1
|
Spezzini J, Ciccone V, Macaluso M, Pieracci Y, Flamini G, Donnini S, Calderone V, Testai L, Zinnai A. Citrus reticulata Olive Oil: Production and Nutraceutical Effects on the Cardiovascular System in an In Vivo Rat Model of Metabolic Disorder. Nutrients 2024; 16:3172. [PMID: 39339772 PMCID: PMC11435420 DOI: 10.3390/nu16183172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Recently, there has been significant exploration into the utilization of food by-products as natural reservoirs of bioactive substances, particularly in the creation of functional foods naturally enriched with antioxidants. Citrus peels represent a viable option for formulating enhanced olive oils that contribute to a healthier diet, due to their bioactive compound content. This study aimed to (i) ascertain the compositional characteristics of Citrus reticulata olive oil (CrOO) and (ii) assess its nutraceutical properties in rats with metabolic disorder induced by 3 weeks of feeding with a high-fat diet (HFD). The results showed a peculiar phytochemical composition, thanks to the contribution of citrus peels, which are excellent bio-products. In addition, it demonstrated HFD-induced weight gain (18 ± 2% for HFD vs. 13 ± 0.9% for CrOO) and showed protective effects on fasting blood glucose levels (90.2 ± 3.8 mg/dL for HFD vs. 72.3 ± 2.6 for CrOO). Furthermore, a reduction in cardiovascular risk (total cholesterol/HDL cholesterol = 5.0 ± 0.3 for HFD vs. 3.8 ± 0.3 for CrOO) and an improvement in myocardial tissue function were observed, as well as a significant reduction in inflammatory mediators such as iNOS, COX-2, and mPGES-1 in aortic vessel tissues, thus preserving endothelial function at the vascular level.
Collapse
Grants
- This research was funded by FERS-TOSCANA 2014-2020, LONG LIFE OIL, Bando 1: Progetti strategici di ricerca e sviluppo This research was funded by FERS-TOSCANA 2014-2020, LONG LIFE OIL, Bando 1: Progetti strategici di ricerca e sviluppo
- TEQEVO, PSR 2014-2020 Tuscany region, 16.2, Bando GAL F.A.R Maremma. TEQEVO, PSR 2014-2020 Tuscany region, 16.2, Bando GAL F.A.R Maremma.
Collapse
Affiliation(s)
- Jacopo Spezzini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (J.S.); (Y.P.); (G.F.); (V.C.); (L.T.)
| | - Valerio Ciccone
- Department of Life Science, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (V.C.); (S.D.)
| | - Monica Macaluso
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (J.S.); (Y.P.); (G.F.); (V.C.); (L.T.)
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (J.S.); (Y.P.); (G.F.); (V.C.); (L.T.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Sandra Donnini
- Department of Life Science, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (V.C.); (S.D.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (J.S.); (Y.P.); (G.F.); (V.C.); (L.T.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (J.S.); (Y.P.); (G.F.); (V.C.); (L.T.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
2
|
Shi X, Zhang S, Li J, Ke Y, Bai Y. Fibronectin/α5 Integrin Contribute to Hypertension-Associated Arterial Ageing and Calcification through Affecting BMP2/MGP Imbalance and Enhancing Vascular Smooth Muscle Cell Phenotypic Transformation. Gerontology 2024; 70:858-875. [PMID: 38824923 DOI: 10.1159/000539399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION Hypertension can accelerate and aggravate the process of arterial ageing and calcification. However, the mechanism behind has yet to be well elucidated. METHODS Here, we monitored the dynamic changes of fibronectin (FN)/α5 integrin, bone morphogenetic protein 2/matrix Gla protein (BMP2/MGP), and Runx2 in the aorta of spontaneously hypertensive rats (SHRs) and thoracic aortic vascular smooth muscle cells (VSMCs), also the phenotypic transformation of VSMCs during the process of arterial ageing and calcification. Further, study on arterial ageing and calcification through antagonist experiments at the molecular level was explored. RESULTS We found extracellular FN and its α5 integrin receptor expressions were positively associated with arterial ageing and calcification in SHR during ageing, as well in VSMCs from SHR in vitro. Integrin receptor inhibitor of GRGDSP would delay this arterial ageing and calcification process. Moreover, the elevated FN and α5 integrin receptor expression evoked the disequilibrium of BMP2/MGP, where the expression of BMP2, a potent osteogenic inducer, increased while MGP, a calcification inhibitor, decreased. Furthermore, it was followed by the upregulation of Runx2 and the phenotypic transformation of VSMCs from the contractile phenotype into the osteoblast-like cells. Notably, BMP2 antagonist of rmNoggin was sufficient to ameliorate the ageing and calcification process of VSMCs and exogenous BMP2-adding accelerate and aggregate the process. CONCLUSION Our study revealed that hypertension-associated arterial ageing and calcification might be a consequence that hypertension up-regulated FN and its high binding affinity integrin α5 receptor in the aortic wall, which in turn aggravated the imbalance of BMP2/MGP, promoted the transcription of Runx2, and induced the phenotypic transformation of VSMCs from the contractile phenotype into the osteoblast-like cells. Our study would provide insights into hypertension-associated arterial ageing and calcification and shed new light on the control of arterial calcification, especially for those with hypertension.
