1
|
Radaelli R, Rech A, Molinari T, Markarian AM, Petropoulou M, Granacher U, Hortobágyi T, Lopez P. Effects of Resistance Training Volume on Physical Function, Lean Body Mass and Lower-Body Muscle Hypertrophy and Strength in Older Adults: A Systematic Review and Network Meta-analysis of 151 Randomised Trials. Sports Med 2025; 55:167-192. [PMID: 39405023 DOI: 10.1007/s40279-024-02123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND The optimal prescription and precise recommendations of resistance training volume for older adults is unclear in the current literature. In addition, the interactions between resistance training volume and program duration as well as physical health status remain to be determined when assessing physical function, muscle size and hypertrophy and muscle strength adaptations in older adults. OBJECTIVES This study aimed to determine which resistance training volume is the most effective in improving physical function, lean body mass, lower-limb muscle hypertrophy and strength in older adults. Additionally, we examined whether effects were moderated by intervention duration (i.e. short term, < 20 weeks; medium-to-long term, ≥ 20 weeks) and physical health status (i.e. physically healthy, physically impaired, mixed physically healthy and physically impaired; PROSPERO identifier: CRD42023413209). METHODS CINAHL, Embase, LILACS, PubMed, Scielo, SPORTDiscus and Web of Science databases were searched up to April 2023. Eligible randomised trials examined the effects of supervised resistance training in older adults (i.e. ≥ 60 years). Resistance training programs were categorised as low (LVRT), moderate (MVRT) and high volume (HVRT) on the basis of terciles of prescribed weekly resistance training volume (i.e. product of frequency, number of exercises and number of sets) for full- and lower-body training. The primary outcomes for this review were physical function measured by fast walking speed, timed up and go and 6-min walking tests; lean body mass and lower-body muscle hypertrophy; and lower-body muscle strength measured by knee extension and leg press one-repetition maximum (1-RM), isometric muscle strength and isokinetic torque. A random-effects network meta-analysis was undertaken to examine the effects of different resistance training volumes on the outcomes of interest. RESULTS We included a total of 161 articles describing 151 trials (n = 6306). LVRT was the most effective for improving timed up and go [- 1.20 standardised mean difference (SMD), 95% confidence interval (95% CI): - 1.57 to - 0.82], 6-min walk test (1.03 SMD, 95% CI: 0.33-1.73), lean body mass (0.25 SMD, 95% CI: 0.10-0.40) and muscle hypertrophy (0.40 SMD, 95% CI: 0.25-0.54). Both MVRT and HVRT were the most effective for improving lower-limb strength, while only HVRT was effective in increasing fast walking speed (0.40 SMD, 95% CI: - 0.57 to 0.14). Regarding the moderators, our results were independent of program duration and mainly observed for healthy older adults, while evidence was limited for those who were physically impaired. CONCLUSIONS A low resistance training volume can substantially improve healthy older adults' physical function and benefits lean mass and muscle size independently of program duration, while a higher volume seems to be necessary for achieving greater improvements in muscle strength. A low volume of resistance training should be recommended in future exercise guidelines, particularly for physically healthy older adults targeting healthy ageing.
Collapse
Affiliation(s)
- Régis Radaelli
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Caparica, Almada, Portugal.
| | - Anderson Rech
- Curso de Educação Física, Universidade de Caxias do Sul, Caxias do Sul, Brazil
- Grupo de Pesquisa Em Exercício Para Populações Clínicas (GPCLIN), Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Talita Molinari
- Sport and Exercise Neuromechanics Group, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Anna Maria Markarian
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Maria Petropoulou
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany
| | - Tibor Hortobágyi
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
- Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands
- Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
- Department of Human Movement Sciences, University Medical Center Groningen, Groningen, The Netherlands
| | - Pedro Lopez
- Grupo de Pesquisa Em Exercício Para Populações Clínicas (GPCLIN), Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, WA, Australia
