1
|
Papadopoulou D, Chrysikopoulou V, Rampaouni A, Tsoupras A. Antioxidant and anti-inflammatory properties of water kefir microbiota and its bioactive metabolites for health promoting bio-functional products and applications. AIMS Microbiol 2024; 10:756-811. [PMID: 39628717 PMCID: PMC11609422 DOI: 10.3934/microbiol.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
Inflammation and oxidative stress are implicated in several chronic disorders, while healthy foods and especially fermented beverages and those containing probiotics can provide anti-inflammatory and antioxidant protection against such manifestations and the associated disorders. Water kefir is such a beverage that is rich in both probiotic microbiota and anti-inflammatory bioactives, with an increasing demand as an alternative to a fermented product based on non-dairy matrix with potential health properties. Within this study, the health-promoting properties of the most representative species and strains of microorganisms present in water kefir grains, as well as the health benefits attributed to the bioactive metabolites produced by each individual strain in a series of their cultures, were thoroughly reviewed. Emphasis was given to the antioxidant, antithrombotic, and anti-inflammatory bio-functionalities of both the cultured microorganisms and the bioactive metabolites produced in each case. Moreover, an extensive presentation of the antioxidant and anti-inflammatory health benefits observed from the overall water kefir cultures and classic water kefir beverages obtained were also conducted. Finally, the use of water kefir for the production of several other bio-functional products, including fermented functional foods, supplements, nutraceuticals, nutricosmetics, cosmeceuticals, and cosmetic applications with anti-inflammatory and antioxidant health promoting potential was also thoroughly discussed. Limitations and future perspectives on the use of water kefir, its microorganisms, and their bioactive metabolites are also outlined.
Collapse
Affiliation(s)
| | | | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404, Kavala, Greece
| |
Collapse
|
2
|
Sołtysik BK, Karolczak K, Kostka T, Stephenson SS, Watala C, Kostka J. Contribution of Physical Activity to the Oxidative and Antioxidant Potential in 60-65-Year-Old Seniors. Antioxidants (Basel) 2023; 12:1200. [PMID: 37371930 DOI: 10.3390/antiox12061200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Both acute exercise and regular physical activity (PA) are directly related to the redox system. However, at present, there are data suggesting both positive and negative relationships between the PA and oxidation. In addition, there is a limited number of publications differentiating the relationships between PA and numerous markers of plasma and platelets targets for the oxidative stress. In this study, in a population of 300 participants from central Poland (covering the age range between 60 and 65 years), PA was assessed as regards energy expenditure (PA-EE) and health-related behaviors (PA-HRB). Total antioxidant potential (TAS), total oxidative stress (TOS) and several other markers of an oxidative stress, monitored in platelet and plasma lipids and proteins, were then determined. The association of PA with oxidative stress was determined taking into the account basic confounders, such as age, sex and the set of the relevant cardiometabolic factors. In simple correlations, platelet lipid peroxides, free thiol and amino groups of platelet proteins, as well as the generation of superoxide anion radical, were inversely related with PA-EE. In multivariate analyses, apart from other cardiometabolic factors, a significant positive impact of PA-HRB was revealed for TOS (inverse relationship), while in the case of PA-EE, the effect was found to be positive (inverse association) for lipid peroxides and superoxide anion but negative (lower concentration) for free thiol and free amino groups in platelets proteins. Therefore, the impact of PA may be different on oxidative stress markers in platelets as compared to plasma proteins and also dissimilar on platelet lipids and proteins. These associations are more visible for platelets than plasma markers. For lipid oxidation, PA seems to have protective effect. In the case of platelets proteins, PA tends to act as pro-oxidative factor.
