1
|
Zhan Q, Wang J, Zhang H, Zhang L. E3 ubiquitin ligase on the biological properties of hematopoietic stem cell. J Mol Med (Berl) 2023; 101:543-556. [PMID: 37081103 PMCID: PMC10163092 DOI: 10.1007/s00109-023-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Hematopoietic stem cells are a group of heterogeneity cells with the potential to differentiate into various types of mature blood cells. Their basic biological properties include quiescence, self-renewal, multilineage differentiation, and homing ability, with the homing of exogenous hematopoietic stem cells after transplantation becoming a new focus, while the first three properties share some similarity in mechanism due to connectivity. In various complex mechanisms, the role of E3 ubiquitin ligases in hematopoietic homeostasis and malignant transformation is receiving increasing attention. As a unique part, E3 ubiquitin ligases play an important role in physiological regulation mechanism of posttranslational modification. In this review, we focus on the recent progress of the crucial role of E3 ubiquitin ligases that target specific proteins for ubiquitination to regulate biological properties of hematopoietic stem cells. Additionally, this paper deals with E3 ubiquitin ligases that affect the biological properties through aging and summarizes the relevant applications of targeting E3 ligases in hematopoietic malignancies. We present some ideas on the clinical application of E3 ubiquitin ligase to regulate hematopoietic stem cells and also believe that it is meaningful to study the upstream signal of these E3 ubiquitin ligases because hematopoietic stem cell dysfunction is caused by deficiency of some E3 ligases.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Jing Wang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Tullett KM, Tan PS, Park HY, Schittenhelm RB, Michael N, Li R, Policheni AN, Gruber E, Huang C, Fulcher AJ, Danne JC, Czabotar PE, Wakim LM, Mintern JD, Ramm G, Radford KJ, Caminschi I, O'Keeffe M, Villadangos JA, Wright MD, Blewitt ME, Heath WR, Shortman K, Purcell AW, Nicola NA, Zhang JG, Lahoud MH. RNF41 regulates the damage recognition receptor Clec9A and antigen cross-presentation in mouse dendritic cells. eLife 2020; 9:63452. [PMID: 33264090 PMCID: PMC7710356 DOI: 10.7554/elife.63452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
The dendritic cell receptor Clec9A facilitates processing of dead cell-derived antigens for cross-presentation and the induction of effective CD8+ T cell immune responses. Here, we show that this process is regulated by E3 ubiquitin ligase RNF41 and define a new ubiquitin-mediated mechanism for regulation of Clec9A, reflecting the unique properties of Clec9A as a receptor specialized for delivery of antigens for cross-presentation. We reveal RNF41 is a negative regulator of Clec9A and the cross-presentation of dead cell-derived antigens by mouse dendritic cells. Intriguingly, RNF41 regulates the downstream fate of Clec9A by directly binding and ubiquitinating the extracellular domains of Clec9A. At steady-state, RNF41 ubiquitination of Clec9A facilitates interactions with ER-associated proteins and degradation machinery to control Clec9A levels. However, Clec9A interactions are altered following dead cell uptake to favor antigen presentation. These findings provide important insights into antigen cross-presentation and have implications for development of approaches to modulate immune responses.
