1
|
Wang D, Irewole EA, Bays LD, Smith MD, Schreurs BG. A long-term mild high-fat diet facilitates rabbit discrimination learning and alters glycerophospholipid metabolism. Neurobiol Learn Mem 2025; 219:108053. [PMID: 40228735 DOI: 10.1016/j.nlm.2025.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Previous reports have shown an association between a Western high-fat diet (HFD) and poor cognitive performance. So far, there are no reports of whether a mild HFD can affect rabbit learning and hippocampal metabolic profile. This study was designed to explore whether feeding a mild HFD (5 % lard and 5 % soy oil) for 20 weeks affected eyeblink discrimination and discrimination reversal learning and hippocampal metabolic profiles. After 20 weeks on the HFD or a normal control diet, all rabbits received one day of adaptation, 20 daily sessions of two-tone discrimination (1-kHz CS + followed by air puff and 8-kHz CS- not followed by air puff), a rest day, and then 40 daily sessions of discrimination reversal (8-kHz CS + and 1-kHz CS-). Compared to rabbits fed a regular chow diet, rabbits fed a mild HFD showed better discrimination evidenced by higher responding to CS+, lower responding to CS-, and a larger discrimination index (CS+ - CS-). Widely targeted metabolomics analysis identified 1805 metabolites in the hippocampus, and significant HFD-induced changes in 162 and 165 differential metabolites in males and females, respectively. These included glycerophospholipids and fatty acyls. KEGG enrichment analysis showed glycerophospholipid metabolism (ko00564) was significantly enriched in the HFD group notably lysophosphatidylethanolamine and lysophosphatidylcholine. In summary, our data show a long-term mild HFD facilitated discrimination learning in rabbits without inducing a metabolic syndrome, and altered the hippocampal metabolic profile, which may affect neuronal cell membrane lipids and behavioral performance.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| | - Ezekiel A Irewole
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Logan D Bays
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - MacKinzie D Smith
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Bernard G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
2
|
N'Diaye M, Ducourneau EG, Bakoyiannis I, Potier M, Lafenetre P, Ferreira G. Obesogenic diet induces sex-specific alterations of contextual fear memory and associated hippocampal activity in mice. Cereb Cortex 2024; 34:bhae254. [PMID: 38934712 DOI: 10.1093/cercor/bhae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
In addition to metabolic and cardiovascular disorders, obesity is associated with cognitive deficits in humans and animal models. We have previously shown that obesogenic high-fat and sugar diet intake during adolescence (adoHFSD) impairs hippocampus (HPC)-dependent memory in rodents. These results were obtained in males only and it remains to evaluate whether adoHFSD has similar effect in females. Therefore, here, we investigated the effects of adoHFSD consumption on HPC-dependent contextual fear memory and associated brain activation in male and female mice. Exposure to adoHFSD increased fat mass accumulation and glucose levels in both males and females but impaired contextual fear memory only in males. Compared with females, contextual fear conditioning induced higher neuronal activation in the dorsal and ventral HPC (CA1 and CA3 subfields) as well as in the medial prefrontal cortex in males. Also, adoHFSD-fed males showed enhanced c-Fos expression in the dorsal HPC, particularly in the dentate gyrus, and in the basolateral amygdala compared with the other groups. Finally, chemogenetic inactivation of the dorsal HPC rescued adoHFSD-induced memory deficits in males. Our results suggest that males are more vulnerable to the effects of adoHFSD on HPC-dependent aversive memory than females, due to overactivation of the dorsal HPC.
