1
|
Qaisar R, Karim A, Alkahtani SA, Khan IU, Ahmad F. The improvement in muscle function following statin withdrawal might involve the repair of the neuromuscular junction. Br J Clin Pharmacol 2025. [PMID: 40195586 DOI: 10.1002/bcp.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 04/09/2025] Open
Abstract
AIMS The effects and relative mechanisms of statin usage and withdrawal on subjective and objective muscle functions are poorly known. We investigated the associations of neuromuscular junction (NMJ) degradation to muscle impairment in older adults taking statins. METHODS We recruited male controls (n = 82) and statin users (n = 76) for measuring handgrip strength (HGS), body composition, gait speed, short physical performance battery (SPPB), statin-associated muscle symptoms (SAMS) and plasma c-terminal agrin fragment-22 (CAF22; a marker of NMJ degradation). The statin users were evaluated at baseline, 1 year after statin usage and 6 months after statin withdrawal. RESULTS One year of statin usage was associated with lower HGS, gait speed, SPPB scores and higher SAMS scores and plasma CAF22 levels (all P < .05). Conversely, 6 months after statin withdrawal, gait speed and SPPB scores were restored with a concurrent reduction in SAMS and CAF22 levels (all P < .05). Correlation analysis revealed significant correlations of plasma CAF22 with HGS, SPPB and SAMS after statin usage and withdrawal (all P < .05). Lastly, statin withdrawal also reduced the plasma creatine kinase levels (P < .05). CONCLUSION Altogether, statin usage was associated with muscle and physical decline and an increase in CAF22 and SAMS, which were partly restored after statin withdrawal. Our findings suggest a role for NMJ plasticity in muscle restoration following statin withdrawal.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shaea A Alkahtani
- Exercise physiology department, college of Sport Sciences and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Imran Ullah Khan
- Department of Pulmonology, Rehman Medical Institute, Peshawar, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2025; 47:2245-2261. [PMID: 39495479 PMCID: PMC11979091 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Fatima R, Kim Y, Baek S, Suram R, An S, Hong Y. C-Terminal Agrin Fragment as a Biomarker for Sarcopenia: A Systematic Review and Meta-Analysis. J Cachexia Sarcopenia Muscle 2025; 16:e13707. [PMID: 39887577 PMCID: PMC11780277 DOI: 10.1002/jcsm.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Sarcopenia is a gradual decline in skeletal muscle mass and strength, which eventually leads to reduced physical performance. 50% of people aged 60-80 years suffer from sarcopenia. Considering the devastating outcomes and the importance of promoting healthy ageing, the diagnosis and prevention of sarcopenia is of utmost importance. Recently, C-terminal agrin fragment (CAF) has been identified as an indicator for early diagnosis of sarcopenia. So far, systematic reviews demonstrating CAF as a biomarker for sarcopenia have been conducted, but a meta-analysis is still needed. This study contains systematic review as well as detailed meta-analysis to better understand the association of CAF and sarcopenia. METHODS Articles were primarily obtained from four different databases. Studies demonstrating the association between CAF and sarcopenia were selected. Data extraction and analysis were performed using STATASE 16 software. The risk of bias and quality assessment of each study was carried out using Joanna Briggs Institute (JBI) Critical Appraisal Tool. Meta-regression, subgroup and sensitivity analysis were conducted to identify the source of heterogeneity. RESULTS Seventeen studies were included in the qualitative analysis, out of which 10 were included in the quantitative analysis. The meta-analysis showed that CAF levels were significantly higher in sarcopenia patients, with an effect size of 1.93 (ROM = 1.93, 95% CI [1.49 to 2.36]; p = 0.00) and 1.38 (ROM = 1.38, 95% CI [0.94 to 1.83], p = 0.00) when compared with non-sarcopenic and non-sarcopenic (other co-morbidities) group, respectively. CAF levels were also negatively associated with hand grip strength (HGS) and skeletal muscle index (SMI) with an effect size of 1.09 (ROM = 1.09 with 95% CI [1.05 to 1.13], p = 0.00) and 1.10 (ROM = 1.10 with 95% CI [1.05 to 1.14], p = 0.00), respectively. Meta-regression and subgroup analysis revealed that although sarcopenia is associated with increasing age, the correlation between CAF and age was statistically insignificant (p = 0.44), suggesting that the variation of age among sarcopenia patients could be source of heterogeneity among studies. All the studies included in the meta-analysis reported low risk of bias. CONCLUSIONS Our meta-analysis concluded that elevated CAF levels were associated with sarcopenia and decreased HGS and SMI. CAF could serve as a valuable marker for the early detection and monitoring of sarcopenia, ultimately facilitating the management and treatment of this debilitating condition.