Collapse
Affiliation(s)
- Xiaoyun Shi
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| | - Siduo Zhang
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinghui Li
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yilang Ke
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yajing Bai
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
Hao J, Zhang J, Wu T. Fucoxanthin extract ameliorates obesity associated with modulation of bile acid metabolism and gut microbiota in high-fat-diet fed mice. Eur J Nutr 2024; 63:231-242. [PMID: 37831134 DOI: 10.1007/s00394-023-03256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Fucoxanthin extract (FX) is a type of carotenoid with a beneficial effect against obesity. The purpose of this study was to explore its precise action mechanism of losing weight. METHODS A high-fat diet induced obesity mouse model was established to study the effects of different doses of FX on C57BL/6J male mice for 12 weeks. Following intervention, serum indices, tissue sections, liver gene expression, and intestinal microorganisms were analyzed. RESULTS FX at low, medium, and high dosages (80, 160, and 320 mg/kg/day, respectively) for 12 weeks was associated with the lower body weight of mice when compared to that of high-fat-diet fed mice. It also improved glucose tolerance as well as serum lipid levels, and reduced fat accumulation. Significant regulation of bile acid metabolism and intestinal microbiota may contribute to the above effects. The bile acids in the FXH group were significantly increased. A low-dose and a medium-dose FX increased the level of transmembrane G protein-coupled receptor 5 (TGR5); a low-dose and high-dose FX increased the farnesoid X receptor (FXR) expression, and a medium-dose had no effect. 16S rRNA sequencing indicated that the Lachnospiraceae and Oscillospiraceae contributed to the beneficial effects of FX. CONCLUSION Our study sheds light on mechanisms behind the weight-lowering of FX, and manifested that bile acid metabolism and gut microbiota may be potential therapies. These results support that FX is a valuable candidate for promoting health and alleviating obesity.
Collapse
Affiliation(s)
- Junyu Hao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jinxuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
4
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Kuroiwa T, Lui H, Nakagawa K, Iida N, Desrochers C, Wan R, Adam E, Larson D, Amadio P, Gingery A. Impact of High Fat Diet and Sex in a Rabbit Model of Carpal Tunnel Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549152. [PMID: 37546859 PMCID: PMC10402177 DOI: 10.1101/2023.07.15.549152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Carpal tunnel syndrome (CTS) is a common musculoskeletal disorder, characterized by fibrosis of the subsynovial connective tissue (SSCT) mediated by transforming growth factor beta (TGF-β). Risk factors for CTS include metabolic dysfunction and age. Additionally, the incidence of CTS is higher in women. In this study we hypothesized that a high-fat diet (HFD), a common driver of metabolic dysfunction, would promote SSCT fibrosis found in CTS and that this response would be sex dependent. To test this, we examined the effects of HFD and sex on SSCT fibrosis using our established rabbit model of CTS. Forty-eight (24 male, 24 female) adult rabbits were divided into four groups including HFD or standard diet with and without CTS induction. SSCT was collected for histological and gene expression analysis. HFD promoted SSCT thickening and upregulated profibrotic genes, including TGF-β. Fibrotic genes were differentially expressed in males and females. Interestingly while the prevalence of CTS is greater in women than in men, the converse is observed in the presence of metabolic dysfunction. This work recapitulates this clinical observation and begins to elucidate the sex-based differences found in SSCT fibrosis. This knowledge should drive further research and may lead to metabolic and sex specific therapeutic strategies for the treatment of patients with CTS.