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Xiao Y, Fan Y, Feng Z. A meta-analysis of the efficacy of physical exercise interventions on activities of daily living in patients with Alzheimer's disease. Front Public Health 2024; 12:1485807. [PMID: 39664530 PMCID: PMC11631704 DOI: 10.3389/fpubh.2024.1485807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Objective This study aimed to systematically review published randomized controlled trials on the effects of physical exercise on activities of daily living (ADL) in Alzheimer's patients through meta-analysis, thereby synthesizing existing evidence to provide scientific intervention recommendations for exercise prescriptions in Alzheimer's patients. Methods Based on strict literature inclusion and exclusion criteria, a systematic search was conducted in databases including PubMed and Web of Science from their inception to July 1, 2024. The Cochrane risk assessment tool was used to evaluate the design of randomized controlled trials. Studies reporting on physical exercise interventions for ADL in Alzheimer's patients were systematically identified. Subgroup analyses and meta-regression were performed to explore sources of heterogeneity. Results Nineteen articles, for analysis, providing 27 randomized controlled trials (RCTs). A random-effects model was used to calculate the effect size and 95% confidence interval for each independent study, and meta-analysis was performed using Stata 16.0 and RevMan 5.4 software. The results showed that physical exercise might significantly improve ADL in Alzheimer's patients (SMD = 0.33, 95% CI: 0.12-0.54, I 2 = 81.7%). Sensitivity analysis confirmed the robustness of the results (p > 0.05). Egger's test did not reveal significant publication bias (p = 0.145). Samples were divided into different subgroups based on intervention content, duration, frequency, and session length. Subgroup analysis based on intervention characteristics showed that resistance training or aerobic exercise (SMD = 0.83, 95% CI: 0.60-1.05), long-term interventions (>6 months, SMD = 0.31, 95% CI: 0.13-0.49), medium-frequency interventions (4-5 times per week, SMD=0.39, 95% CI: 0.23-0.55), and short-duration training ( ≤ 30 min, SMD = 0.96, 95% CI: 0.71-1.21) might be most effective in enhancing ADL in Alzheimer's patients. These improvements were not only statistically significant but also had substantial impact in clinical practice. Conclusion Resistance training or aerobic exercise lasting more than 6 months, 4-5 times per week, and lasting no more than 30 min per session may be most effective in improving ADLs in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Yang Xiao
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yu Fan
- Department of Physical Education, Nanjing University of Science and Technology, Nanjing, China
| | - Zhengteng Feng
- China Athletics College, Beijing Sport University, Beijing, China
| |
Collapse
|
3
|
Gates AT, Kjaer M, Andersen JL. One Year of Heavy Resistance Training Modifies Muscle Fiber Characteristics in the Elderly. Sports Med Int Open 2024; 8:a23388226. [PMID: 39439846 PMCID: PMC11495243 DOI: 10.1055/a-2338-8226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 10/25/2024] Open
Abstract
Physical function declines with age, accelerating during the 6th decade of life, primarily due to loss in muscle mass and strength. The present study aimed to investigate the effect of one year of heavy resistance training in older adults (62-70 years) on muscle mass and strength. Further, we investigated muscle characteristics after the intervention by obtaining muscle biopsies from the vastus lateralis to compare muscle fiber characteristics between the heavy resistance training (HRT) (n=10) and the sedentary control group (CON) (n=10). We found that one year of resistance training increased isometric muscle strength (p<0.0001, ES: 2.43 (Hedges' g)) and lean body mass (p<0.05, ES: 0.96), whereas cross-sectional area of the vastus lateralis and lean leg mass were unaltered. At year 1, the percentage of type IIX muscle fibers was lower in HRT compared to CON (p<0.05, ES: 0.99), whereas the muscle fiber size did not differ between groups for the major fiber types (I and II). In conclusion, one year of resistance training in elderly improved muscle strength and lean body mass but not cross-sectional area and lean leg mass. This indicates that the increase in muscle strength may be caused by neuromuscular adaptations rather than morphological muscle tissue changes per se.
Collapse
Affiliation(s)
- Anne Theil Gates
- Department of Orthopedic Surgery, Copenhagen University Hospital,
Bispebjerg and Frederiksberg Hospital, Bispebjerg Hospital Institute of Sports
Medicine Copenhagen, 2400 Copenhagen NV, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen,
University of Copenhagen Center for Healthy Aging, 2200 Copenhagen NV,
Denmark
| | - Michael Kjaer
- Department of Orthopedic Surgery, Copenhagen University Hospital,
Bispebjerg and Frederiksberg Hospital, Bispebjerg Hospital Institute of Sports
Medicine Copenhagen, 2400 Copenhagen NV, Denmark
- Department of Clinical Medicine, University of Copenhagen, University
of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen NV,
Denmark
| | - Jesper Loevind Andersen
- Department of Orthopedic Surgery, Copenhagen University Hospital,
Bispebjerg and Frederiksberg Hospital, Bispebjerg Hospital Institute of Sports
Medicine Copenhagen, 2400 Copenhagen NV, Denmark
| |
Collapse
|
4
|