Collapse
Affiliation(s)
- Rida Fatima
- Department of Rehabilitation ScienceGraduate School of Inje UniversityGimhaeSouth Korea
- Biohealth Products Research Center (BPRC)Inje UniversityGimhaeSouth Korea
- Research Center for Aged‐Life Redesign (RCAR)Inje UniversityGimhaeSouth Korea
| | - Yonghoon Kim
- Department of Rehabilitation ScienceGraduate School of Inje UniversityGimhaeSouth Korea
- Biohealth Products Research Center (BPRC)Inje UniversityGimhaeSouth Korea
- Research Center for Aged‐Life Redesign (RCAR)Inje UniversityGimhaeSouth Korea
| | - Suhyeon Baek
- Department of Rehabilitation ScienceGraduate School of Inje UniversityGimhaeSouth Korea
- Biohealth Products Research Center (BPRC)Inje UniversityGimhaeSouth Korea
- Research Center for Aged‐Life Redesign (RCAR)Inje UniversityGimhaeSouth Korea
| | - Reema Priyanka Suram
- Department of Rehabilitation ScienceGraduate School of Inje UniversityGimhaeSouth Korea
- Biohealth Products Research Center (BPRC)Inje UniversityGimhaeSouth Korea
- Research Center for Aged‐Life Redesign (RCAR)Inje UniversityGimhaeSouth Korea
| | - Sun‐Joung Leigh An
- Department of Rehabilitation ScienceGraduate School of Inje UniversityGimhaeSouth Korea
- Research Center for Aged‐Life Redesign (RCAR)Inje UniversityGimhaeSouth Korea
- Department of Occupational Therapy, College of Healthcare Medical Science & EngineeringInje UniversityGimhaeSouth Korea
| | - Yonggeun Hong
- Department of Rehabilitation ScienceGraduate School of Inje UniversityGimhaeSouth Korea
- Biohealth Products Research Center (BPRC)Inje UniversityGimhaeSouth Korea
- Research Center for Aged‐Life Redesign (RCAR)Inje UniversityGimhaeSouth Korea
- Department of Physical Therapy, College of Healthcare Medical Science & EngineeringInje UniversityGimhaeSouth Korea
| |
Collapse
|
4
|
Qaisar R, Karim A, Iqbal MS, Muhammad T, Ahmad F, Alkahtani SA. The Pathology of Intestinal Mucosal Disruption; Implications for Muscle Loss and Physical Dependency from Late Adolescence to Octogenarians. Int J Gen Med 2024; 17:6117-6126. [PMID: 39687221 PMCID: PMC11648551 DOI: 10.2147/ijgm.s501358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Background and Objectives A pathological increase in intestinal permeability causes muscle loss and physical decline by inducing systemic inflammation and oxidative stress. However, most relevant studies investigate older adults, and the appropriate data across age spans remain elusive. This study aimed to examine the associations of intestinal permeability with muscle loss and physical decline across a large span of ages. We measured plasma zonulin, a marker of increased intestinal permeability, from adolescents to octogenarians in association with muscle health and gait speed. Research Methods and Procedures In this cross-sectional, observational study, we recruited healthy men, including young (age=18-35 years, n=135), middle-aged (age=35-59 years, n=118), and older (age=60-90 years, n=163) adults for evaluating - handgrip strength (HGS), skeletal muscle mass index (SMI), and gait speed. We also measured plasma zonulin, c-reactive proteins (CRP), and 8-isoprostanes using ELISA assays. Results Plasma zonulin gradually increased from young and middle-aged to older adults (all p<0.05). Conversely, HGS and gait speed were progressively reduced from young and middle-aged to older adults (all p<0.05). In addition, older adults also exhibited lower SMI than young and middle-aged men (both p<0.05). Plasma zonulin exhibited significant negative correlations with HGS and gait speed and positive correlations with CRP and 8-isoprostanes in middle-aged and older men (all p<0.05). We also found significant areas under the curve for the efficacy of plasma zonulin in diagnosing low HGS (<27kg) and gait speed (0.8 m/s). After adjustment for age, plasma zonulin demonstrated robust negative correlations with HGS and gait speed and positive correlations with CRP and 8-isoprostanes in the cumulative cohort. Conclusion Altogether, an increasing intestinal leak from middle age onward contributes to muscle weakness and physical decline. Our data is clinically relevant in understanding and treating physical dependency in middle-aged and older adults.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Cardiovascular Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar, 25124, Pakistan
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, Pakistan
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Cardiovascular Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shaea A Alkahtani
- Exercise Physiology Department, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Qaisar R, Javed M, Khan IM, Ahmad F, Karim A. Metformin improves skeletal muscle and physical capacity by stabilizing neuromuscular junction in older adults. Arch Gerontol Geriatr 2024; 127:105587. [PMID: 39084174 DOI: 10.1016/j.archger.2024.