Collapse
|
6
|
Ryabov VV, Vyshlov EV, Maslov LN, Mukhomedzyanov AV, Naryzhnaya NV, Boshchenko AA, Gombozhapova AE, Samoylova JO. The Signaling Mechanism of Remote Postconditioning of the Heart: Prospects of the Use of Remote Postconditioning for the Treatment of Acute Myocardial Infarction. Cells 2023; 12:1622. [PMID: 37371092 DOI: 10.3390/cells12121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Acute myocardial infarction (AMI) remains the leading cause of mortality in the world, highlighting an urgent need for the development of novel, more effective approaches for the treatment of AMI. Remote postconditioning (RPost) of the heart could be a useful approach. It was demonstrated that RPost triggers infarct size reduction, improves contractile function of the heart in reperfusion, mitigates apoptosis, and stimulates autophagy in animals with coronary artery occlusion and reperfusion. Endogenous opioid peptides and adenosine could be involved in RPost. It was found that kinases and NO-synthase participate in RPost. KATP channels, MPT pore, and STAT3 could be hypothetical end-effectors of RPost. Metabolic syndrome and old age abolish the cardioprotective effect of RPost in rats. The data on the efficacy of RPost in clinical practice are inconsistent. These data are discussed in the review.
Collapse
Affiliation(s)
- Vyacheslav V Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 634012 Tomsk, Russia
| | - Evgenii V Vyshlov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 634012 Tomsk, Russia
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 634012 Tomsk, Russia
| | - Alexandr V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 634012 Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 634012 Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 634012 Tomsk, Russia
| | - Aleksandra E Gombozhapova
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 634012 Tomsk, Russia
| | - Julia O Samoylova
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, 634012 Tomsk, Russia
| |
Collapse
|
7
|
Naryzhnaya NV, Derkachev IA, Kurbatov BK, Sirotina MA, Kilin M, Maslov LN. Decrease in Infarct-Limiting Effect of Chronic Normobaric Hypoxia in Rats with Induced Metabolic Syndrome Is Associated with Disturbances of Carbohydrate and Lipid Metabolism. Bull Exp Biol Med 2023; 174:723-727. [PMID: 37171712 DOI: 10.1007/s10517-023-05779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 05/13/2023]
Abstract
We studied the infarct-limiting effect of adaptation to chronic normobaric hypoxia in rats with induced metabolic syndrome and the relationship between disturbances of adaptive cardioprotection and disorders of carbohydrate and lipid metabolism. Adaptation to chronic normobaric hypoxia was carried out for 21 days at 12% O2 and 0.3% CO2. The metabolic syndrome was modeled with a high-carbohydrate high-fat diet for 84 days with replacement of drinking water with a 20% fructose solution. The infarct size in rats exposed to chronic normobaric hypoxia was 38% smaller than in control animals. In rats with induced metabolic syndrome, hypertension, obesity, decreased glucose tolerance, increased serum triglyceride, and no infarction-limiting effect of chronic normobaric hypoxia were observed. Infarct size showed a direct correlation with impaired glucose tolerance and serum triglyceride levels. The study allows us to conclude that the lack of cardioprotection in chronic normobaric hypoxia in rats with induced metabolic syndrome is associated with impaired carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - I A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - B K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M A Sirotina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M Kilin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
8
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
9
|
The infarct-limiting efficacy of deltorphin-II in old rats with diet-induced metabolic syndrome. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.6.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background. The discovery of new pharmacological agents for myocardial protection during reperfusion injury is an urgent goal of modern physiology and pharmacology.The aim of the study. To identify the potential for protecting the myocardium from reperfusion injury by administering the delta-2 opioid receptor agonist deltorphin-II prior to reperfusion in old rats with diet-induced metabolic syndrome.Materials and methods. The study was performed on Wistar rats aged 60 days (young rats) and 450 days (old rats) before the onset of a study. Metabolic syndrome (MetS) was modeled for 84 days with a high-carbohydrate high-fat diet (16 % protein, 21 % fat, 46 % carbohydrate) with the replacement of drinking water with 20 % fructose solution. Myocardial infarction was performed by 45-min coronary occlusion followed by 120-min reperfusion; the size of the area of the necrotic myocardium was determined relative to the size of the hypoperfusion zone. The delta-2 opioid receptor agonist deltorphin-II was administered once intravenously 5 minutes before the end of ischemia.Results. It was found that coronary occlusion and subsequent reperfusion both in groups of young and old rats led to the formation of myocardial infarction (necrosis), the size of which was 45 % of the size of the risk zone. Administration of deltorphin-II in old rats led to a limitation of infarct size to 30 % of the size of the risk zone, i. e. 1.7-fold. The use of deltorphin-II in old rats with MetS contributed to a decrease in infarct size to 27 % of the size of the risk zone (1.5 times). The obtained results demonstrate the cardioprotective efficacy of the delta-2 opioid receptor agonist deltorphin-II in aging and metabolic syndrome in rats.Conclusions. These data may serve as a basis for conducting preclinical studies of deltorphin-II as a drug for treatment of acute myocardial infarction.