Collapse
Affiliation(s)
- Kirsteen M Tullett
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Peck Szee Tan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Hae-Young Park
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Nicole Michael
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Rong Li
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Antonia N Policheni
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Emily Gruber
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Alex J Fulcher
- Monash Micro Imaging Facility, Monash University, Clayton, Australia
| | - Jillian C Danne
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Georg Ramm
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | - Kristen J Radford
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Irina Caminschi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Meredith O'Keeffe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia.,Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Mark D Wright
- Department of Immunology, Monash University, Melbourne, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - William R Heath
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Xu A, Zhang N, Cao J, Zhu H, Yang B, He Q, Shao X, Ying M. Post-translational modification of retinoic acid receptor alpha and its roles in tumor cell differentiation. Biochem Pharmacol 2020; 171:113696. [DOI: 10.1016/j.bcp.2019.113696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
|
4
|
Lian YF, Huang YL, Zhang YJ, Chen DM, Wang JL, Wei H, Bi YH, Jiang ZW, Li P, Chen MS, Huang YH. CACYBP Enhances Cytoplasmic Retention of P27 Kip1 to Promote Hepatocellular Carcinoma Progression in the Absence of RNF41 Mediated Degradation. Am J Cancer Res 2019; 9:8392-8408. [PMID: 31754404 PMCID: PMC6857042 DOI: 10.7150/thno.36838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023] Open
Abstract
Calcyclin-binding protein (CACYBP) is a multi-ligand protein implicated in the progression of various human cancers. However, its function in hepatocellular carcinoma (HCC) remains unknown. Methods: The expression of CACYBP and RNF41 (RING finger protein 41) in HCC cancer and adjacent non-tumor tissues was detected by immunohistochemistry. CCK-8 assays, colony formation assays, flow cytometry detection and xenograft models were used to evaluate the impact of CACYBP expression on HCC cell growth, apoptosis and cell cycle regulation. Immunoprecipitation and ubiquitination assays were performed to determine how RNF41 regulates CACYBP. The regulatory mechanism of RNF41-CACYBP signaling axis on P27Kip1 was investigated by western blotting and immunofluorescence. Results: CACYBP was highly expressed and associated with poor prognosis in HCC. CACYBP expression was required for HCC cell growth in vitro and in vivo. Moreover, we identified RNF41 as a specific binding partner of CACYBP at exogenous and endogenous levels. RNF41 recruited CACYBP by its C-terminal substrate binding domain, subsequently ubiquitinating CACYBP and promoting its degradation in both proteasome- and lysosome-dependent pathways. In HCC tissues, RNF41 expression was reduced and conferred a negative correlation with CACYBP expression. Mechanistically, CACYBP overexpression stimulated the Ser10, Thr157 and Thr198 phosphorylation of P27Kip1 and its cytoplasmic retention, and RNF41 co-expression attenuated this phenomenon. CACYBP depletion led to decreased levels of cyclin D1, cyclin A2, CDK2 and CDK4, causing a typical cell cycle arrest at G1/S phase and increasing apoptosis in HCC cells. P27Kip1-S10D but not P27Kip1-S10A reconstitution rescued partially the cell cycle function and apoptotic feature after CACYBP depletion. Conclusion: Our findings provide novel insights into the functional role and regulatory mechanism of CACYBP in HCC.
Collapse
|
5
|
Sugrue KF, Sarkar AA, Leatherbury L, Zohn IE. The ubiquitin ligase HECTD1 promotes retinoic acid signaling required for development of the aortic arch. Dis Model Mech 2019; 12:dmm.036491. [PMID: 30578278 PMCID: PMC6361158 DOI: 10.1242/dmm.036491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
The development of the aortic arch is a complex process that involves remodeling of the bilaterally symmetrical pharyngeal arch arteries (PAAs) into the mature asymmetric aortic arch. Retinoic acid signaling is a key regulator of this process by directing patterning of the second heart field (SHF), formation of the caudal PAAs and subsequent remodeling of the PAAs to form the aortic arch. Here, we identify the HECTD1 ubiquitin ligase as a novel modulator of retinoic acid signaling during this process. Hectd1opm/opm homozygous mutant embryos show a spectrum of aortic arch abnormalities that occur following loss of 4th PAAs and increased SHF marker expression. This sequence of defects is similar to phenotypes observed in mutant mouse models with reduced retinoic acid signaling. Importantly, HECTD1 binds to and influences ubiquitination of the retinoic acid receptor, alpha (RARA). Furthermore, reduced activation of a retinoic acid response element (RARE) reporter is detected in Hectd1 mutant cells and embryos. Interestingly, Hectd1opm/+ heterozygous embryos exhibit reduced retinoic acid signaling, along with intermediate increased expression of SHF markers; however, heterozygotes show normal development of the aortic arch. Decreasing retinoic acid synthesis by reducing Raldh2 (also known as Aldh1a2) gene dosage in Hectd1opm/+ heterozygous embryos reveals a genetic interaction. Double heterozygous embryos show hypoplasia of the 4th PAA and increased incidence of a benign aortic arch variant, in which the transverse arch between the brachiocephalic and left common carotid arteries is shortened. Together, our data establish that HECTD1 is a novel regulator of retinoic acid signaling required for proper aortic arch development. Editor's choice: The HECTD1 ubiquitin ligase is a novel modulator of retinoic acid signaling during aortic arch development and provides a model for complex interactions underlying variations in aortic arch development.