Li S, Xie K, Xiao X, Xu P, Tang M, Li D. Correlation between sarcopenia and esophageal cancer: a narrative review. World J Surg Oncol 2024; 22:27. [PMID: 38267975 PMCID: PMC10809562 DOI: 10.1186/s12957-024-03304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In recent years, the research on the relationship between sarcopenia before and after the treatment of esophageal cancer, as well as its impact on prognosis of esophageal cancer, has increased rapidly, which has aroused people's attention to the disease of patients with esophageal cancer complicated with sarcopenia. This review examines the prevalence of sarcopenia in patients with esophageal cancer, as well as the relationship between sarcopenia (before and after surgery or chemotherapy) and prognosis in patients with esophageal cancer. Moreover, we summarized the potential pathogenesis of sarcopenia and pharmacologic and non-pharmacologic therapies. METHODS A narrative review was performed in PubMed and Web of Science using the keywords ("esophageal cancer" or "esophageal neoplasm" or "neoplasm, esophageal" or "esophagus neoplasm" or "esophagus neoplasms" or "neoplasm, esophagus" or "neoplasms, esophagus" or "neoplasms, esophageal" or "cancer of esophagus" or "cancer of the esophagus" or "esophagus cancer" or "cancer, esophagus" or "cancers, esophagus" or "esophagus cancers" or "esophageal cancer" or "cancer, esophageal" or "cancers, esophageal" or "esophageal cancers") and ("sarcopenia" or "muscular atrophy" or "aging" or "senescence" or "biological aging" or "aging, biological" or "atrophies, muscular" or "atrophy, muscular" or "muscular atrophies" or "atrophy, muscle" or "atrophies, muscle" or "muscle atrophies"). Studies reporting relationship between sarcopenia and esophageal cancer were analyzed. RESULTS The results of the review suggest that the average prevalence of sarcopenia in esophageal cancer was 46.3% ± 19.6% ranging from 14.4 to 81% and sarcopenia can be an important predictor of poor prognosis in patients with esophageal cancer. Patients with esophageal cancer can suffer from sarcopenia due to their nutritional deficiencies, reduced physical activity, chemotherapy, and the effects of certain inflammatory factors and pathways. When classic diagnostic values for sarcopenia such as skeletal muscle index (SMI) are not available clinically, it is also feasible to predict esophageal cancer prognosis using simpler metrics, such as calf circumference (CC), five-count sit-up test (5-CST), and six-minute walk distance (6MWD). CONCLUSIONS Identifying the potential mechanism of sarcopenia in patients with esophageal cancer and implementing appropriate interventions may hold the key to improving the prognosis of these patients.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China
| | - Xiaoxiong Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingsheng Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Dai Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
de Sousa Fernandes MS, Gomes JM, Aidar FJ, Thuany M, Filgueira TO, de Souza RF, Badicu G, Yagin FH, Greco G, Cataldi S, Castoldi A, Alghannam AF, Souto FO. Impacts of different triathlon races on systemic cytokine profile and metabolic parameters in healthy individuals: a systematic review. BMC Sports Sci Med Rehabil 2023; 15:147. [PMID: 37932804 PMCID: PMC10629137 DOI: 10.1186/s13102-023-00763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
The present systematic review aimed to discuss the impacts of different triathlon protocols on the level of pro and anti-inflammatory cytokines, as well as biomarkers related to the performance of healthy individuals. Four databases [PubMed (28 articles), Scopus (24 articles), Science Direct (200 articles), and SPORT Discus (1101 articles) were assessed. The eligibility criteria were applied, and the selected articles were used in the peer review, independently, as they were identified by March 2022. Of the 1359 articles found, 10 were included in this systematic review. Despite the difference in triathlon protocols, it was observed an increase in pro and anti-inflammatory cytokines including IL-4 and IL-10, and chemokines, such as IL-8 and MCP-1. Moreover, the anti-inflammatory serum levels increase after triathlon. Overall, the studies also reported enhancement in the serum levels of cortisol, creatine kinase, C reactive protein, Endothelial Growth Factor, Vascular Endothelial Growth Factor, Myostatin, Lactate dehydrogenase, free fatty acids, and lactate dehydrogenase in triathlon athletes. This systematic review indicates that different triathlon race promotes an acute elevation of circulating cytokines and chemokines levels which return to standard levels after triathlon races. The findings of this systematic review demonstrate that the modulation of inflammatory parameters may be associated with an increase in metabolic indicators (CK, Cortisol, and LDH) after the end of different types of triathlon races.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Médicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
- Instituto de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.
| | | | - Felipe J Aidar
- Department of Physical Education, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Mabliny Thuany
- Center of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
| | - Tayrine Ordonio Filgueira
- Instituto de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil
| | | | - Georgian Badicu
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, Braşov, 500068, Romania
| | - Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey.
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, 70124, Italy
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, 70124, Italy
| | - Angela Castoldi
- Instituto de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil
| | - Abdullah F Alghannam
- Lifestyle and Health Research Center, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fabrício Oliveira Souto
- Instituto de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.