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES Metformin is an anti-diabetic drug with protective effects on skeletal muscle and physical capacity. However, the relevant mechanisms of action on skeletal muscle remain poorly understood. We investigated the potential contribution of neuromuscular junction (NMJ) degradation to skeletal muscle and physical capacity in geriatric men taking metformin. METHOD We recruited geriatric men for placebo (Age=73.1 ± 4.2 years, n = 70) and metformin (Age=70.1 ± 4.5 years, n = 62) groups. The patients in the metformin group received 1700 mg of metformin twice a day for 16 weeks. We measured plasma c-terminal agrin-fragment-22 (CAF22) and neurofilament light chain (NfL) as markers of neuromuscular junction (NMJ) degradation and neurodegeneration, respectively, with relevance to handgrip strength (HGS) and short physical performance battery (SPPB; a marker of physical capacity) in older adults taking metformin. These findings were associated with reduced oxidative stress in the metformin group. RESULTS At baseline, both groups had similar HGS, gait speed, SPPB scores, and plasma biochemistry. Metformin improved HGS, gait speed, and cumulative SPPB scores in geriatric men (all p < 0.05). Metformin also reduced plasma CAF22 and NfL levels when compared to baseline. Similar observations were not found in the placebo group. Correlation analysis revealed significant correlations of plasma CAF22 with HGS, gait speed, and cumulative SPPB scores in the metformin group. These observations were associated with reduced oxidative stress in the metformin group. CONCLUSION Altogether, the restorative effects of metformin on skeletal muscle and physical capacity involve NMJ stabilization. Our data is clinically relevant for geriatric men with functional disabilities.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Mashal Javed
- Department of Physiotherapy, Burn and Plastic Surgery Center, Hayatabad Medical Complex, Hayatabad, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Imran Muhammad Khan
- Burn and Plastic Surgery Center, Hayatabad Medical Complex, Hayatabad, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
6
|
Molnar T, Lehoczki A, Fekete M, Varnai R, Zavori L, Erdo-Bonyar S, Simon D, Berki T, Csecsei P, Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. GeroScience 2024; 46:5267-5286. [PMID: 38668888 PMCID: PMC11336094 DOI: 10.1007/s11357-024-01165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms. This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated. We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.
Collapse
Affiliation(s)
- Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School University of Pecs, Pecs, Hungary
| | | | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, Ret U 2, 7624, Pecs, Hungary.
| | - Erzsebet Ezer
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
7
|
Delpino MV, Quarleri J. Aging mitochondria in the context of SARS-CoV-2: exploring interactions and implications. FRONTIERS IN AGING 2024; 5:1442323. [PMID: 39380657 PMCID: PMC11458564 DOI: 10.3389/fragi.2024.1442323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented global challenges with a diverse clinical spectrum, including severe respiratory complications and systemic effects. This review explores the intricate relationship between mitochondrial dysfunction, aging, and obesity in COVID-19. Mitochondria are vital for cellular energy provision and resilience against age-related macromolecule damage accumulation. They manage energy allocation in cells, activating adaptive responses and stress signals such as redox imbalance and innate immunity activation. As organisms age, mitochondrial function diminishes. Aging and obesity, linked to mitochondrial dysfunction, compromise the antiviral response, affecting the release of interferons, and worsening COVID-19 severity. Furthermore, the development of post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID has been associated with altered energy metabolism, and chronic immune dysregulation derived from mitochondrial dysfunction. Understanding the interplay between mitochondria, aging, obesity, and viral infections provides insights into COVID-19 pathogenesis. Targeting mitochondrial health may offer potential therapeutic strategies to mitigate severe outcomes and address long-term consequences in infected individuals.
Collapse
|
8
|
Wang Q, Shi P, Cao L, Li H, Chen X, Wang P, Zhang J. Unveiling the detrimental vicious cycle linking skeletal muscle and COVID-19: A systematic review and meta-analysis. J Evid Based Med 2024; 17:503-525. [PMID: 38975690 DOI: 10.1111/jebm.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Skeletal muscle catabolism supports multiple organs and systems during severe trauma and infection, but its role in COVID-19 remains unclear. This study investigates the interactions between skeletal muscle and COVID-19. METHODS The PubMed, EMbase, and The Cochrane Library databases were systematically searched from January 2020 to August 2023 for cohort studies focusing on the impact of skeletal muscle on COVID-19 prevalence and outcomes, and longitudinal studies examining skeletal muscle changes caused by COVID-19. Skeletal muscle quantity (SMQN) and quality (SMQL) were assessed separately. The random-effect model was predominantly utilized for statistical analysis. RESULTS Seventy studies with moderate to high quality were included. Low SMQN/SMQL was associated with an increased risk of COVID-19 infection (OR = 1.62, p < 0.001). Both the low SMQN and SMQL predicted COVID-19-related mortality (OR = 1.53, p = 0.016; OR = 2.18, p = 0.001, respectively). Mortality risk decreased with increasing SMQN (OR = 0.979, p = 0.009) and SMQL (OR = 0.972, p = 0.034). Low SMQN and SMQL were also linked to the need for intensive care unit/mechanical ventilation, increased COVID-19 severity, and longer hospital stays. Significant skeletal muscle wasting, characterized by reduced volume and strength, was observed during COVID-19 infection and the pandemic. CONCLUSIONS This study reveals a detrimental vicious circle between skeletal muscle and COVID-19. Effective management of skeletal muscle could be beneficial for treating COVID-19 infections and addressing the broader pandemic. These findings have important implications for the management of future virus pandemics. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023395476.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peipei Shi
