1
|
Shi G, Zhang P, Zhang X, Li J, Zheng X, Yan J, Zhang N, Yang H. The spatiotemporal heterogeneity of the biophysical microenvironment during hematopoietic stem cell development: from embryo to adult. Stem Cell Res Ther 2023; 14:251. [PMID: 37705072 PMCID: PMC10500792 DOI: 10.1186/s13287-023-03464-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Hematopoietic stem cells (HSCs) with the ability to self-renew and differentiate are responsible for maintaining the supply of all types of blood cells. The complex and delicate microenvironment surrounding HSCs is called the HSC niche and can provide physical, chemical, and biological stimuli to regulate the survival, maintenance, proliferation, and differentiation of HSCs. Currently, the exploration of the biophysical regulation of HSCs remains in its infancy. There is evidence that HSCs are susceptible to biophysical stimuli, suggesting that the construction of engineered niche biophysical microenvironments is a promising way to regulate the fate of HSCs in vitro and ultimately contribute to clinical applications. In this review, we introduced the spatiotemporal heterogeneous biophysical microenvironment during HSC development, homeostasis, and malignancy. Furthermore, we illustrated how these biophysical cues contribute to HSC behaviors, as well as the possible mechanotransduction mechanisms from the extracellular microenvironment into cells. Comprehending the important functions of these biophysical regulatory factors will provide novel approaches to resolve clinical problems.
Collapse
Affiliation(s)
- Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Xi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jing Li
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China.
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Schwab JD, Ikonomi N, Werle SD, Weidner FM, Geiger H, Kestler HA. Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells. Comput Struct Biotechnol J 2021; 19:5321-5332. [PMID: 34630946 PMCID: PMC8487005 DOI: 10.1016/j.csbj.2021.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory dependencies in molecular networks are the basis of dynamic behaviors affecting the phenotypical landscape. With the advance of high throughput technologies, the detail of omics data has arrived at the single-cell level. Nevertheless, new strategies are required to reconstruct regulatory networks based on populations of single-cell data. Here, we present a new approach to generate populations of gene regulatory networks from single-cell RNA-sequencing (scRNA-seq) data. Our approach exploits the heterogeneity of single-cell populations to generate pseudo-timepoints. This allows for the first time to uncouple network reconstruction from a direct dependency on time series measurements. The generated time series are then fed to a combined reconstruction algorithm. The latter allows a fast and efficient reconstruction of ensembles of gene regulatory networks. Since this approach does not require knowledge on time-related trajectories, it allows us to model heterogeneous processes such as aging. Applying the approach to the aging-associated NF-κB signaling pathway-based scRNA-seq data of human hematopoietic stem cells (HSCs), we were able to reconstruct eight ensembles, and evaluate their dynamic behavior. Moreover, we propose a strategy to evaluate the resulting attractor patterns. Interaction graph-based features and dynamic investigations of our model ensembles provide a new perspective on the heterogeneity and mechanisms related to human HSCs aging.