| |
Collapse
|
6
|
Liu H, He X, Deng XY, Yan JL. Exploring the correlation between serum fibroblast growth factor-21 levels and Sarcopenia: a systematic review and meta-analysis. BMC Musculoskelet Disord 2023; 24:533. [PMID: 37386374 DOI: 10.1186/s12891-023-06641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF-21) plays an important role in the growth and metabolism of skeletal muscle cells. This study aims to systemically review the evidence regarding the relationship between FGF-21 levels and Sarcopenia, as well as the related influential factors. METHODS This review was conducted according to the PRISMA guidelines. We comprehensively searched PubMed, EMBASE, the Web of Science, Scopus, and Chinese Databases (CNKI, Wan Fang, VIP, and CBM) up to 1 May 2023. 3 investigators performed independent literature screening and data extraction of the included literature, and two investigators performed an independent quality assessment of case-control studies using the Joanna Briggs Institute (JBI) tool. Data analysis was performed using Review Manager 5.4 software. For continuous various outcomes, mean difference (MD) or standard mean difference (SMD) with 95% confidence intervals (CIs) was applied for assessment by fixed-effect or random-effect model analysis. The heterogeneity test was performed by the Q-statistic and quantified using I2, and publication bias was evaluated using a funnel plot. RESULTS Five studies with a total of 625 cases were included in the review. Meta-analysis showed lower BMI in the sarcopenia group [MD= -2.88 (95% CI, -3. 49, -2.27); P < 0.00001; I2 = 0%], significantly reduced grip strength in the sarcopenia group compared to the non-sarcopenia group [MD = -7.32(95% CI, -10.42,-4.23); P < 0.00001; I2 = 93%]. No statistically significant differences in serum FGF21 levels were found when comparing the two groups of subjects [SMD = 0.31(95% CI, -0.42, 1.04); P = 0.41; I2 = 94%], and no strong correlation was found between the onset of sarcopenia and serum FGF21 levels. CONCLUSION The diagnosis of sarcopenia is followed by a more significant decrease in muscle mass and strength, but there is a lack of strong evidence to support a direct relationship between elevated organismal FGF21 and sarcopenia, and it is not convincing to use FGF21 as a biological or diagnostic marker for sarcopenia. The currently used diagnostic criteria for sarcopenia and setting of cut-off values for each evaluation parameter no longer seem to match clinical practice.
Collapse
Affiliation(s)
- Hao Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xia He
- Affiliated Sichuan Provincial Rehabilitation Hospital of the Chengdu University of Traditional Chinese Medicine, Chengdu, 611135, China.
| | - Xiao-Yan Deng
- Tianhui Town Community Health Center, Chengdu, 610081, China
| | - Jing-Lu Yan
- Tianhui Town Community Health Center, Chengdu, 610081, China
| |
Collapse
|
7
|
Barros D, Marques EA, Magalhães J, Carvalho J. Energy metabolism and frailty: The potential role of exercise-induced myokines - A narrative review. Ageing Res Rev 2022; 82:101780. [PMID: 36334911 DOI: 10.1016/j.arr.2022.101780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Frailty is a complex condition that emerges from dysregulation in multiple physiological systems. Increasing evidence suggests the potential role of age-related energy dysregulation as a key driver of frailty. Exercise is considered the most efficacious intervention to prevent and even ameliorate frailty as it up-tunes and improves the function of several related systems. However, the mechanisms and molecules responsible for these intersystem benefits are not fully understood. The skeletal muscle is considered a secretory organ with endocrine functions that can produce and secrete exercise-related molecules such as myokines. These molecules are cytokines and other peptides released by muscle fibers in response to acute and/or chronic exercise. The available evidence supports that several myokines can elicit autocrine, paracrine, or endocrine effects, partly mediating inter-organ crosstalk and also having a critical role in improving cardiovascular, metabolic, immune, and neurological health. This review describes the current evidence about the potential link between energy metabolism dysregulation and frailty and provides a theoretical framework for the potential role of myokines (via exercise) in counteracting frailty. It also summarizes the physiological role of selected myokines and their response to different acute and chronic exercise protocols in older adults.
Collapse
Affiliation(s)
- Duarte Barros
- The Research Centre in Physical Activity, Health and Leisure, CIAFEL, University of Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| | - Elisa A Marques
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia (ISMAI), Portugal; School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK
| | - José Magalhães
- The Research Centre in Physical Activity, Health and Leisure, CIAFEL, University of Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Joana Carvalho
- The Research Centre in Physical Activity, Health and Leisure, CIAFEL, University of Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
8
|
