1
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2025; 47:457-482. [PMID: 39331291 PMCID: PMC11872848 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
2
|
Jacob C, Tollenaere M, Kachar H, Potier MC, De Deyn PP, Van Dam D. Exploring peripheral fluid biomarkers for early detection of Alzheimer's disease in Down syndrome: A literature review. Heliyon 2025; 11:e41445. [PMID: 39850411 PMCID: PMC11755057 DOI: 10.1016/j.heliyon.2024.e41445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/24/2024] [Accepted: 12/22/2024] [Indexed: 01/25/2025] Open
Abstract
People with Down Syndrome (DS) are at high risk of developing Alzheimer's disease dementia (AD) and cerebral amyloid angiopathy, which is a critical factor contributing to dementia in sporadic AD. Predicting and monitoring the decline and onset of dementia is a diagnostic challenge and of essence in daily care and support for people with DS. In this literature scoping review, we first summarize the different blood-based biomarkers for AD in DS. Next, we describe urine-based biomarkers for AD in DS and finally, we explore various blood-based biomarkers in the general AD population. Apart from the classic amyloid beta and Tau biomarkers, we also discuss more out-of-the-box biomarkers such as neurofilament light chain, Dual-specificity tyrosine-regulated kinase 1A, and monoaminergic biomarkers. These potential biomarkers could be a valuable addition to the established panel of fluid biomarkers.
Collapse
Affiliation(s)
- Charlotte Jacob
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
| | - Marleen Tollenaere
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Hanane Kachar
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
| | - Marie-Claude Potier
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Fan Y, Wang A, Liu Z, Xing J, Zheng Z, Song F, Hou Z, Liu S. Integrated spatial metabolomics and network pharmacology to explore the pharmacodynamic substances and mechanism of Radix ginseng-Schisandra chinensis Herb Couple on Alzheimer's disease. Anal Bioanal Chem 2024; 416:4275-4288. [PMID: 38853180 DOI: 10.1007/s00216-024-05364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Radix ginseng and Schisandra chinensis have been extensively documented in traditional Chinese medicine (TCM) for their potential efficacy in treating dementia. However, the precise mechanism of their therapeutic effects remains to be fully elucidated. In this study, air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) and network pharmacology are used to investigate the pharmacodynamics and mechanism underlying the herbal combination consisting of Radix ginseng-Schisandra chinensis (RS) in a rodent model for Alzheimer's disease (AD). Brain histopathological findings suggested that RS attenuates hippocampal damage in AD mice, making this combination a potential AD treatment. Twenty-eight biomarkers were identified by spatial metabolomics analysis, which are intricately linked to neuroinflammation, neurotransmitter imbalance, energy deficiency, oxidative stress, and aberrant fatty acid metabolism in AD. The total extract of RS (TE) affected 22 of these biomarkers, with the small molecule components of RS (SN) significantly influencing 19 and the large molecule components of RS (PR) impacting 14. Nine small molecule components are likely to dominate the pharmacodynamics of RS. We constructed a target interaction network based on the corresponding bioactivities that revealed relationships amongst 11 key biomarkers, 8 active ingredients and 12 critical targets. This research illustrates the immense potential of spatial metabolomics and network pharmacology in the study of TCM, revealing the targets and mechanisms underlying herbal formulas.