Collapse
Affiliation(s)
- Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Silke D Werle
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
3
|
Ma Y, Kakudo N, Morimoto N, Lai F, Taketani S, Kusumoto K. Fibroblast growth factor-2 stimulates proliferation of human adipose-derived stem cells via Src activation. Stem Cell Res Ther 2019; 10:350. [PMID: 31775870 PMCID: PMC6882332 DOI: 10.1186/s13287-019-1462-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Background Human adipose-derived stem cells (hASCs) are a subset of mesenchymal stem cells (MSCs); it has been regarded as one of the most promising stem cells. We previously found that fibroblast growth factor-2 (FGF-2) enhanced the proliferation and differentiation of hASC. However, the mechanisms involved in the growth of hASCs by FGF-2 have not been investigated. Methods Human adipose-derived stem cells (hASCs) were cultured with FGF-2, and cell growth was assessed. Effects of FGF Receptor (FGFR) inhibitor (NVP-BGJ398), ERK1/2 inhibitor (PD98059), PI3K/Akt inhibitor (LY294002), JNK inhibitor (SP600125), and p38 MAPK inhibitor (SB203580) and Src inhibitor (PP1) on the proliferation were investigated. At the same time, we assessed the effect of FGFR inhibitor on several signaling enzymes such as ERK1/2, JNK, p38, and Akt, in protein level. The involvement of Src activation by FGF-2 was also examined. Results FGF-2 markedly promoted proliferation of hASCs at concentrations lower than 10 ng/ml and stimulated cell progression to the S and G2/M phases. Proliferation was blocked by the FGFR inhibitor (NVP-BGJ398) and various signaling pathway inhibitors, such as Erk1/2 inhibitor (PD98059), PI3K/Akt inhibitor (LY294002), JNK inhibitor (SP600125), and p38MAPK inhibitor (SB203580). The FGFR inhibitor reduced the activation of protein kinases, such as AKT, Erk1/2, JNK, and p38, in several signaling pathways. The downstream kinase of FGFR, Src, was activated by FGF-2, and its activation was canceled by the FGFR inhibitor. MEK1/2, a downstream kinase of Src, was parallelly regulated by FGF-2. The Src inhibitor (PP1) markedly blocked the proliferation of hASCs via inhibition of Src and MEK1/2. Conclusion Src activation is indispensable for FGF-2-mediated proliferation of ASCs, as well as the subsequent activation of multi-signaling pathways.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.,International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan, 475-000, China.,Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifen, Henan, 475-000, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kyoto University, Kyoto, 606-8501, Japan
| | - Fangyuan Lai
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Shigeru Taketani
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Kenji Kusumoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
4
|
Sundaravel S, Kuo WL, Jeong JJ, Choudhary GS, Gordon-Mitchell S, Liu H, Bhagat TD, McGraw KL, Gurbuxani S, List AF, Verma A, Wickrema A. Loss of Function of DOCK4 in Myelodysplastic Syndromes Stem Cells is Restored by Inhibitors of DOCK4 Signaling Networks. Clin Cancer Res 2019; 25:5638-5649. [PMID: 31308061 DOI: 10.1158/1078-0432.ccr-19-0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Myelodysplastic syndromes (MDS) with deletion of chromosome 7q/7 [-7/(del)7q MDS] is associated with worse outcomes and needs novel insights into pathogenesis. Reduced expression of signaling protein dedicator of cytokinesis 4 (DOCK4) in patients with -7/(del)7q MDS leads to a block in hematopoietic stem cell (HSC) differentiation. Identification of targetable signaling networks downstream of DOCK4 will provide means to restore hematopoietic differentiation in MDS.Experimental Design: We utilized phosphoproteomics approaches to identify signaling proteins perturbed as a result of reduced expression of DOCK4 in human HSCs and tested their functional significance in primary model systems. RESULTS We demonstrate that reduced levels of DOCK4 lead to increased global tyrosine phosphorylation of proteins in primary human HSCs. LYN kinase and phosphatases INPP5D (SHIP1) and PTPN6 (SHP1) displayed greatest levels of tyrosine phosphorylation when DOCK4 expression levels were reduced using DOCK4-specific siRNA. Our data also found that increased phosphorylation of SHIP1 and SHP1 phosphatases were due to LYN kinase targeting these phosphatases as substrates. Increased migration and impediment of HSC differentiation were consequences of these signaling alterations. Pharmacologic inhibition of SHP1 reversed these functional aberrations in HSCs expressing low DOCK4 levels. In addition, differentiation block seen in DOCK4 haplo-insufficient [-7/(del)7q] MDS was rescued by inhibition of SHP1 phosphatase. CONCLUSIONS LYN kinase and phosphatases SHP1 and SHIP1 are perturbed when DOCK4 expression levels are low. Inhibition of SHP1 promotes erythroid differentiation in healthy HSCs and in -7/(del)7q MDS samples with low DOCK4 expression. Inhibitors of LYN, SHP1 and SHIP1 also abrogated increased migratory properties in HSCs expressing reduced levels of DOCK4.