Collapse
Affiliation(s)
- Kelsey F Sugrue
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA.,Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Anjali A Sarkar
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Linda Leatherbury
- Children's National Heart Institute, Children's National Health System, George Washington University School of Medicine, Washington, DC 20010, USA
| | - Irene E Zohn
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| |
Collapse
|
6
|
Fuchs O. Treatment of Lymphoid and Myeloid Malignancies by Immunomodulatory Drugs. Cardiovasc Hematol Disord Drug Targets 2019; 19:51-78. [PMID: 29788898 DOI: 10.2174/1871529x18666180522073855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Thalidomide and its derivatives (lenalidomide, pomalidomide, avadomide, iberdomide hydrochoride, CC-885 and CC-90009) form the family of immunomodulatory drugs (IMiDs). Lenalidomide (CC5013, Revlimid®) was approved by the US FDA and the EMA for the treatment of multiple myeloma (MM) patients, low or intermediate-1 risk transfusion-dependent myelodysplastic syndrome (MDS) with chromosome 5q deletion [del(5q)] and relapsed and/or refractory mantle cell lymphoma following bortezomib. Lenalidomide has also been studied in clinical trials and has shown promising activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Lenalidomide has anti-inflammatory effects and inhibits angiogenesis. Pomalidomide (CC4047, Imnovid® [EU], Pomalyst® [USA]) was approved for advanced MM insensitive to bortezomib and lenalidomide. Other IMiDs are in phases 1 and 2 of clinical trials. Cereblon (CRBN) seems to have an important role in IMiDs action in both lymphoid and myeloid hematological malignancies. Cereblon acts as the substrate receptor of a cullin-4 really interesting new gene (RING) E3 ubiquitin ligase CRL4CRBN. This E3 ubiquitin ligase in the absence of lenalidomide ubiquitinates CRBN itself and the other components of CRL4CRBN complex. Presence of lenalidomide changes specificity of CRL4CRBN which ubiquitinates two transcription factors, IKZF1 (Ikaros) and IKZF3 (Aiolos), and casein kinase 1α (CK1α) and marks them for degradation in proteasomes. Both these transcription factors (IKZF1 and IKZF3) stimulate proliferation of MM cells and inhibit T cells. Low CRBN level was connected with insensitivity of MM cells to lenalidomide. Lenalidomide decreases expression of protein argonaute-2, which binds to cereblon. Argonaute-2 seems to be an important drug target against IMiDs resistance in MM cells. Lenalidomide decreases also basigin and monocarboxylate transporter 1 in MM cells. MM cells with low expression of Ikaros, Aiolos and basigin are more sensitive to lenalidomide treatment. The CK1α gene (CSNK1A1) is located on 5q32 in commonly deleted region (CDR) in del(5q) MDS. Inhibition of CK1α sensitizes del(5q) MDS cells to lenalidomide. CK1α mediates also survival of malignant plasma cells in MM. Though, inhibition of CK1α is a potential novel therapy not only in del(5q) MDS but also in MM. High level of full length CRBN mRNA in mononuclear cells of bone marrow and of peripheral blood seems to be necessary for successful therapy of del(5q) MDS with lenalidomide. While transfusion independence (TI) after lenalidomide treatment is more than 60% in MDS patients with del(5q), only 25% TI and substantially shorter duration of response with occurrence of neutropenia and thrombocytopenia were achieved in lower risk MDS patients with normal karyotype treated with lenalidomide. Shortage of the biomarkers for lenalidomide response in these MDS patients is the main problem up to now.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
7
|
Masschaele D, Wauman J, Vandemoortele G, De Sutter D, De Ceuninck L, Eyckerman S, Tavernier J. High-Confidence Interactome for RNF41 Built on Multiple Orthogonal Assays. J Proteome Res 2018; 17:1348-1360. [PMID: 29560723 DOI: 10.1021/acs.jproteome.7b00704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ring finger protein 41 (RNF41) is an E3 ubiquitin ligase involved in the ubiquitination and degradation of many proteins including ErbB3 receptors, BIRC6, and parkin. Next to this, RNF41 regulates the intracellular trafficking of certain JAK2-associated cytokine receptors by ubiquitinating and suppressing USP8, which, in turn, destabilizes the ESCRT-0 complex. To further elucidate the function of RNF41 we used different orthogonal approaches to reveal the RNF41 protein complex: affinity purification-mass spectrometry, BioID, and Virotrap. We combined these results with known data sets for RNF41 obtained with microarray MAPPIT and Y2H screens. This way, we establish a comprehensive high-resolution interactome network comprising 175 candidate protein partners. To remove potential methodological artifacts from this network, we distilled the data into a high-confidence interactome map by retaining a total of 19 protein hits identified in two or more of the orthogonal methods. AP2S1, a novel RNF41 interaction partner, was selected from this high-confidence interactome for further functional validation. We reveal a role for AP2S1 in leptin and LIF receptor signaling and show that RNF41 stabilizes and relocates AP2S1.