Collapse
Affiliation(s)
- Yuting Fan
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Aimin Wang
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Junpeng Xing
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zong Hou
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Zhuang H, Cao X, Tang X, Zou Y, Yang H, Liang Z, Yan X, Chen X, Feng X, Shen L. Investigating metabolic dysregulation in serum of triple transgenic Alzheimer's disease male mice: implications for pathogenesis and potential biomarkers. Amino Acids 2024; 56:10. [PMID: 38315232 PMCID: PMC10844422 DOI: 10.1007/s00726-023-03375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/11/2023] [Indexed: 02/07/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease that lacks convenient and accessible peripheral blood diagnostic markers and effective drugs. Metabolic dysfunction is one of AD risk factors, which leaded to alterations of various metabolites in the body. Pathological changes of the brain can be reflected in blood metabolites that are expected to explain the disease mechanisms or be candidate biomarkers. The aim of this study was to investigate the changes of targeted metabolites within peripheral blood of AD mouse model, with the purpose of exploring the disease mechanism and potential biomarkers. Targeted metabolomics was used to quantify 256 metabolites in serum of triple transgenic AD (3 × Tg-AD) male mice. Compared with controls, 49 differential metabolites represented dysregulation in purine, pyrimidine, tryptophan, cysteine and methionine and glycerophospholipid metabolism. Among them, adenosine, serotonin, N-acetyl-5-hydroxytryptamine, and acetylcholine play a key role in regulating neural transmitter network. The alteration of S-adenosine-L-homocysteine, S-adenosine-L-methionine, and trimethylamine-N-oxide in AD mice serum can served as indicator of AD risk. The results revealed the changes of metabolites in serum, suggesting that metabolic dysregulation in periphery in AD mice may be related to the disturbances in neuroinhibition, the serotonergic system, sleep function, the cholinergic system, and the gut microbiota. This study provides novel insights into the dysregulation of several key metabolites and metabolic pathways in AD, presenting potential avenues for future research and the development of peripheral biomarkers.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yongdong Zou
- Center for Instrumental Analysis, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Hongbo Yang
- Center for Instrumental Analysis, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xi Yan
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xiaolu Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xingui Feng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
5
|
Sharma A, Angnes L, Sattarahmady N, Negahdary M, Heli H. Electrochemical Immunosensors Developed for Amyloid-Beta and Tau Proteins, Leading Biomarkers of Alzheimer's Disease. BIOSENSORS 2023; 13:742. [PMID: 37504140 PMCID: PMC10377038 DOI: 10.3390/bios13070742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Alzheimer's disease (AD) is the most common neurological disease and a serious cause of dementia, which constitutes a threat to human health. The clinical evidence has found that extracellular amyloid-beta peptides (Aβ), phosphorylated tau (p-tau), and intracellular tau proteins, which are derived from the amyloid precursor protein (APP), are the leading biomarkers for accurate and early diagnosis of AD due to their central role in disease pathology, their correlation with disease progression, their diagnostic value, and their implications for therapeutic interventions. Their detection and monitoring contribute significantly to understanding AD and advancing clinical care. Available diagnostic techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are mainly used to validate AD diagnosis. However, these methods are expensive, yield results that are difficult to interpret, and have common side effects such as headaches, nausea, and vomiting. Therefore, researchers have focused on developing cost-effective, portable, and point-of-care alternative diagnostic devices to detect specific biomarkers in cerebrospinal fluid (CSF) and other biofluids. In this review, we summarized the recent progress in developing electrochemical immunosensors for detecting AD biomarkers (Aβ and p-tau protein) and their subtypes (AβO, Aβ(1-40), Aβ(1-42), t-tau, cleaved-tau (c-tau), p-tau181, p-tau231, p-tau381, and p-tau441). We also evaluated the key characteristics and electrochemical performance of developed immunosensing platforms, including signal interfaces, nanomaterials or other signal amplifiers, biofunctionalization methods, and even primary electrochemical sensing performances (i.e., sensitivity, linear detection range, the limit of detection (LOD), and clinical application).