Collapse
|
10
|
Development of cardioprotective effect of chronic continuous hypoxia in rats with induced metabolic syndrome. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. It is known that adaptation to chronic continuous hypoxia leads to a pronounced cardioprotective effect. The efficiency of acute adaptation to hypoxia is reduced in metabolic syndrome. However, the effectiveness of the myocardial infarct size-limiting effect of chronic continuous hypoxia in metabolic syndrome remains an understudied fact. The aim. To study the effectiveness of the development of the myocardial infarct size-limiting effect of chronic continuous hypoxia in rats with metabolic syndrome. Materials and methods. The study was carried out on 43 Wistar rats. Adaptation of animals to chronic hypoxia was performed during 21 days in a hypoxic chamber (12 % O2, 0.3 % CO2). Metabolic syndrome was modeled by keeping rats on a high-carbohydrate and high-fat diet (proteins 16 %, fats 21 %, carbohydrates 46 % (including fructose 17 %), cholesterol 0.125 %, cholic acid 0.5 %) for 12 weeks with replacement of drinking water with 20% fructose solution. Coronary occlusion-reperfusion was performed in vivo. The effect of chronic hypoxia and metabolic syndrome on myocardial infarct size was assessed. Results. It was found that myocardial infarct size in rats after chronic continuous hypoxia was 38 % less than in animals of the control group. In rats which were kept on a high-carbohydrate and high-fat diet we observed the obesity, decreased glucose tolerance, increased serum triglycerides level, and hypertension. Adaptation to chronic continuous hypoxia in animals on a high-carbohydrate and high-fat diet improved carbohydrate metabolism, but did not affect the severity of other metabolic disorders. At the same time, the myocardial infarct size-limiting effect of chronic hypoxia was not observed in rats with metabolic syndrome. Conclusion. Metabolic syndrome eliminated myocardial infarct size-limiting effect of chronic continuous hypoxia.
Collapse
|
11
|
Naryzhnaya NV, Maslov LN, Popov SV, Mukhomezyanov AV, Ryabov VV, Kurbatov BK, Gombozhapova AE, Singh N, Fu F, Pei JM, Logvinov SV. Pyroptosis is a drug target for prevention of adverse cardiac remodeling: The crosstalk between pyroptosis, apoptosis, and autophagy. J Biomed Res 2022; 36:375-389. [PMID: 36320147 PMCID: PMC9724161 DOI: 10.7555/jbr.36.20220123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acute myocardial infarction (AMI) is one of the main reasons of cardiovascular disease-related death. The introduction of percutaneous coronary intervention to clinical practice dramatically decreased the mortality rate in AMI. Adverse cardiac remodeling is a serious problem in cardiology. An increase in the effectiveness of AMI treatment and prevention of adverse cardiac remodeling is difficult to achieve without understanding the mechanisms of reperfusion cardiac injury and cardiac remodeling. Inhibition of pyroptosis prevents the development of postinfarction and pressure overload-induced cardiac remodeling, and mitigates cardiomyopathy induced by diabetes and metabolic syndrome. Therefore, it is reasonable to hypothesize that the pyroptosis inhibitors may find a role in clinical practice for treatment of AMI and prevention of cardiac remodeling, diabetes and metabolic syndrome-triggered cardiomyopathy. It was demonstrated that pyroptosis interacts closely with apoptosis and autophagy. Pyroptosis could be inhibited by nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 inhibitors, caspase-1 inhibitors, microRNA, angiotensin-converting enzyme inhibitors, angiotensin Ⅱ receptor blockers, and traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia,Leonid N. Maslov, Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Kyevskaya 111A, Tomsk, Tomsk Region 634012, Russia. Tel: +7-3822-262174, E-mail:
| | - Sergey V. Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Alexandr V. Mukhomezyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Vyacheslav V. Ryabov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Boris K. Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Alexandra E. Gombozhapova
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sergey V. Logvinov
- Department of Histology, Embryology and Cytology, Siberian State Medical University, Tomsk, Tomsk Region 634055, Russia
| |
Collapse