Collapse
Affiliation(s)
- Delphine Masschaele
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Joris Wauman
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Giel Vandemoortele
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Delphine De Sutter
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Leentje De Ceuninck
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Sven Eyckerman
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Jan Tavernier
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| |
Collapse
|
8
|
RNF41 interacts with the VPS52 subunit of the GARP and EARP complexes. PLoS One 2017; 12:e0178132. [PMID: 28542518 PMCID: PMC5439944 DOI: 10.1371/journal.pone.0178132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/12/2017] [Indexed: 11/19/2022] Open
Abstract
RNF41 (Ring Finger Protein 41) is an E3 ubiquitin ligase involved in the intracellular sorting and function of a diverse set of substrates. Next to BRUCE and Parkin, RNF41 can directly ubiquitinate ErbB3, IL-3, EPO and RARα receptors or downstream signaling molecules such as Myd88, TBK1 and USP8. In this way it can regulate receptor signaling and routing. To further elucidate the molecular mechanism behind the role of RNF41 in intracellular transport we performed an Array MAPPIT (Mammalian Protein-Protein Interaction Trap) screen using an extensive set of proteins derived from the human ORFeome collection. This paper describes the identification of VPS52, a subunit of the GARP (Golgi-Associated Retrograde Protein) and the EARP (Endosome-Associated Recycling Protein) complexes, as a novel interaction partner of RNF41. Through interaction via their coiled coil domains, RNF41 ubiquitinates and relocates VPS52 away from VPS53, a common subunit of the GARP and EARP complexes, towards RNF41 bodies.
Collapse
|
9
|
Abstract
Erythropoiesis is tightly regulated by the growth factor erythropoietin (Epo). Signal activation begins when Epo engages its cognate receptor, Epo-R, triggering receptor homodimerization, and recruitment of signaling intermediates including Jak2 that phosphorylates both the receptor cytoplasmic tail and downstream effectors including the transcription factor, STAT5. Transcription factors subsequently activate transcription of prosurvival and prodifferentiation genes responsible for red blood cell production. The fidelity of Epo-R signaling is dependent upon residence within detergent insoluble membrane lipid raft fractions. Lipid rafts are membrane microdomains that serve as signaling scaffolds composed of densely packed sphingolipids and cholesterol where receptors and intermediate signaling proteins are recruited and interact to execute stimuli. Disruption of lipid rafts is detrimental to Epo signaling, a phenomenon that may be utilized to design novel therapeutics for conditions in which Epo signaling is deficient. Here, we review the Epo signaling cascade, particularly, as it relates to localization and dependence on lipid rafts, and discuss considerations for novel therapeutic design.
Collapse
Affiliation(s)
- Kathy McGraw
- Division of Clinical Sciences, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
| | - Alan List
- Division of Clinical Sciences, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
10
|
Pęczkowska M, Cwikla J, Kidd M, Lewczuk A, Kolasinska-Ćwikła A, Niec D, Michałowska I, Prejbisz A, Januszewicz A, Chiarelli J, Bodei L, Modlin I. The clinical utility of circulating neuroendocrine gene transcript analysis in well-differentiated paragangliomas and pheochromocytomas. Eur J Endocrinol 2017; 176:143-157. [PMID: 27913608 DOI: 10.1530/eje-16-0727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
Abstract