El Assar M, Álvarez-Bustos A, Sosa P, Angulo J, Rodríguez-Mañas L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int J Mol Sci 2022; 23:ijms23158713. [PMID: 35955849 PMCID: PMC9369066 DOI: 10.3390/ijms23158713] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Functional status is considered the main determinant of healthy aging. Impairment in skeletal muscle and the cardiovascular system, two interrelated systems, results in compromised functional status in aging. Increased oxidative stress and inflammation in older subjects constitute the background for skeletal muscle and cardiovascular system alterations. Aged skeletal muscle mass and strength impairment is related to anabolic resistance, mitochondrial dysfunction, increased oxidative stress and inflammation as well as a reduced antioxidant response and myokine profile. Arterial stiffness and endothelial function stand out as the main cardiovascular alterations related to aging, where increased systemic and vascular oxidative stress and inflammation play a key role. Physical activity and exercise training arise as modifiable determinants of functional outcomes in older persons. Exercise enhances antioxidant response, decreases age-related oxidative stress and pro-inflammatory signals, and promotes the activation of anabolic and mitochondrial biogenesis pathways in skeletal muscle. Additionally, exercise improves endothelial function and arterial stiffness by reducing inflammatory and oxidative damage signaling in vascular tissue together with an increase in antioxidant enzymes and nitric oxide availability, globally promoting functional performance and healthy aging. This review focuses on the role of oxidative stress and inflammation in aged musculoskeletal and vascular systems and how physical activity/exercise influences functional status in the elderly.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Sosa
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Correspondence: ; Tel.: +34-91-683-93-60 (ext. 6411)
| |
Collapse
|
9
|
Does Androgen Deprivation for Prostate Cancer Affect Normal Adaptation to Resistance Exercise? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073820. [PMID: 35409505 PMCID: PMC8997930 DOI: 10.3390/ijerph19073820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Loss of muscle mass and muscle function is a common side effect from androgen deprivation therapy (ADT) for prostate cancer (PCa). Here, we explored effects of heavy-load resistance training (RT) on lean body mass and muscle strength changes reported in randomized controlled trials (RCTs) among PCa patients on ADT and in healthy elderly men (HEM), by comparison of results in separate meta-analysis. METHODS RCTs were identified through databases and reference lists. RESULTS Seven RCTs in PCa patients (n = 449), and nine in HEM (n = 305) were included. The effects of RT in lean body mass change were similar among PCa patients (Standardized mean difference (SMD): 0.4, 95% CI: 0.2, 0.7) and HEM (SMD: 0.5, 95% CI: 0.2, 0.7). It is noteworthy that the within group changes showed different patterns in PCa patients (intervention: 0.2 kg; control: -0.6 kg) and HEM (intervention: 1.2 kg; control: 0.2 kg). The effects of RT on change in muscle strength (measured as 1 RM) were similar between PCa patients and HEM, both for lower body- (PCa: SMD: 1.9, 95% CI: 1.2, 2.5; HEM: SMD: 2.2, 95% CI: 1.0, 3.4), and for upper body exercises (PCa: SMD: 2.0, 95% CI: 1.3, 2.7; HEM: SMD: 1.9, 95% CI: 1.3, 2.6). CONCLUSIONS The effects of RT on lean body mass and 1 RM were similar in PCa patients on ADT and HEM, but the mechanism for the intervention effect might differ between groups. It seems that RT counteracts loss of lean body mass during ADT in PCa patients, as opposed to increasing lean body mass in HEM.
Collapse
|
10
|
Noor H, Reid J, Slee A. Resistance exercise and nutritional interventions for augmenting sarcopenia outcomes in chronic kidney disease: a narrative review. J Cachexia Sarcopenia Muscle 2021; 12:1621-1640. [PMID: 34585539 PMCID: PMC8718072 DOI: 10.1002/jcsm.12791] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia is an age-related progressive muscle disease characterized by loss of muscle mass, muscle strength and physical performance with high prevalence in chronic kidney disease (CKD). CKD is associated with decreased muscle protein synthesis and muscle breakdown due to a number of factors including, the uremic inflammatory environment of the disease. CKD patients are highly sedentary and at risk of malnutrition which may exacerbate sarcopenia outcomes even further. Short and long-term exercise and nutritional interventions have been studied and found to have some positive effects on sarcopenia measures in CKD. This narrative review summarized evidence between 2010 and 2020 of resistance exercise (RE) alone or combined with nutritional interventions for improving sarcopenia outcomes in CKD. Due to lack of CKD-specific sarcopenia measures, the second European Working Group on Sarcopenia in Older People (EWGSOP2) definition has been used to guide the selection of the studies. The literature search identified 14 resistance exercise-based studies and 5 nutrition plus RE interventional studies. Muscle strength outcomes were increased with longer intervention duration, intervention supervision, and high participant adherence. Data also suggested that CKD patients may require increased RE intensity and progressive loading to obtain detectable results in muscle mass. Unlike muscle strength and muscle mass, physical performance was readily improved by all types of exercise in long or short-term interventions. Four studies used RE with high-protein nutritional supplementation. These showed significant benefits on muscle strength and physical performance in dialysis patients while non-significant results were found in muscle mass. More research is needed to confirm if a combination of RE and vitamin D supplementation could act synergistically to improve muscle strength in CKD. The current evidence on progressive RE for sarcopenia in CKD is encouraging; however, real-life applications in clinical settings are still very limited. A multidisciplinary patient-centred approach with regular follow-up may be most beneficial due to the complexity of sarcopenia in CKD. Long-term randomized control trials are needed to verify optimal RE prescription and explore safety and efficacy of other nutritional interventions in CKD.