|
12
|
Birulina JG, Ivanov VV, Buyko EE, Bykov VV, Dzyuman AN, Nosarev АV, Grigoreva AV, Gusakova SV. Morphological changes in the heart and aorta of rats with diet-induced metabolic syndrome. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-13-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim. To identify early morphological changes in the heart and aorta of rats with experimental metabolic syndrome induced by a high-fat and high-carbohydrate diet (HFHCD).Materials and methods. The study was carried out on male Wistar rats. The animals were divided into two groups: a control group (n = 10) and an experimental group (n = 10). The rats from the control group were fed with a standard laboratory diet. The rats from the experimental group received HFHCD for 12 weeks. Body weight, blood pressure (BP), and individual parameters of carbohydrate and lipid metabolism were assessed in the rats. A histologic examination of the heart and aorta in the animals was performed.Results. Feeding rats with HFHCD led to an increase in body weight, elevation of BP, obesity, hyperglycemia, and triglyceridemia. The histologic examination of the heart in the rats of the experimental group showed signs of vascular disease, lipomatosis, and focal myocardial degeneration. Lipid accumulation in the cells of the media, hyperplasia of adipocytes in the adventitia, and depletion and fragmentation of the elastic lamina were revealed in the aortic wall of the rats receiving HFHCD.Conclusion. The study indicated that HFHCD is an effective way to model metabolic syndrome. Structural disorders in the heart and aorta may be the mainstay for the development of cardiomyopathy and arterial hypertension in diet-induced metabolic syndrome.
Collapse
|
13
|
The "Diet Model" and Metabolic Syndrome Components: Results from the Cordoba Health and Dietary Habits Investigation (CoHDHI). Nutrition 2022; 102:111739. [DOI: 10.1016/j.nut.2022.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
|
14
|
Majewski M, Juśkiewicz J, Krajewska-Włodarczyk M, Gromadziński L, Socha K, Cholewińska E, Ognik K. The Role of 20-HETE, COX, Thromboxane Receptors, and Blood Plasma Antioxidant Status in Vascular Relaxation of Copper-Nanoparticle-Fed WKY Rats. Nutrients 2021; 13:nu13113793. [PMID: 34836047 PMCID: PMC8623823 DOI: 10.3390/nu13113793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the addition of copper nanoparticles (NPs) in a daily diet (6.5 mg/kg) was studied in different animal models as a possible alternative to ionic forms. Male Wistar-Kyoto rats (24-week-old, n = 11) were fed with copper, either in the form of carbonate salt (Cu6.5) or metal-based copper NPs (NP6.5), for 8 weeks. The third group was fed with a half dose of each (NP3.25 + Cu3.25). The thoracic aorta and blood plasma was studied. Supplementation with NP6.5 decreased the Cu (×0.7), Cu/Zn-ratio (×0.6) and catalase (CAT, ×0.7), and increased Zn (×1.2) and superoxide dismutase (SOD, ×1.4). Meanwhile, NP3.25 + Cu3.25 decreased the Cu/Zn-ratio (×0.7), and CAT (×0.7), and increased the daily feed intake (×1.06). Preincubation with either the selective cyclooxygenase (COX)-2 inhibitor, or the non-selective COX-1/2 inhibitor attenuated vasodilation of rat thoracic aorta in the NP6.5 group exclusively. However, an increased vasodilator response was observed in the NP6.5 and NP3.25 + Cu3.25 group of rats after preincubation with an inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) formation, and the thromboxane receptor (TP) antagonist. Significant differences were observed between the NP6.5 and NP3.25 + Cu3.25 groups of rats in: dietary intake, acetylcholine-induced vasodilation, and response to COX-inhibitors. Copper NPs in a standard daily dose had more significant effects on the mechanism(s) responsible for the utilization of reactive oxygen species in the blood plasma with the participation of prostanoids derived from COX-2 in the vascular relaxation. Dietary copper NPs in both doses modified vasodilation through the vasoconstrictor 20-HETE and the TP receptors.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, UWM, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-56-68
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | | | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland; (E.C.); (K.O.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland; (E.C.); (K.O.)
| |
Collapse
|