Collapse
Affiliation(s)
- Bartłomiej K Sołtysik
- Department of Geriatrics, Medical University of Lodz, Haller Square No. 1, 90-419 Łódź, Poland
| | - Kamil Karolczak
- Department of Hemostatic Disorders, Medical University of Lodz, Mazowiecka Street 6/8, 92-215 Łódź, Poland
| | - Tomasz Kostka
- Department of Geriatrics, Medical University of Lodz, Haller Square No. 1, 90-419 Łódź, Poland
| | - Serena S Stephenson
- Department of Geriatrics, Medical University of Lodz, Haller Square No. 1, 90-419 Łódź, Poland
| | - Cezary Watala
- Department of Hemostatic Disorders, Medical University of Lodz, Mazowiecka Street 6/8, 92-215 Łódź, Poland
| | - Joanna Kostka
- Department of Gerontology, Medical University of Lodz, Milionowa Street No. 14, 93-113 Łódź, Poland
| |
Collapse
|
3
|
Rwubuzizi R, Kim H, Holzapfel WH, Todorov SD. Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon 2023; 9:e15610. [PMID: 37151672 PMCID: PMC10161700 DOI: 10.1016/j.heliyon.2023.e15610] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
The role of lactic acid bacteria (LAB) as probiotics as health promoting factors for human or veterinary practice has gained increasing interest during the last three decades. This is reflected in screening approaches of LAB strains in line with minimal requirements for a "probiotic" with regard to safety and functionality. The latter might also include natural antioxidant properties, thereby constituting an additional benefit in substituting synthetic antioxidants. The in vitro antioxidant assays conducted in this study included the scavenging of the 2,2-diphenyl-1-picrylhydrazil (DPPH) free radical, metal (Fe+2) ion chelation, determining the scavenging properties of the hydroxyl and superoxide radicals, and anti-lipid peroxidation. Analysis of DPPH free radical scavenging property for the microorganisms included in current study, showed Streptococcus salivarius ST59HK to exhibit the highest activity at a level of 85.24%. The greatest Fe+2 chelation activity with 98.2% was recorded for Str. salivarius ST62HK while the lowest was recorded for Str. salivarius ST48HK at 71.5%. The greatest and minimal hydroxyl radical scavenging levels were detected for Str. salivarius ST59HK (98.6%) and Lactiplantibacillus plantarum ST63HK (35.60%), respectively. Superoxide anion radical scavenging activity was highly exhibited by Str. salivarius ST61HK (54.62%) and the least exhibited by Enterococcus faecium ST651ea (18.7%). Lastly, the strains Lactobacillus gasseri ST16HK and E. faecium ST7319ea showed the highest and lowest anti-lipid peroxidation levels with 69.43% and 26.15%, respectively. Anti-oxidative properties appear to be strain specific and thus some of these strains could be potentially applied as natural antioxidants in fermented food products.
Collapse
Affiliation(s)
- Ronaldo Rwubuzizi
- ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk, 37554, Pohang, Republic of Korea
| | - Hamin Kim
- ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk, 37554, Pohang, Republic of Korea
| | - Wilhelm Heinrich Holzapfel
- ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk, 37554, Pohang, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk, 37554, Pohang, Republic of Korea
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
- Corresponding author. ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk 37554, Pohang, Republic of Korea.
| |
Collapse
|
4
|
The Role of Amino Acids in Endothelial Biology and Function. Cells 2022; 11:cells11081372. [PMID: 35456051 PMCID: PMC9030017 DOI: 10.3390/cells11081372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022] Open
Abstract
The vascular endothelium acts as an important component of the vascular system. It is a barrier between the blood and vessel wall. It plays an important role in regulating blood vessel tone, permeability, angiogenesis, and platelet functions. Several studies have shown that amino acids (AA) are key regulators in maintaining vascular homeostasis by modulating endothelial cell (EC) proliferation, migration, survival, and function. This review summarizes the metabolic and signaling pathways of AAs in ECs and discusses the importance of AA homeostasis in the functioning of ECs and vascular homeostasis. It also discusses the challenges in understanding the role of AA in the development of cardiovascular pathophysiology and possible directions for future research.
Collapse
|
5
|
Jiao C, Zou J, Chen Z, Zheng F, Xu Z, Lin YH, Wang Q. Dietary Glutamine Inclusion Regulates Immune and Antioxidant System, as Well as Programmed Cell Death in Fish to Protect against Flavobacterium columnare Infection. Antioxidants (Basel) 2021; 11:44. [PMID: 35052548 PMCID: PMC8773122 DOI: 10.3390/antiox11010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/07/2023] Open
Abstract
The susceptibility of animals to pathogenic infection is significantly affected by nutritional status. The present study took yellow catfish (Pelteobagrus fulvidraco) as a model to test the hypothesis that the protective roles of glutamine during bacterial infection are largely related to its regulation on the immune and antioxidant system, apoptosis and autophagy. Dietary glutamine supplementation significantly improved fish growth performance and feed utilization. After a challenge with Flavobacterium columnare, glutamine supplementation promoted il-8 and il-1β expression via NF-κB signaling in the head kidney and spleen, but inhibited the over-inflammation in the gut and gills. Additionally, dietary glutamine inclusion also enhanced the systematic antioxidant capacity. Histological analysis showed the protective role of glutamine in gill structures. Further study indicated that glutamine alleviated apoptosis during bacterial infection, along with the reduced protein levels of caspase-3 and the reduced expression of apoptosis-related genes. Moreover, glutamine also showed an inhibitory role in autophagy which was due to the increased activation of the mTOR signaling pathway. Thus, our study for the first time illustrated the regulatory roles of glutamine in the fish immune and antioxidant system, and reported its inhibitory effects on fish apoptosis and autophagy during bacterial infection.
Collapse
Affiliation(s)
- Congrui Jiao
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Jiahong Zou
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Zhenwei Chen
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Feifei Zheng
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Zhen Xu
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| | - Yu-Hung Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912, Taiwan
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China; (C.J.); (J.Z.); (Z.C.); (F.Z.); (Z.X.)
| |
Collapse
|