Collapse
Affiliation(s)
- Abhinav Sharma
- Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Li R, Deng M, Lin Y, Gao W, Liu B, Xia H. Genetically predicted circulating levels of glycine, glutamate, and serotonin in relation to the risks of three major neurodegenerative diseases: A Mendelian randomization analysis. Front Aging Neurosci 2022; 14:938408. [PMID: 36158554 PMCID: PMC9490425 DOI: 10.3389/fnagi.2022.938408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
It has been previously postulated that blood neurotransmitters might affect risks of neurodegenerative diseases. Here, a Mendelian Randomization (MR) study was conducted to explore whether genetically predicted concentrations of glycine, glutamate and serotonin were associated with risks of Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). From three genome-wide association studies of European ancestry, single nucleotide polymorphisms strongly associated with glycine, glutamate and serotonin were selected as genetic instrumental variables. Corresponding summary statistics were also obtained from the latest genome-wide association meta-analyses of AD, PD and ALS. The inverse-variance weighted MR and multiple sensitivity analyses were performed to evaluate causal effects of genetically predicted levels of neurotransmitters on risks of neurodegenerative diseases. The statistical significance threshold was set at P < 0.0056 using the Bonferroni-correction, while 0.0056 < P < 0.05 was considered suggestive evidence for a causal association. There was a causal association of elevated blood glutamate levels with higher AD risks. The odds ratio (OR) of AD was 1.311 [95% confidence interval (CI), 1.087-1.580; P = 0.004] per one standard deviation increase in genetically predicted glutamate concentrations. There was suggestive evidence in support of a protective effect of blood serotonin on AD (OR = 0.607; 95% CI, 0.396-0.932; P = 0.022). Genetically predicted glycine levels were not associated with the risk of AD (OR = 1.145; 95% CI, 0.939-1.396; P = 0.180). Besides, MR analyses indicated no causal roles of three blood neurotransmitters in PD or ALS. In conclusion, the MR study provided evidence supporting the association of elevated blood glutamate levels with higher AD risks and the association of increased blood serotonin levels with lower AD risks. Triangulating evidence across further study designs is still warranted to elucidate the role of blood neurotransmitters in risks of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Li
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| | - Mengjuan Deng
- Department of Anesthesiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuhong Lin
- Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Gao
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| | - Bohao Liu
- Xiangya School of Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huimin Xia
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| |
Collapse
|
7
|
Trebesova H, Olivero G, Marchi M, Grilli M. The Anti-Aggregative Peptide KLVFF Mimics Aβ1-40 in the Modulation of Nicotinic Receptors: Implications for Peptide-Based Therapy. Biomedicines 2022; 10:biomedicines10092231. [PMID: 36140331 PMCID: PMC9496455 DOI: 10.3390/biomedicines10092231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, the inhibition of beta-amyloid (Aβ) aggregation has emerged as a potential strategy for Alzheimer’s disease. KLVFF, a small peptide corresponding to the aminoacidic sequence 16-20 of Aβ, reduces Aβ fibrillation dose dependently. Therefore, the toxic and functional characterization of its brain activity is fundamental for clarifying its potential therapeutic role. Accordingly, we studied the modulatory role of KLVFF on the cholinergic receptors regulating dopamine and noradrenaline release in rat synaptosomes. Nicotinic receptors on dopaminergic nerve terminals in the nucleus acccumbens are inhibited by KLVFF, which closely resembles full-length Aβ1-40. Moreover, KLVFF entrapped in synaptosomes does not modify the nicotinic receptor’s function, suggesting that external binding to the receptor is required for its activity. The cholinergic agent desformylflustrabromine counteracts the KLVFF effect. Remarkably, muscarinic receptors on dopaminergic terminals and nicotinic receptors regulating noradrenaline release in the hippocampus are completely insensitive to KLVFF. Based on our findings, KLVFF mimics Aβ1-40 as a negative modulator of specific nicotinic receptor subtypes affecting dopamine transmission in the rat brain. Therefore, new pharmacological strategies using the anti-aggregative properties of KLVFF need to be evaluated for potential interference with nicotinic receptor-mediated transmission.
Collapse
|
8
|
Guzmán-Ramos K, Osorio-Gómez D, Bermúdez-Rattoni F. Cognitive impairment in alzheimer’s and metabolic diseases: A catecholaminergic hypothesis. Neuroscience 2022; 497:308-323. [DOI: 10.1016/j.neuroscience.2022.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022]
|
9
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|