Collapse
Affiliation(s)
- Sriram Sundaravel
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Wen-Liang Kuo
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Jong Jin Jeong
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Gaurav S Choudhary
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Hui Liu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Tushar D Bhagat
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Sandeep Gurbuxani
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | | - Amit Verma
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
Xiao Y, Deng WW, Yang LL, Li H, Yu GT, Zhang WF, Sun ZJ. Overexpression of p21-activated kinase 2 is correlated with high-grade oral squamous cell carcinomas. Future Oncol 2018; 14:1091-1100. [PMID: 29714078 DOI: 10.2217/fon-2017-0643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aim: p21-activated kinase 2 (PAK2) is overexpressed in several tumors but the expression of PAK2 in oral squamous cell carcinomas (OSCCs) remains unclear. Materials & methods: Immunohistochemistry was performed on human tissue microarrays containing 165 primary OSCC, 48 oral epithelial dysplasia and 43 normal oral mucosa. Results: PAK2 expression was increased in primary OSCC compared with normal mucosa and significantly increased in primary OSCC grade III compared with grade I, but independent of overall survival rate. Moreover, the expression of PAK2 was statistically correlated with Lck/Yes novel tyrosine kinase (LYN), zinc finger transcription factor Slug, tumor-associated macrophage marker CD163 and LAG3. Conclusion: Overexpression of PAK2 in OSCC may be associated with an advanced pathology grade.
Collapse
Affiliation(s)
- Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Wen-Feng Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| |
Collapse
|
6
|
Röselová P, Obr A, Holoubek A, Grebeňová D, Kuželová K. Adhesion structures in leukemia cells and their regulation by Src family kinases. Cell Adh Migr 2017; 12:286-298. [PMID: 28678601 DOI: 10.1080/19336918.2017.1344796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interaction of leukemia blasts with the bone marrow extracellular matrix often results in protection of leukemia cells from chemotherapy and in persistence of the residual disease which is on the basis of subsequent relapses. The adhesion signaling pathways have been extensively studied in adherent cells as well as in mature haematopoietic cells, but the adhesion structures and signaling in haematopoietic stem and progenitor cells, either normal or malignant, are much less explored. We analyzed the interaction of leukemia cells with fibronectin (FN) using interference reflection microscopy, immunofluorescence, measurement of adherent cell fraction, real-time microimpedance measurement and live cell imaging. We found that leukemia cells form very dynamic adhesion structures similar to early stages of focal adhesions. In contrast to adherent cells, where Src family kinases (SFK) belong to important regulators of focal adhesion dynamics, we observed only minor effects of SFK inhibitor dasatinib on leukemia cell binding to FN. The relatively weak involvement of SFK in adhesion structure regulation might be associated with the lack of cytoskeletal mechanical tension in leukemia cells. On the other hand, active Lyn kinase was found to specifically localize to leukemia cell adhesion structures and a less firm cell attachment to FN was often associated with higher Lyn activity (this unexpectedly occurred also after cell treatment with the inhibitor SKI-1). Lyn thus may be important for signaling from integrin-associated complexes to other processes in leukemia cells.
Collapse
Affiliation(s)
- Pavla Röselová
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Adam Obr
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Aleš Holoubek
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Dana Grebeňová
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Kateřina Kuželová
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| |
Collapse
|
7
|
Whetton AD, Azmi NC, Pearson S, Jaworska E, Zhang L, Blance R, Kendall AC, Nicolaou A, Taylor S, Williamson AJ, Pierce A. MPL W515L expression induces TGFβ secretion and leads to an increase in chemokinesis via phosphorylation of THOC5. Oncotarget 2016; 7:10739-55. [PMID: 26919114 PMCID: PMC4905435 DOI: 10.18632/oncotarget.7639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/15/2016] [Indexed: 02/03/2023] Open
Abstract
The thrombopoietin receptor (MPL) has been shown to be mutated (MPL W515L) in myelofibrosis and thrombocytosis yet new approaches to treat this disorder are still required. We have previously shown that transcriptome and proteomic effects do not correlate well in oncogene-mediated leukemogenesis. We therefore investigated the effects of MPL W515L using proteomics. The consequences of MPL W515L expression on over 3300 nuclear and 3500 cytoplasmic proteins were assessed using relative quantification mass spectrometry. We demonstrate that MPL W515L expression markedly modulates the CXCL12/CXCR4/CD45 pathway associated with stem and progenitor cell chemotactic movement. We also demonstrated that MPL W515L expressing cells displayed increased chemokinesis which required the MPL W515L-mediated dysregulation of MYC expression via phosphorylation of the RNA transport protein THOC5 on tyrosine 225. In addition MPL W515L expression induced TGFβ secretion which is linked to sphingosine 1-phosphate production and the increased chemokinesis. These studies identify several pathways which offer potential targets for therapeutic intervention in the treatment of MPL W515L-driven malignancy. We validate our approach by showing that CD34+ cells from MPL W515L positive patients display increased chemokinesis and that treatment with a combination of MYC and sphingosine kinase inhibitors leads to the preferential killing of MPL W515L expressing cells.
