentary, anxious, and socially isolated. ImE replacement ameliorates some of these behaviors, but not all.
Collapse
Affiliation(s)
- Kristine Coleman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Comparative Medicine, Behavioral Sciences Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Nicola D. Robertson
- Division of Comparative Medicine, Behavioral Sciences Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Adriane Maier
- Division of Comparative Medicine, Behavioral Sciences Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Cynthia L. Bethea
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201, USA
| |
Collapse
|