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Cao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Li
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Xiankai Chen
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyu Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Jianjiang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Qaisar R, Karim A, Iqbal MS, Ahmad F, Hussain MA. Tracking the Plasma C-Terminal Agrin Fragment as a Biomarker of Neuromuscular Decline in 18- to 87-Year-Old Men. Mol Diagn Ther 2024; 28:611-620. [PMID: 38961032 DOI: 10.1007/s40291-024-00724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVES Plasma C-terminal agrin-fragment-22 (CAF22), a breakdown product of neuromuscular junction, is a potential biomarker of muscle loss. However, its levels from adolescence to octogenarians are unknown. METHODS We evaluated young (18-34 years, n = 203), middle-aged (35-59 years, n = 163), and old men (60-87 years, n = 143) for CAF22, handgrip strength (HGS), appendicular skeletal-mass index (ASMI), and gait speed. RESULTS We found an age-associated increase in CAF22 from young (100.9 ± 29 pmol) to middle-aged (128.3 ± 38.7 pmol) and older men (171.5 ± 35.5 pmol) (all p<0.05). This was accompanied by a gradual reduction in HGS (37.7 ± 6.1 kg, 30.2 ± 5.2 kg, and 26.6 ± 4.7 kg, for young, middle-aged, and old men, respectively), ASMI (8.02 ± 1.02 kg/m2, 7.65 ± 0.92 kg/m2, 6.87 ± 0.93 kg/m2, for young, middle-aged, and old men, respectively), and gait speed (1.29 ± 0.24 m/s, 1.05 ± 0.16 m/s, and 0.81 ± 0.13 m/s, for young, middle-aged, and old men, respectively). After adjustment for age, we found negative regressions of CAF22 with HGS (- 0.0574, p < 0.001) and gait speed (- 0.0162, p < 0.001) in the cumulative cohort. The receiver operating characteristics analysis revealed significant efficacy of plasma CAF22 in diagnosing muscle weakness (HGS < 27 kg) (middle-aged men; AUC = 0.731, 95% CI = 0.629-0.831, p < 0.001, Older men; AUC = 0.816, 95% CI = 0.761-0.833, p < 0.001), and low gait speed (0.8 m/s) (middle-aged men; AUC = 0.737, 95% CI = 0.602-0.871, p < 0.001, older men; AUC = 0.829, 95% CI = 0.772-0.886, p < 0.001), and a modest efficacy in diagnosing sarcopenia (middle-aged men; AUC = 0.701, 95% CI = 0.536-0.865, p = 0.032, older men; AUC = 0.822, 95% CI = 0.759-0.884, p < 0.001) in middle-aged and older men. CONCLUSION Altogether, CAF22 increases with advancing age and may be a reliable marker of muscle weakness and low gait speed.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Space Medicine Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Cardiovascular Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar, 25124, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - M Azhar Hussain
- Department of Finance and Economics, College of Business Administration, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Social Sciences and Business, Roskilde University, 4000, Roskilde, Denmark
| |
Collapse
|
10
|
Qaisar R, Hussain S, Karim A, Muhammad T, Ustrana S, Azhar Hussain M, Ahmad F. A leaky gut contributes to postural imbalance in male patients with chronic obstructive pulmonary disease. Clin Nutr ESPEN 2024; 62:157-163. [PMID: 38901937 DOI: 10.1016/j.clnesp.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
AIMS Patients with chronic obstructive pulmonary disease (COPD) frequently exhibit an inability to maintain postural balance. However, the contribution of increased intestinal permeability or leaky gut to the postural imbalance in COPD is not known. METHODS We measured plasma zonulin, a marker of leaky gut, with relevance to postural balance in male controls (n = 70) and patients with mild (n = 67), moderate (n = 66), and severe (n = 58) COPD. We employed a short physical performance battery to evaluate postural balance in supine, tandem, and semi-tandem positions. We also measured handgrip strength (HGS), gait speed, plasma c-reactive proteins (CRP), and 8-isoprostanes as potential mechanistic connections between postural imbalance and leaky gut. RESULTS COPD patients demonstrated higher plasma zonulin, CRP, and 8-isoprostanes levels and lower balance, HGS, and gait speed than controls (all p < 0.05). These findings were more robust in patients with moderate and severe than mild COPD. In addition, plasma zonulin exhibited significant potential in diagnosing poor balance, low HGS, and gait speed in COPD patients (all p < 0.05). We also found significant correlations of plasma zonulin with CRP and 8-isoprostanes, providing heightened inflammation and oxidative stress as mechanistic connections between leaky gut and postural imbalance. CONCLUSION Plasma zonulin may be helpful in evaluating postural imbalance in COPD patients. Repairing intestinal leaks can be a therapeutic target to improve postural control in COPD.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Shah Hussain
- Medical Oncology Department, Hayatabad Medical Complex, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shahjahan Ustrana
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan 25120, Khyber Pakhtunkhwa, Pakistan
| | - M Azhar Hussain
- Department of Finance and Economics, College of Business Administration, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
11
|
Soto ME, Manzano-Pech L, Guarner-Lans V, Palacios-Chavarría A, Valdez-Vázquez RR, Martínez-Memije R, El-Hafidi M, Rodríguez-Fierros FL, Pérez-Torres I. Preliminary Study on the Restoration of the Phospholipid Profile in Serum from Patients with COVID-19 by Treatment with Vitamin E. Curr Issues Mol Biol 2024; 46:7219-7238. [PMID: 39057070 PMCID: PMC11276170 DOI: 10.3390/cimb46070429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