Collapse
Affiliation(s)
- Hanaa Noor
- Division of Medicine, University College London, London, UK.,Diaverum Holding AB Branch, Riyadh, Saudi Arabia
| | - Joanne Reid
- School of Nursing and Midwifery, Queen's University Belfast, Belfast, UK
| | - Adrian Slee
- Division of Medicine, University College London, London, UK
| |
Collapse
|
11
|
Rose GL, Mielke GI, Durr M, Schaumberg MA. Effect of resistance training on chronic inflammation: A systematic review and meta‐analysis. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Grace Laura Rose
- School of Human Movement and Nutrition Sciences The University of Queensland Brisbane Australia
- School of Nursing, Midwifery and Social Work The University of Queensland Brisbane Australia
| | - Gregore Iven Mielke
- School of Human Movement and Nutrition Sciences The University of Queensland Brisbane Australia
| | - Madeleine Durr
- School of Human Movement and Nutrition Sciences The University of Queensland Brisbane Australia
| | - Mia Annalies Schaumberg
- School of Human Movement and Nutrition Sciences The University of Queensland Brisbane Australia
- School of Health and Behavioural Sciences University of the Sunshine Coast Sippy Downs Australia
- Sunshine Coast Health Institute Birtinya Australia
| |
Collapse
|
12
|
Colleluori G, Villareal DT. Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Exp Gerontol 2021; 155:111561. [PMID: 34562568 DOI: 10.1016/j.exger.2021.111561] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
The number of adults 65 years and older is increasing worldwide and will represent the 20% of the population by 2030. Half of them will suffer from obesity. The decline in muscle mass and strength, known as sarcopenia, is very common among older adults with obesity (sarcopenic obesity). Sarcopenic obesity is strongly associated with frailty, cardiometabolic dysfunction, physical disability, and mortality. Increasing efforts have been hence made to identify effective strategies able to promote healthy aging and curb the obesity pandemic. Among these, lifestyle interventions consisting of diet and exercise protocols have been extensively explored. Importantly, diet-induced weight loss is associated with fat, muscle, and bone mass losses, and may further exacerbate age-related sarcopenia and frailty outcomes in older adults. Successful approaches to induce fat mass loss while preserving lean and bone mass are critical to reduce the aging- and obesity-related physical and metabolic complications and at the same time ameliorate frailty. In this review article, we discuss the most recent evidence on the age-related alterations in adipose tissue and muscle health and on the effect of calorie restriction and exercise approaches for older adults with obesity and sarcopenia, emphasizing the existing gaps in the literature that need further investigation.
Collapse
Affiliation(s)
- Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center for the Study of Obesity, Marche Polytechnic University, Ancona, Italy; Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Dennis T Villareal
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
13
|
Khalafi M, Malandish A, Rosenkranz SK, Ravasi AA. Effect of resistance training with and without caloric restriction on visceral fat: A systemic review and meta-analysis. Obes Rev 2021; 22:e13275. [PMID: 33998135 DOI: 10.1111/obr.13275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/05/2021] [Indexed: 12/29/2022]
Abstract
We performed a systematic review and meta-analysis to investigate the effect of resistance training (RT) with and without caloric restriction (CR) on visceral fat (VF). PubMed and Scopus were searched to identify original articles published through December 2020. Standardized mean differences and 95% confidence intervals (95% CIs) were determined, and separate analyses were conducted for RT versus control, and RT plus CR versus CR only. Thirty-four studies including 38 intervention arms and involving 2285 were included in the meta-analysis. RT effectively reduced VF [-24 (95% CI -0.34 to -0.13), p < 0.001; I2 = 4.17%, p = 0.40; 24 intervention arms] when compared with control. Based on subgroup analyses, reduction in VF was significant for individual with (p = 0.04) and without (p < 0.001) obesity as well as across medium-term (p = 0.001) and long-term (p = 0.002) interventions. Reduction in VF was significant for both middle-age (p = 0.03) and elderly (p = 0.001) adults but was not significant for pediatric (p = 0.08) participants. However, RT plus CR did not indicate superiority effect on VF [0.23 95% CI -0.04 to 0.51, p = 0.09; I2 = 58.76%, p = 0.003; 14 intervention arms] when compared with CR only. Our results confirm that RT may be effective for reducing VF, but adding RT with CR was not associated with a greater effect for reducing VF.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Abbas Malandish
- Department of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Sara K Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, Kansas, USA
| | - Ali A Ravasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Bag Soytas R, Suzan V, Arman P, Emiroglu Gedik T, Unal D, Cengiz M, Bolayirli IM, Suna Erdincler D, Doventas A, Yavuzer H. Association of FGF-19 and FGF-21 levels with primary sarcopenia. Geriatr Gerontol Int 2021; 21:959-962. [PMID: 34405516 DOI: 10.1111/ggi.14263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/31/2021] [Indexed: 01/26/2023]
Abstract
AIM Serum fibroblast growth factor (FGF)-19 and FGF-21 levels have been reported to be associated with muscle hemostasis. This study aims to explore the relationship between the levels of these markers and sarcopenia. METHODS In our single-center, cross-sectional study, patients over 65 years old presenting to the geriatric outpatient clinic were included. Patients with secondary sarcopenia were excluded. The Strength-Assistance with walking-Rising from a chair-Climbing stairs and Falls (SARC-F) questionnaire was applied to all patients. Sarcopenia was determined by handgrip strength (HGS), bioelectrical impedance analysis and 6-m walk test. Serum samples were stored at -80°C until measurement. The ELISA method was used to assess FGF-19 and FGF-21 levels. RESULTS In total, 88 patients (54 women) were included. There were 43 patients in the sarcopenia group and 45 patients without sarcopenia in the control group. In those with sarcopenia, FGF-19 was lower (P = 0.04) and FGF-21 was higher (P = 0.021). There was a direct correlation between FGF-19 with SARC-F and HGS (P = 0.04, B = 0.178, P = 0.006, B = 0.447) while FGF-21 was inversely correlated with HGS and positively correlated with 6-m walking time (P = 0.016, B = -0.428, P = 0.004, B = 0.506). CONCLUSIONS Our results reveal that low FGF-19 and high FGF-21 may be associated with sarcopenia and this finding could be explained by the impacted muscle strength. Geriatr Gerontol Int 2021; 21: 959-962.