CONTEXT Paragangliomas and pheochromocytomas (PPGLs) exhibit variable malignancy, which is difficult to determine by histopathology, amine measurements or tissue genetic analyses. OBJECTIVE To evaluate whether a 51-neuroendocrine gene blood analysis has clinical utility as a diagnostic and prognostic marker. DESIGN Prospective cohort study. Well-differentiated PPGLs (n = 32), metastatic (n = 4); SDHx mutation (n = 25); 12 biochemically active, Lanreotide treated (n = 4). Nine patients had multiple sampling. Age- and gender-matched controls and GEP-NETs (comparators). METHODS Circulating neuroendocrine tumor mRNA measured (qPCR) with multianalyte algorithmic analysis. Metabolic, epigenomic and proliferative genes as well as somatostatin receptor expression were assessed (averaged, normalized gene expression: mean ± s.e.m.). Amines were measured by HPLC and chromogranin A by ELISA. Analyses (2-tailed): Fisher's test, non-parametric (Mann-Whitney), receiver-operator curve (ROC) and multivariate analysis (MVA). All data are presented as mean ± s.e.m. RESULTS PPGL were NETest positive (100%). All exhibited higher scores than controls (55 ± 5% vs 8 ± 1%, P = 0.0001), similar to GEP-NETs (47 ± 5%). ROC analysis area under curve was 0.98 for differentiating PPGLs/controls (cut-off for normal: 26.7%). Mutation status was not directly linked to NETest. Genetic and molecular clustering was associated (P < 0.04) with NETest scores. Metastatic (80 ± 9%) and multicentric (64 ± 9%) disease had significantly (P < 0.04) higher scores than localized disease (43 ± 7%). Progressive disease (PD) had the highest scores (86 ± 2%) vs stable (SD, 41 ± 2%) (P < 0.0001). The area under the curve for PD from SD was 0.93 (cut-off for PD: 53%). Proliferation, epigenetic and somatostatin receptor gene expression was elevated (P < 0.03) in PD. Metabolic gene expression was decreased in SDHx mutations. Repeat NETest measurements defined clinical status in the 9 patients (6 SD and 3 PD). Amine measurement was non-informative. Multivariate analysis identified NETest >53% as an independent prognostic factor. CONCLUSION Circulating NET transcript analysis is positive (100% diagnostic) in well-differentiated PCC/PGL, scores were elevated in progressive disease irrespective of mutation or biochemical activity and elevated levels were prognostic.
Collapse
Affiliation(s)
| | - J Cwikla
- University of Warmia and MazuryThe Faculty of Medical Sciences, Olsztyn, Poland
| | - M Kidd
- Wren LaboratoriesBranford, Connecticut, USA
| | - A Lewczuk
- Medical University of GdanskGdansk, Poland
| | | | - D Niec
- Institute of CardiologyWarsaw, Poland
| | | | | | | | | | - L Bodei
- Memorial Sloan Kettering Cancer CenterNew York, USA
| | - I Modlin
- Yale University School of MedicineNew Haven, Connecticut, USA
| |
Collapse
|
11
|
Wang L, Kumar S, Dahiya S, Wang F, Wu J, Newick K, Han R, Samanta A, Beier UH, Akimova T, Bhatti TR, Nicholson B, Kodrasov MP, Agarwal S, Sterner DE, Gu W, Weinstock J, Butt TR, Albelda SM, Hancock WW. Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity. EBioMedicine 2016; 13:99-112. [PMID: 27769803 PMCID: PMC5264272 DOI: 10.1016/j.ebiom.2016.10.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023] Open
Abstract
Foxp3 + T-regulatory (Treg) cells are known to suppress protective host immune responses to a wide variety of solid tumors, but their therapeutic targeting is largely restricted to their transient depletion or “secondary” modulation, e.g. using anti-CTLA-4 monoclonal antibody. Our ongoing studies of the post-translational modifications that regulate Foxp3 demonstrated that the histone/protein acetyltransferase, Tip60, plays a dominant role in promoting acetylation, dimerization and function in Treg cells. We now show that the ubiquitin-specific protease, Usp7, controls Treg function largely by stabilizing the expression and promoting the multimerization of Tip60 and Foxp3. Genetic or pharmacologic targeting of Usp7 impairs Foxp3 + Treg suppressive functions, while conventional T cell responses remain intact. As a result, pharmacologic inhibitors of Usp7 can limit tumor growth in immunocompetent mice, and promote the efficacy of antitumor vaccines and immune checkpoint therapy with anti-PD1 monoclonal antibody in murine models. Hence, pharmacologic therapy with Usp7 inhibitors may have an important role in future cancer immunotherapy. Conditional deletion of Usp7 in Foxp3 + Treg cells causes rapidly lethal autoimmunity.
Pharmacologic inhibition of Usp7 impairs Treg but not conventional T cell function.
Usp7 targeting alone, or in conjunction with other therapies, promotes anti-tumor immunity.