SARS-CoV-2 is an obligatory intracellular pathogen that requires a lipid bilayer membrane for its transport to build its nucleocapsid envelope and fuse with the host cell. The biological membranes are constituted by phospholipids (PLs), and vitamin E (Vit E) protects them from oxidative stress (OS). The aim of this study was to demonstrate if treatment with Vit E restores the modified profile of the FA in PLs in serum from patients with coronavirus disease-19 (COVID-19). We evaluated Vit E, total fatty acids (TFAs), fatty acids of the phospholipids (FAPLs), total phospholipids (TPLs), 8-isoprostane, thromboxane B2 (TXB2), prostaglandins (PGE2 and 6-keto-PGF1α), interleukin-6 (IL-6), and C-reactive protein (CRP) in serum from 22 COVID-19 patients before and after treatment with Vit E and compared the values with those from 23 healthy subjects (HSs). COVID-19 patients showed a decrease in Vit E, TPLs, FAPLs, and TFAs in serum in comparison to HSs (p ≤ 0.01), and Vit E treatment restored their levels (p ≤ 0.04). Likewise, there was an increase in IL-6 and CRP in COVID-19 patients in comparison with HSs (p ≤ 0.001), and treatment with Vit E decreased their levels (p ≤ 0.001). Treatment with Vit E as monotherapy can contribute to restoring the modified FA profile of the PLs in the SARS-CoV-2 infection, and this leads to a decrease in lipid peroxidation, OS, and the inflammatory process.
Collapse
Affiliation(s)
- María Elena Soto
- Research Direction Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (M.E.-H.)
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Adrían Palacios-Chavarría
- Critical Care Units of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City 11200, Mexico; (A.P.-C.); (R.R.V.-V.)
| | - Rafael Ricardo Valdez-Vázquez
- Critical Care Units of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City 11200, Mexico; (A.P.-C.); (R.R.V.-V.)
| | - Raúl Martínez-Memije
- Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Mohammed El-Hafidi
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (M.E.-H.)
| | - Félix Leao Rodríguez-Fierros
- Laboratorio de Patología Veterinaria, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76230, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (M.E.-H.)
| |
Collapse
|
12
|
Qaisar R, Karim A, Muhammad T, Iqbal MS, Ahmad F. Metformin Improves Sarcopenia-Related Quality of Life in Geriatric Adults: A Randomized Controlled Trial. Arch Med Res 2024; 55:102998. [PMID: 38615625 DOI: 10.1016/j.arcmed.2024.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES Metformin protects against age-related muscle decline, termed sarcopenia. However, the effects on sarcopenia quality-of-life (SarQoL) are unknown. We investigated the effects of metformin on SarQoL and associated mechanisms in older adults. METHOD This double-blind randomized, placebo-controlled trial included geriatric adult men, divided into non-sarcopenic controls (age = 72.2 ± 4.3 years, n = 52) and two groups of patients with sarcopenia randomized into placebo (age at baseline = 74.4 ± 5.7 years, n = 54) and metformin (age at baseline = 71.2 ± 3.9 years, n = 47) groups. Patients in the metformin group received 1.7 grams twice daily for four months. We evaluated SarQoL, handgrip strength (HGS), plasma zonulin, c-reactive protein (CRP), and 8-isoprostanes. RESULTS Patients with sarcopenia had lower HGS and SarQoL than controls (both p <0.05). Metformin improved the HGS and the SarQoL domains related to physical and mental health, locomotion, and leisure activities, as well as cumulative SarQoL scores (all p <0.05). Metformin also prevented the decline in the SarQoL domains for functionality and fear. Among plasma biomarkers, metformin reduced the levels of zonulin, CRP, 8-isoprostanes, and creatine kinase. We also found a significant correlation of plasma zonulin with cumulative SarQoL in patients with sarcopenia taking metformin, suggesting a role for intestinal repair in improving SarQoL. Finally, metformin did not affect body composition and gait speed. CONCLUSION Overall, metformin improved HGS and SarQoL by repairing intestinal leakage. Our data have clinical relevance for improving the quality of life in older adults with sarcopenia.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, Pakistan
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar, Pakistan
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Qaisar R, Burki A, Karim A, Iqbal MS, Ahmad F. Probiotics Supplements Improve the Sarcopenia-Related Quality of Life in Older Adults with Age-Related Muscle Decline. Calcif Tissue Int 2024; 114:583-591. [PMID: 38642090 DOI: 10.1007/s00223-024-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/22/2024]
Abstract
A pathological increase in intestinal leak is implicated in age-associated muscle loss, termed sarcopenia, and reduced sarcopenia-related quality-of-life (SarQoL). However, the potential therapies remain elusive. We investigated the effects of probiotic supplementation on sarcopenia and SarQoL in geriatric older adults. We randomized sarcopenic men into placebo (age = 71.4 ± 3.9 years, n = 63) and probiotic (age = 73 ± 4.1 years, n = 60) groups for 16 weeks. The probiotic used was one capsule daily of Vivomix 112 billion for 16 weeks. We measured sarcopenia parameters of handgrip strength (HGS) and skeletal mass index (SMI), plasma zonulin (marker of the intestinal leak), and SarQoL using a targeted questionnaire. Probiotics improved the SarQoL scores for locomotion, functionality, and activities of daily living and prevented a decline in cumulative SarQoL observed in the placebo group (all p < 0.05). Probiotic supplementation also reduced plasma zonulin and marker of systemic bacterial load. These changes were accompanied by an increase in HGS and maintenance of gait speed in the probiotic group compared to the placebo group. Correlation analysis revealed significant associations of cumulative SarQoL scores with plasma zonulin and HGS in the probiotic group. Collectively, probiotics improved SarQoL and HGS by repairing pathological intestinal leak. Future studies may further dissect the relation between intestinal leak and SarQoL in older adults taking probiotics.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Ayousha Burki