Collapse
Affiliation(s)
- Matéo N'Diaye
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Eva-Gunnel Ducourneau
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Ioannis Bakoyiannis
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Mylène Potier
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Pauline Lafenetre
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Guillaume Ferreira
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
3
|
Pratchayasakul W, Arunsak B, Suparan K, Sriwichaiin S, Chunchai T, Chattipakorn N, Chattipakorn SC. Combined caloric restriction and exercise provides greater metabolic and neurocognitive benefits than either as a monotherapy in obesity with or without estrogen deprivation. J Nutr Biochem 2022; 110:109125. [PMID: 35977664 DOI: 10.1016/j.jnutbio.2022.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/13/2023]
Abstract
Neurodegeneration, as indicated by brain dysfunction and cognitive decline, is one of the complications associated with obesity and estrogen deprivation. Calorie restriction and exercise regimes improved brain function in neurodegenerative diseases. However, the comparative effects of a combination of calorie restriction with exercise, calorie restriction, and an exercise regime alone on brain/cognitive function in obesity with or without estrogen deprivation have not been investigated. Sixty female rats were fed a normal diet (ND) or a high-fat diet (HFD) for 27 weeks. At week 13, the ND-fed rats underwent a sham operation with sedentary lifestyle, HFD-fed rats were divided into two groups: each having either a sham operation (HFS) or ovariectomy (HFO). At week 20, HFD-fed rats in each group were divided into four subgroups undergoing either a sedentary lifestyle, calorie restriction, exercise regime or a combination of calorie restriction and exercise for 7 weeks. Insulin resistance, cognitive decline and hippocampal pathologies were found in both HFS and HFO rats. HFO rats had higher levels of insulin resistance and hippocampal reactive oxygen species levels than HFS rats. Calorie restriction decreased metabolic disturbance and hippocampal oxidative stress but failed to attenuate cognitive decline in HFS and HFO rats. Exercise attenuated metabolic/hippocampal dysfunctions, resulting in improved cognition only in HFS rats. Combined therapies restored brain function, and cognitive function in HFS and HFO rats. Therefore, a combination of calorie restriction with exercise is probably the greatest lifestyle modification to diminish the brain pathologies and cognitive decline in obesity with or without estrogen deprivation.
Collapse
Affiliation(s)
- Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokphong Suparan
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sirawit Sriwichaiin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Diagnostic Sciences, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Oo TT, Sumneang N, Ongnok B, Arunsak B, Chunchai T, Kerdphoo S, Apaijai N, Pratchayasakul W, Liang G, Chattipakorn N, Chattipakorn SC. L6H21 protects against cognitive impairment and brain pathologies via toll-like receptor 4-myeloid differentiation factor 2 signalling in prediabetic rats. Br J Pharmacol 2021; 179:1220-1236. [PMID: 34796473 DOI: 10.1111/bph.15741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic high-fat diet (HFD) intake instigates prediabetes and brain pathologies, which include cognitive decline and neuroinflammation. The myeloid differentiation factor 2 (MD-2)/toll-like receptor 4 (TLR4) complex plays a pivotal role in neuroinflammation. The MD-2 inhibitor (L6H21) reduces systemic inflammation and metabolic disturbances in HFD-induced prediabetes. However, the potential role of L6H21, and its comparison with metformin, on brain pathologies in HFD-induced prediabetes has never been investigated. EXPERIMENTAL APPROACH Male Wistar rats were given either a normal diet (ND) (n = 8) or a HFD (n = 104) for 16 weeks. At the 13th week, ND-fed rats were given a vehicle, whereas HFD-fed rats were randomly divided into 13 subgroups. Each subgroup was given vehicle, L6H21 (three doses) or metformin (300-mg·kg-1 ·day-1 ) for 1, 2 or 4 weeks. Metabolic parameters, cognitive function, brain mitochondrial function, brain TLR4-MD-2 signalling, microglial morphology, brain oxidative stress, brain cell death and dendritic spine density were investigated. KEY RESULTS HFD-fed rats developed prediabetes, neuroinflammation, brain pathologies and cognitive impairment. All doses of L6H21 and metformin given to HFD-fed rats at 2 and 4 weeks attenuated metabolic disturbance. CONCLUSION AND IMPLICATIONS In rats, L6H21 and metformin restored cognition and attenuated brain pathologies dose and time-dependently. These results indicate a neuroprotective role of MD-2 inhibitor in a model of prediabetes.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Natticha Sumneang