Collapse
Affiliation(s)
- Anthony D. Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Norhaida Che Azmi
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Ewa Jaworska
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Liqun Zhang
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Rognvald Blance
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Alexandra C. Kendall
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Samuel Taylor
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Andrew J.K. Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Abstract
Blood is renewed throughout the entire life. The stem cells of the blood, called hematopoietic stem cells (HSCs), are responsible for maintaining a supply of all types of fresh blood cells. In contrast to other stem cells, the clinical application of these cells is well established and HSC transplantation is an established life-saving therapy for patients suffering from haematological disorders. Despite their efficient functionality throughout life in vivo, controlling HSC behaviour in vitro (including their proliferation and differentiation) is still a major task that has not been resolved with standard cell culture systems. Targeted HSC multiplication in vitro could be beneficial for many patients, because HSC supply is limited. The biology of these cells and their natural microenvironment - their niche - remain a matter of ongoing research. In recent years, evidence has come to light that HSCs are susceptible to physical stimuli. This makes the regulation of HSCs by engineering physical parameters a promising approach for the targeted manipulation of these cells for clinical applications. Nevertheless, the biophysical regulation of these cells is still poorly understood. This review sheds light on the role of biophysical parameters in HSC biology and outlines which knowledge on biophysical regulation identified in other cell types could be applied to HSCs.
Collapse
Affiliation(s)
- C Lee-Thedieck
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | |
Collapse
|
9
|
Lyn kinase plays important roles in erythroid expansion, maturation and erythropoietin receptor signalling by regulating inhibitory signalling pathways that control survival. Biochem J 2014; 459:455-66. [DOI: 10.1042/bj20130903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In erythroid cells both positive viability signals and feedback inhibitory signalling require the Src family kinase Lyn, influencing cell survival and their ability to differentiate. This illustrates that Lyn is critical for normal erythropoiesis and erythroid cell development.
Collapse
|
10
|
Williamson AJK, Pierce A, Jaworska E, Zhou C, Aspinall-O'Dea M, Lancashire L, Unwin RD, Abraham SA, Walker MJ, Cadecco S, Spooncer E, Holyoake TL, Whetton AD. A specific PTPRC/CD45 phosphorylation event governed by stem cell chemokine CXCL12 regulates primitive hematopoietic cell motility. Mol Cell Proteomics 2013; 12:3319-29. [PMID: 23997015 DOI: 10.1074/mcp.m112.024604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CXCL12 governs cellular motility, a process deregulated by hematopoietic stem cell oncogenes such as p210-BCR-ABL. A phosphoproteomics approach to the analysis of a hematopoietic progenitor cell line treated with CXCL12 and the Rac 1 and 2 inhibitor NSC23766 has been employed to objectively discover novel mechanisms for regulation of stem cells in normal and malignant hematopoiesis. The proteomic data sets identified new aspects of CXCL12-mediated signaling and novel features of stem cell regulation. We also identified a novel phosphorylation event in hematopoietic progenitor cells that correlated with motile response and governed by the chemotactic factor CXCL12. The novel phosphorylation site on PTPRC/CD45; a protein tyrosine phosphatase, was validated by raising an antibody to the site and also using a mass spectrometry absolute quantification strategy. Site directed mutagenesis and inhibitor studies demonstrated that this single phosphorylation site governs hematopoietic progenitor cell and lymphoid cell motility, lies downstream from Rac proteins and potentiates Src signaling. We have also demonstrated that PTPRC/CD45 is down-regulated in leukemogenic tyrosine kinase expressing cells. The use of discovery proteomics has enabled further understanding of the regulation of PTPRC/CD45 and its important role in cellular motility in progenitor cells.