Collapse
Affiliation(s)
- Rabia Bag Soytas
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Veysel Suzan
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pinar Arman
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tugce Emiroglu Gedik
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Damla Unal
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mahir Cengiz
- Department of Internal Medicine, Biruni University Medical Faculty, Istanbul, Turkey
| | - Ibrahim Murat Bolayirli
- Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Deniz Suna Erdincler
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alper Doventas
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hakan Yavuzer
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
15
|
Effect of intermittent hypoxic conditioning on inflammatory biomarkers in older adults. Exp Gerontol 2021; 152:111478. [PMID: 34256114 DOI: 10.1016/j.exger.2021.111478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Ageing is associated with chronic low-grade inflammation and with a decrease in muscle mass and strength. The aim of the study was to evaluate the effect of a resistance training programme in conditions of intermittent hypoxia on inflammatory biomarkers in older people. A total of 54 older adults (aged 65-75 years), who voluntarily participated in the study, were randomly divided into three groups: the control (CON) group, the resistance training normoxia (RTN) group that performed resistance training in normoxia and resistance training hypoxia (RTH) group that trained under hypoxic conditions at a simulated altitude of 2500 m above sea level. The training programme that was carried out during 24 weeks was similar in both experimental groups and consisted of a full-body workout with elastic bands and kettlebells (three sets x 12-15 reps). Blood inflammatory parameters (CRP, VCAM-1, IL-6, IL-8 and IL-10) were analysed before and after the intervention. After the resistance training programme, a significant decrease in CRP and IL-8 levels was observed, as well as an increase in IL-10 levels, both in normoxia and hypoxia. These results show that resistance training, either in conditions of normoxia or hypoxia, is useful to deal with the chronic inflammation associated with ageing.
Collapse
|
16
|
Graham ZA, Lavin KM, O'Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, Bamman MM. Mechanisms of exercise as a preventative measure to muscle wasting. Am J Physiol Cell Physiol 2021; 321:C40-C57. [PMID: 33950699 DOI: 10.1152/ajpcell.00056.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant tissue in healthy individuals and it has important roles in health beyond voluntary movement. The overall mass and energy requirements of skeletal muscle require it to be metabolically active and flexible to multiple energy substrates. The tissue has evolved to be largely load dependent and it readily adapts in a number of positive ways to repetitive overload, such as various forms of exercise training. However, unloading from extended bed rest and/or metabolic derangements in response to trauma, acute illness, or severe pathology, commonly results in rapid muscle wasting. Decline in muscle mass contributes to multimorbidity, reduces function, and exerts a substantial, negative impact on the quality of life. The principal mechanisms controlling muscle mass have been well described and these cellular processes are intricately regulated by exercise. Accordingly, exercise has shown great promise and efficacy in preventing or slowing muscle wasting through changes in molecular physiology, organelle function, cell signaling pathways, and epigenetic regulation. In this review, we focus on the role of exercise in altering the molecular landscape of skeletal muscle in a manner that improves or maintains its health and function in the presence of unloading or disease.epigenetics; exercise; muscle wasting; resistance training; skeletal muscle.