- Department of Nephrology, Divisional Headquarter Teaching Hospital, Gomal Medical College, Dera Ismail Khan, 30130, Pakistan
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar, 25120, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Qaisar R, Khan IM, Karim A, Muhammad T, Ahmad F. Lipid-Lowering Medications are Associated with Reduced Sarcopenia-Related Quality of Life in Older Adults with Hyperlipidemia. Drugs Aging 2024; 41:443-453. [PMID: 38564165 DOI: 10.1007/s40266-024-01111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Statins medications negatively affect age-associated loss of muscle mass and strength, termed sarcopenia, and neuromuscular junction (NMJ) integrity. However, their association with the sarcopenia-related-quality-of-life (SarQoL) is unknown. METHODS In this cross-sectional, case control study, we recruited male nonusers (n = 75 and age 75.2 ± 5.9 years) and users (n = 77 and age 77.1 ± 6.2 years) of statins to evaluate SarQoL and handgrip strength (HGS). We also measured plasma C-terminal agrin fragment-22 (CAF22) as a marker of NMJ degradation. RESULTS Statin users had higher CAF22, and lower HGS, and cumulative SarQoL scores than non-users (all p < 0.05). Plasma CAF22 exhibited negative correlations with SarQoL scores for physical and mental health, locomotion, functionality, activities-of-daily-living, and cumulative SarQoL in statins users and non-users (all p < 0.05). Lastly, the cumulative SarQoL scores exhibited positive associations with HGS and gait speed in the study participants (all p < 0.05). CONCLUSIONS Collectively, statin usage was associated with NMJ degradation and reduced SarQoL. Statins should be cautiously prescribed in patients with sarcopenia with reduced QoL.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, M27-122, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Imran M Khan
- Burn and Plastic Surgery Center, Hayatabad Medical Complex, Hayatabad, Peshawar, Pakistan
| | - Asima Karim
- Department of Basic Medical Sciences, M27-122, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, M27-122, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Qaisar R, Iqbal MS, Karim A, Muhammad T, Ahmad F. A leaky gut contributes to reduced sarcopenia-related quality of life (SarQoL) in geriatric older adults. Qual Life Res 2024; 33:551-559. [PMID: 37930557 DOI: 10.1007/s11136-023-03547-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE The sarcopenia quality-of-life (SarQoL) questionnaire is designed to evaluate the quality of life of sarcopenic patients. A pathological increase in intestinal permeability leads to several systemic diseases, but its contribution to SarQoL is unknown. METHODS We recruited controls (n = 84, age = 74.6 ± 4.9 years) and sarcopenic (n = 55, age = 76.1 ± 4.2 years) men for validating and adapting a Pashto version of SarQoL. We measured the scores for seven domains of SarQoL, body composition, and handgrip strength (HGS). We also measured plasma zonulin as a marker of increased intestinal permeability. RESULTS The Pashto SarQoL exhibited adequate discriminative ability, construct validity, internal consistency, and test-retest reliability, without exhibiting the floor and ceiling effect. Sarcopenic patients had higher plasma zonulin and lower scores on SarQoL domains for physical and mental health, locomotion, body composition, functionality, activities of daily living, leisure, and fear, and cumulative SarQoL scores than controls. Plasma zonulin exhibited significant coefficients of determination with Pashto SarQoL domains for locomotion (r2 = 0.217), functionality (r2 = 0.101), activities of daily living (r2 = 0.302), and cumulative SarQoL scores (r2 = 0.168). We also found high efficacies of zonulin in diagnosing low scores for functionality (AUC = 0.785, 95% C.I = 0.708-0.863), activities of daily living (AUC = 0.785, 95% C.I = 0.708-0.863), and cumulative SarQoL scores (AUC = 0.821, 95% C.I = 0.751-0.891). CONCLUSION Altogether, SarQoL appears reliable in measuring the quality of life in sarcopenic patients. A leaky gut has a potential contribution to reduced SarQoL in sarcopenia.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar, 25124, Pakistan
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Qaisar R, Karim A, Muhammad T, Ahmad F. Butyrate supplementation reduces sarcopenia by repairing neuromuscular junction in patients with chronic obstructive pulmonary disease. Respir Med 2024; 222:107510. [PMID: 38135194 DOI: 10.1016/j.rmed.2023.