Collapse
Affiliation(s)
- Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, 27 Palatine Rd, Manchester, M20 4QL
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Han L, Schuringa JJ, Mulder A, Vellenga E. Dasatinib impairs long-term expansion of leukemic progenitors in a subset of acute myeloid leukemia cases. Ann Hematol 2010; 89:861-71. [PMID: 20387067 PMCID: PMC2908401 DOI: 10.1007/s00277-010-0948-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/17/2010] [Indexed: 11/25/2022]
Abstract
A number of signaling pathways might be frequently disrupted in acute myeloid leukemia (AML). We questioned whether the dual SRC/ABL kinase inhibitor dasatinib can affect AML cells and whether differences can be observed with normal CD34(+) cells. First, we demonstrated that normal cord blood (CB) CD34(+) cells were unaffected by dasatinib at a low concentration (0.5 nM) in the long-term culture on MS5 stromal cells. No changes were observed in proliferation, differentiation, and colony formation. In a subset of AML cases (3/15), a distinct reduction in cell proliferation was observed, ranging from 48% to 91% inhibition at 0.5 nM of dasatinib, in particular, those characterized by BCR-ABL or KIT mutations. Moreover, the inhibitory effects of dasatinib were cytokine specific. Stem cell factor-mediated proliferation was significantly impaired, associated with a reduced phosphorylation of ERK1/2 and STAT5, whereas no effect was observed on interleukin-3 and thrombopoietin-mediated signaling despite SRC activation. In conclusion, this study demonstrates that dasatinib is a potential inhibitor in a subgroup of AML, especially those that express BCR-ABL or KIT mutations.
Collapse
Affiliation(s)
- Lina Han
- Department of Hematology, University of Groningen and University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands
- Department of Hematology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Jan Jacob Schuringa
- Department of Hematology, University of Groningen and University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands
| | - André Mulder
- Department of Clinical Chemistry, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Edo Vellenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
12
|
Qu P, Shelley WC, Yoder MC, Wu L, Du H, Yan C. Critical roles of lysosomal acid lipase in myelopoiesis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2394-404. [PMID: 20348241 DOI: 10.2353/ajpath.2010.091063] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lysosomal acid lipase (LAL) is a key enzyme that cleaves cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. Genetic ablation of the lal gene (lal(-/-)) in mice has resulted in a systemic increase of macrophages and neutrophils, causing severe inflammation and pathogenesis in multiple organs. We hypothesized that aberrant growth and differentiation of myeloid cells in lal(-/-) mice arises from dysregulated production of progenitor cells in the bone marrow. Indeed, lal(-/-) mice displayed increased numbers of primitive lin(-)Sca-1(+)c-Kit(+) (LSK) cells and granulocyte-macrophage precursors (GMP). Increased high proliferative potential colony-forming cells (HPP-CFC) were enumerated from cultured lal(-/-) bone marrow cells, as were significantly more CFU-GM, CFU-G, and CFU-M colonies. As a consequence, lal(-/-) mice developed significant myeloid infiltration, particularly with CD11b+/Gr-1+ myeloid-derived suppressive cells in multiple organs. Both decreased apoptosis and increased proliferation contribute to the systemic increase of myeloid cells in lal(-/-) myeloid cells. These lal(-/-) CD11b(+)/Gr-1(+) cells displayed suppressive activity on T cell proliferation and function in vitro. Bone marrow chimeras confirmed that the myeloproliferative disorder in lal(-/-) mice was primarily attributable to autonomous defects in myeloid progenitor cells, although the hematopoietic microenvironment in the lal(-/-) mice did not support hematopoiesis normally. These results provide evidence that LAL is an important regulator of myelopoiesis during hematopoietic development, differentiation, and homeostasis.
Collapse
Affiliation(s)
- Peng Qu
- Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
13
|
Shivtiel S, Kollet O, Lapid K, Schajnovitz A, Goichberg P, Kalinkovich A, Shezen E, Tesio M, Netzer N, Petit I, Sharir A, Lapidot T. CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. ACTA ACUST UNITED AC 2008; 205:2381-95. [PMID: 18779349 PMCID: PMC2556782 DOI: 10.1084/jem.20080072] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor kappaB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments.
Collapse
Affiliation(s)
- Shoham Shivtiel
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|