Collapse
Affiliation(s)
- Zachary A Graham
- Birmingham VA Medical Center, Birmingham, Alabama.,Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kaleen M Lavin
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Samia M O'Bryan
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas W Buford
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Nathan Shock Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth M Ford
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | | | - Marcas M Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Guest PC. New Therapeutic Approaches and Biomarkers for Increased Healthspan. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:1-13. [PMID: 33725342 DOI: 10.1007/978-3-030-55035-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Healthcare costs have increased in developing countries over the last few decades, mostly due to the escalation in average life expectancy and the concomitant increase in age-related disorders. To address this issue, widespread research is now being undertaken across the globe with the aim of finding a way of increasing healthy aging. A number of potential interventions have already shown promise, including lifestyle changes and the use of natural products or pharmaceuticals that may delay the onset of diseases associated with the aging process. In parallel, a number of potential biomarkers have already been identified that can be used for assessing risk of developing age-associated disorders and for monitoring response to therapeutic interventions. This review describes the most recent advances towards the goal of achieving healthier aging with fewer disabilities that may lead to enhanced quality of life and reduced healthcare costs around the world.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
18
|
Dalle S, Van Roie E, Hiroux C, Vanmunster M, Coudyzer W, Suhr F, Bogaerts S, Van Thienen R, Koppo K. Omega-3 Supplementation Improves Isometric Strength But Not Muscle Anabolic and Catabolic Signaling in Response to Resistance Exercise in Healthy Older Adults. J Gerontol A Biol Sci Med Sci 2021; 76:406-414. [PMID: 33284965 PMCID: PMC7907485 DOI: 10.1093/gerona/glaa309] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Old skeletal muscle exhibits decreased anabolic sensitivity, eventually contributing to muscle wasting. Besides anabolism, also muscle inflammation and catabolism are critical players in regulating the old skeletal muscle's sensitivity. Omega-3 fatty acids (ω-3) are an interesting candidate to reverse anabolic insensitivity via anabolic actions. Yet, it remains unknown whether ω-3 also attenuates muscle inflammation and catabolism. The present study investigates the effect of ω-3 supplementation on muscle inflammation and metabolism (anabolism/catabolism) upon resistance exercise (RE). Twenty-three older adults (65-84 years; 8♀) were randomized to receive ω-3 (~3 g/d) or corn oil (placebo [PLAC]) and engaged in a 12-week RE program (3×/wk). Before and after intervention, muscle volume, strength, and systemic inflammation were assessed, and muscle biopsies were analyzed for markers of anabolism, catabolism, and inflammation. Isometric knee-extensor strength increased in ω-3 (+12.2%), but not in PLAC (-1.4%; pinteraction = .015), whereas leg press strength improved in both conditions (+27.1%; ptime < .001). RE, but not ω-3, decreased inflammatory (p65NF-κB) and catabolic (FOXO1, LC3b) markers, and improved muscle quality. Yet, muscle volume remained unaffected by RE and ω-3. Accordingly, muscle anabolism (mTORC1) and plasma C-reactive protein remained unchanged by RE and ω-3, whereas serum IL-6 tended to decrease in ω-3 (pinteraction = .07). These results show that, despite no changes in muscle volume, RE-induced gains in isometric strength can be further enhanced by ω-3. However, ω-3 did not improve RE-induced beneficial catabolic or inflammatory adaptations. Irrespective of muscle volume, gains in strength (primary criterion for sarcopenia) might be explained by changes in muscle quality due to muscle inflammatory or catabolic signaling.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Evelien Van Roie
- Physical Activity, Sports and Health Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Mathias Vanmunster
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Walter Coudyzer
- Department of Morphology and Medical Imaging, Faculty of Medicine, Radiology Section, KU Leuven, Belgium
| | - Frank Suhr
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Stijn Bogaerts
- Locomotor and Neurological Disorders, Department of Development and Regeneration, KU Leuven, Belgium
| | - Ruud Van Thienen
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| |
Collapse
|
19
|
Johnson TK, Belcher DJ, Sousa CA, Carzoli JP, Visavadiya NP, Khamoui AV, Whitehurst M, Zourdos MC. Low-volume acute multi-joint resistance exercise elicits a circulating brain-derived neurotrophic factor response but not a cathepsin B response in well-trained men. Appl Physiol Nutr Metab 2020; 45:1332-1338. [PMID: 32531180 DOI: 10.1139/apnm-2019-0854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study examined if acute multi-joint resistance exercises (RE; back squat, bench press, and deadlift) to volitional failure elicited a postexercise increase in the circulating response of biomarkers associated with neuroprotection. Thirteen males (age: 24.5 ± 3.8 years, body mass: 84.01 ± 15.44 kg, height: 173.43 ± 8.57 cm, training age: 7.1 ± 4.2 years) performed 4 sets to failure at 80% of a 1-repetition maximum on the squat, bench press, and deadlift in successive weeks. The measured biomarkers were brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), cathepsin B (CatB), and interleukin 6 (IL-6). Biomarkers were assessed immediately before and 10-min after exercise. There was a main time effect (pre-exercise: 24.00 ± 0.61 to postexercise: 27.38 ± 0.48 ng/mL; p < 0.01) for BDNF with increases in the deadlift (p = 0.01) and bench press (p = 0.01) conditions, but not in the squat condition (p = 0.21). There was a main time effect (pre-exercise: 0.87 ± 0.16 to postexercise: 2.03 ± 0.32 pg/mL; p < 0.01) for IL-6 with a significant increase in the squat (p < 0.01), but not the bench press (p = 0.88) and deadlift conditions (p = 0.24). No main time effect was observed for either CatB (p = 0.62) or IGF-1 (p = 0.56). In summary, acute multi-joint RE increases circulating BDNF. Further, this investigation is the first to report the lack of a transient change of CatB to an acute RE protocol. Novelty Low-volume RE to failure can increase BDNF. Resistance training does not confer an acute Cat B response.
Collapse
Affiliation(s)
- Trevor K Johnson
- Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA.,Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA
| | - Daniel J Belcher
- Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA.,Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA
| | - Colby A Sousa
- Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA.,Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA
| | - Joseph P Carzoli
- Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA.,Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA
| | - Nishant P Visavadiya
- Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA.,Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA
| | - Andy V Khamoui
- Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA.,Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA
| | - Michael Whitehurst
- Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA.,Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA
| | - Michael C Zourdos
- Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA.,Florida Atlantic University, Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Boca Raton, FL 33431, USA
| |
Collapse
|