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is associated with an intestinal leak and neuromuscular junction (NMJ) degradation, which contributes to physical compromise and accelerated age-related muscle loss, called sarcopenia. However, the relevant interventions partly remain ineffective. We investigated the effects of exogenous butyrate on sarcopenia and physical capacity with relevance to intestinal permeability and NMJ integrity in COPD patients. METHODS COPD patients were randomized into placebo (n = 67) and butyrate (n = 64) groups in a double-blind manner. The patients in the butyrate group received one 300 mg capsule a day for 12 weeks. We measured circulating markers of intestinal leak (zonulin), systemic bacterial load (LBP), and NMJ loss (CAF22), along with handgrip strength (HGS), and short physical performance battery (SPPB) at baseline and 12 weeks. RESULTS Butyrate supplementation improved HGS and gait speed in COPD patients. Among SPPB indices, butyrate improved the ability to maintain postural balance and walking and prevented a decline in the ability to rise from a chair. Butyrate also reduced the plasma levels of zonulin, LBP, and CAF22 levels in COPD patients (all p < 0.05). Regression analysis revealed significant associations of plasma zonulin and CAF22 with HGS, gait speed, and cumulative SPPB scores in butyrate group. These changes were associated with reduced markers of inflammation and muscle damage. CONCLUSION Butyrate may provide a therapeutic approach to sarcopenia and physical dependency in COPD by repairing intestinal leak and NMJ loss.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Gomal University, Dera Ismail Khan, 30130, Pakistan
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
17
|
Qaisar R, Karim A, Iqbal MS, Ahmad F, Shaikh A, Kamli H, Khamjan NA. A leaky gut contributes to postural dysfunction in patients with Alzheimer's disease. Heliyon 2023; 9:e19485. [PMID: 37662779 PMCID: PMC10472051 DOI: 10.1016/j.heliyon.2023.e19485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Background Postural dysfunction is a common problem in patients with Alzheimer's disease (AD) and may lead to functional dependency and increasing morbidity and mortality. However, the pathophysiology of postural dysfunction in AD patients remains poorly understood. Objectives Elevated intestinal permeability is an underlying contributor to multiple diseases, including AD. We aimed to investigate the association of elevated intestinal permeability with postural dysfunction in AD patients. Design Setting Participants Measurements We conducted a cross-sectional, observational study on older adults, including controls and AD patients. We investigated the associations of postural balance with plasma zonulin, a marker of elevated intestinal permeability in geriatric controls (n = 74) and patients with mild (n = 71) and moderate (n = 66) AD. We used a standardized physical performance battery to measure balance in supine, tandem, and semi-tandem positions. We also measured handgrip strength (HGS), and gait speed as markers of physical capacity. Results AD patients exhibited lower balance scores, HGS, and gait speed and higher plasma zonulin than in controls (all p < 0.05). Plasma zonulin levels demonstrated significant areas under the curves in diagnosing poor balance in AD patients (all p < 0.05). Moderate AD was associated with lower balance and physical capacity, and higher zonulin than mild AD (ALL P < 0.05). Poor scores on balance scale were associated with higher expressions of markers of inflammation, oxidative stress, and muscle damage providing a mechanistic link between increased intestinal permeability and postural dysfunction in AD patients. Conclusion The results of our study show that plasma zonulin measurement may be used to diagnose postural dysfunction in AD patients. The study is relevant to non-ambulant and/or comatose AD patients with postural dysfunction. Our findings also highlight the therapeutic potential of repairing the intestinal leak to improve postural control and reduce the risk of falls in AD patients.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - M. Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar, Pakistan
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911, United Arab Emirates
| | - Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Nizar A. Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
18
|
König M, Gollasch M, Komleva Y. Frailty after COVID-19: The wave after? Aging Med (Milton) 2023; 6:307-316. [PMID: 37711259 PMCID: PMC10498835 DOI: 10.1002/agm2.12258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/04/2023] [Indexed: 09/16/2023] Open
Abstract
The COVID-19 pandemic poses an ongoing public health challenge, with a focus on older adults. Given the large number of older persons who have recovered from COVID-19 and reports of long-lasting sequelae, there is reasonable concern that the COVID-19 pandemic may lead to a long-term deterioration in the health of older adults, i.e., a potential "wave of frailty." Therefore, it is critical to better understand the circumstances surrounding the development of frailty as a result of COVID-19, as well as the underlying mechanisms and factors contributing to this development. We conducted a narrative review of the most relevant articles published on the association between COVID-19 and frailty through January 2023. Although few studies to date have addressed the effects of COVID-19 on the onset and progression of frailty, the available data suggest that there is indeed an increase in frailty in the elderly as a result of COVID-19. Regarding the underlying mechanisms, a multicausal genesis can be assumed, involving both direct viral effects and indirect effects, particularly from the imposed lockdowns with devastating consequences for the elderly: decreased physical activity, altered diet, sarcopenia, fatigue, social isolation, neurological problems, inflammation, and cardiovascular morbidity are among the possible mediators. Since the COVID-19 pandemic is leading to an increase in frailty in the elderly, there is an urgent need to raise awareness of this still little-known problem of potentially great public health importance and to find appropriate prevention and treatment measures.