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Jinawong K, Apaijai N, Wongsuchai S, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Necrostatin-1 Mitigates Cognitive Dysfunction in Prediabetic Rats With No Alteration in Insulin Sensitivity. Diabetes 2020; 69:1411-1423. [PMID: 32345751 DOI: 10.2337/db19-1128] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022]
Abstract
Previous studies showed that 12 weeks of high-fat diet (HFD) consumption caused not only prediabetes but also cognitive decline and brain pathologies. Recently, necrostatin-1 (nec-1), a necroptosis inhibitor, showed beneficial effects in brain against stroke. However, the comparative effects of nec-1 and metformin on cognition and brain pathologies in prediabetes have not been investigated. We hypothesized that nec-1 and metformin equally attenuated cognitive decline and brain pathologies in prediabetic rats. Rats (n = 32) were fed with either normal diet (ND) or HFD for 20 weeks. At week 13, ND-fed rats were given a vehicle (n = 8) and HFD-fed rats were randomly assigned into three subgroups (n = 8/subgroup) with vehicle, nec-1, or metformin for 8 weeks. Metabolic parameters, cognitive function, brain insulin receptor function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, Alzheimer protein, and cell death were determined. HFD-fed rats exhibited prediabetes, cognitive decline, and brain pathologies. Nec-1 and metformin equally improved cognitive function, synaptic plasticity, dendritic spine density, microglial morphology, and brain mitochondrial function and reduced hyperphosphorylated Tau and necroptosis in HFD-fed rats. Interestingly, metformin, but not nec-1, improved brain insulin sensitivity in those rats. In conclusion, necroptosis inhibition directly improved cognition in prediabetic rats without alteration in insulin sensitivity.
Collapse
Affiliation(s)
- Kewarin Jinawong
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Supawit Wongsuchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Arunsak B, Pratchayasakul W, Amput P, Chattipakorn K, Tosukhowong T, Kerdphoo S, Jaiwongkum T, Thonusin C, Palee S, Chattipakorn N, Chattipakorn SC. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor exerts greater efficacy than atorvastatin on improvement of brain function and cognition in obese rats. Arch Biochem Biophys 2020; 689:108470. [PMID: 32592802 DOI: 10.1016/j.abb.2020.108470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
The accumulation of lipid as a result of long-term consumption of a high-fat diet (HFD) may lead to metabolic and brain dysfunction. Atorvastatin, a recommended first-line lipid-lowering agent, has shown beneficial effects on metabolic and brain functions in several models. Recently, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor was approved as an effective therapeutic drug for dyslipidemia patients. However, few studies have reported on the effect of this PCSK9 inhibitor on brain function. In addition, the comparative efficacy on the improvement of metabolic and brain functions between PCSK9 inhibitor and atorvastatin in obese models have not been elucidated. We hypothesized that PCSK9 inhibitor improves metabolic and brain functions in an obese model to a greater extent than atorvastatin. Thirty-two female rats were fed with either a normal diet (ND) or HFD for 15 weeks. At week 13, ND rats were given normal saline and HFD rats were given either normal saline, atorvastatin (40 mg/kg/day) or PCSK9 inhibitor (4 mg/kg/day) for 3 weeks. Oxidative stress, blood brain barrier breakdown, microglial hyperactivity, synaptic dysplasticity, apoptosis, amyloid proteins production in the hippocampus and cognitive decline were found in HFD-fed rats. Atorvastatin and PCSK9 inhibitor therapies equally attenuated hippocampal apoptosis and amyloid protein production in HFD-fed rats. Interestingly, PCSK9 inhibitor had the greater efficacy than atorvastatin on the amelioration of hippocampal oxidative stress, blood brain barrier breakdown, microglial hyperactivity, synaptic dysplasticity in the hippocampus and cognitive decline. These findings suggest that PCSK9 inhibitor may be another drug of choice for improving brain function in the obese condition with discontinued statin therapy.
Collapse
Affiliation(s)
- Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Patchareeya Amput
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kenneth Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Theetouch Tosukhowong
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkum
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siripong Palee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|