Collapse
Affiliation(s)
- Maximilian König
- Altersmedizinisches Zentrum, Kreiskrankenhaus WolgastWolgastGermany
- Klinik und Poliklinik für Innere Medizin D – GeriatrieUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Maik Gollasch
- Altersmedizinisches Zentrum, Kreiskrankenhaus WolgastWolgastGermany
- Klinik und Poliklinik für Innere Medizin D – GeriatrieUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Yulia Komleva
- Altersmedizinisches Zentrum, Kreiskrankenhaus WolgastWolgastGermany
- Klinik und Poliklinik für Innere Medizin D – GeriatrieUniversitätsmedizin GreifswaldGreifswaldGermany
| |
Collapse
|
19
|
Qaisar R, Karim A, Iqbal MS, Alkahtani SA, Ahmad F, Kamli H. ACE Inhibitors Improve Skeletal Muscle by Preserving Neuromuscular Junctions in Patients with Alzheimer's Disease. J Alzheimers Dis 2023:JAD230201. [PMID: 37334602 DOI: 10.3233/jad-230201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Hypertension and skeletal muscle decline are common findings in patients with Alzheimer's disease (AD). Angiotensin-converting enzyme (ACE) inhibitors preserve skeletal muscle and physical capacity; however, the driving mechanisms are poorly understood. OBJECTIVE We investigated the effects of ACE inhibitors on the neuromuscular junction (NMJ) with relevance to skeletal muscle and physical capacity in AD patients and age-matched controls. METHODS We evaluated controls (n = 59) and three groups of AD patients, including normotensive (n = 51) and patients with hypertension taking ACE inhibitors (n = 53) or other anti-hypertensive medications (n = 49) at baseline and one year later. We measure plasma c-terminal agrin fragment-22 (CAF22) as a marker of NMJ degradation, handgrip strength (HGS), and Short Physical Performance Battery (SPPB) as markers of physical capacity. RESULTS At baseline AD patients demonstrated lower HGS and SPPB scores and higher CAF22 levels than controls, irrespective of the hypertension status (all p < 0.05). The use of ACE inhibitors was associated with higher HGS and relative maintenance of SPPB scores, gait speed, and plasma CAF22 levels. Conversely, other anti-hypertensive medications were associated with an unaltered HGS, reduced SPPB scores and elevated plasma CAF22 levels (both p < 0.05). We also found dynamic associations of CAF22 with HGS, gait speed, and SPPB in AD patients taking ACE inhibitors (all p < 0.05). These changes were associated with reduced oxidative stress in AD patients taking ACE inhibitors (p < 0.05). CONCLUSION Altogether, ACE inhibitors are associated with higher HGS, preserved physical capacity, and the prevention of NMJ degradation in hypertensive AD patients.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar, Pakistan
| | - Shaea A Alkahtani
- Exercise Physiology Department, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
20
|
Qaisar R, Karim A, Muhammad T, Alkahtani SA, Kamli H, Ahmad F. Degradation of neuromuscular junction contributes to muscle weakness but not physical compromise in chronic obstructive pulmonary disease patients taking lipids-lowering medications. Respir Med 2023:107298. [PMID: 37245649 DOI: 10.1016/j.rmed.2023.107298] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVES The relevant data about the effects and the associated mechanisms of statins on muscle strength and physical capacity is inconsistent. We investigated the potential contribution of neuromuscular junction (NMJ) degradation to muscle weakness and physical compromise in patients with chronic obstructive pulmonary disease (COPD) on statins. METHOD We recruited male COPD patients (age range = 63-75 years, n = 150) as nonusers (n = 71) and users of statin medications (n = 79) along with age-matched controls (n = 76). The COPD patients were evaluated at baseline and one year later. The data about handgrip strength (HGS), body composition, short physical performance battery (SPPB), and plasma c-terminal agrin fragment-22 (CAF22) as a marker of NMJ disintegration was collected at two time points. RESULTS We observed lower HGS, SPPB scores, and higher CAF22 levels in all COPD patients than controls, irrespective of the treatment status (all p < 0.05). Statins further reduced HGS and elevated CAF22 in COPD patients (both p < 0.05). The decline in SPPB was relatively modest in statin users (≈3.7%, p = 0.032) than in nonusers (≈8.7%, p = 0.002). The elevated plasma CAF22 exhibited robust negative correlations with a reduction in HGS but not with SPPB in COPD patients taking statins. We also found a reduction in markers of inflammation and no increase in oxidative stress markers following statin use in COPD patients. CONCLUSION Altogether, statin-induced NMJ degradation exacerbates muscle decline but does not contribute to physical compromise in COPD patients.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Gomal University, Dera Ismail Khan, 30130, Pakistan
| | - Shaea A Alkahtani
- Exercise Physiology Department, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911, United Arab Emirates
| |
Collapse
|