T-regulatory (Treg) cells are essential to regulation of the immune system, and are characterized by their expression of the transcription factor, Foxp3. Foxp3 is subject to ubiquitination and degradation via the proteasome. We now show that the deubiquitinase, Usp7, is a key regulator of Foxp3 + Treg biology through controlling levels of the histone acetyltransferase, Tip60 and, to a lesser extent, Foxp3. Gene deletion or pharmacologic inhibition of Usp7 impairs Treg but not conventional T cell functions. The pharmacologic targeting of Usp7 alone, or in conjunction with additional therapeutic strategies, is of significant benefit in promoting host anti-tumor immunity.
Collapse
Affiliation(s)
- Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Satinder Dahiya
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feng Wang
- Progenra, Inc., Malvern, PA 19355, USA
| | - Jian Wu
- Progenra, Inc., Malvern, PA 19355, USA
| | - Kheng Newick
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA19104, USA
| | - Rongxiang Han
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arabinda Samanta
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA19104, USA
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tricia R Bhatti
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | - Wei Gu
- Institute for Cancer Genetics and Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | - Steven M Albelda
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA19104, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Hatakeyama J, Wald JH, Rafidi H, Cuevas A, Sweeney C, Carraway KL. The ER structural protein Rtn4A stabilizes and enhances signaling through the receptor tyrosine kinase ErbB3. Sci Signal 2016; 9:ra65. [PMID: 27353365 DOI: 10.1126/scisignal.aaf1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ErbB3 and ErbB4 are receptor tyrosine kinases that are activated by the neuregulin (NRG) family of growth factors. These receptors govern various developmental processes, and their dysregulation contributes to several human disease states. The abundance of ErbB3 and ErbB4, and thus signaling through these receptors, is limited by the E3 ubiquitin ligase Nrdp1, which targets ErbB3 and ErbB4 for degradation. Reticulons are proteins that influence the morphology of the endoplasmic reticulum (ER) by promoting the formation of tubules, a response of cells to some stressors. We found that the ER structural protein reticulon 4A (Rtn4A, also known as Nogo-A) increased ErbB3 abundance and proliferative signaling by suppressing Nrdp1 function. Rtn4A interacted with Nrdp1 and stabilized ErbB3 in an Nrdp1-dependent manner. Rtn4A overexpression induced the redistribution of Nrdp1 from a cytosolic or perinuclear localization to ER tubules. Rtn4A knockdown in human breast tumor cells decreased ErbB3 abundance, NRG-stimulated signaling, and cellular proliferation and migration. Because proteins destined for the plasma membrane are primarily synthesized in the sheet portions of the ER, our observations suggest that Rtn4A counteracts the Nrdp1-mediated degradation of ErbB3 by sequestering the ubiquitin ligase into ER tubules. The involvement of a reticulon suggests a molecular link between ER structure and the sensitivity of cells to receptor tyrosine kinase-mediated survival signals at the cell surface.
Collapse
Affiliation(s)
- Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jessica H Wald
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hanine Rafidi
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Antonio Cuevas
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
13
|
RNF187 is Downregulated Following NF-κB Inhibition in Late Erythroblasts. Biochem Genet 2016; 54:714-21. [DOI: 10.1007/s10528-016-9750-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
14
|
Basiorka AA, McGraw KL, De Ceuninck L, Griner LN, Zhang L, Clark JA, Caceres G, Sokol L, Komrokji RS, Reuther GW, Wei S, Tavernier J, List AF. Lenalidomide Stabilizes the Erythropoietin Receptor by Inhibiting the E3 Ubiquitin Ligase RNF41. Cancer Res 2016; 76:3531-40. [PMID: 27197154 DOI: 10.1158/0008-5472.can-15-1756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/08/2016] [Indexed: 01/05/2023]
Abstract
In a subset of patients with non-del(5q) myelodysplastic syndrome (MDS), lenalidomide promotes erythroid lineage competence and effective erythropoiesis. To determine the mechanism by which lenalidomide promotes erythropoiesis, we investigated its action on erythropoietin receptor (EpoR) cellular dynamics. Lenalidomide upregulated expression and stability of JAK2-associated EpoR in UT7 erythroid cells and primary CD71+ erythroid progenitors. The effects of lenalidomide on receptor turnover were Type I cytokine receptor specific, as evidenced by coregulation of the IL3-Rα receptor but not c-Kit. To elucidate this mechanism, we investigated the effects of lenalidomide on the E3 ubiquitin ligase RNF41. Lenalidomide promoted EpoR/RNF41 association and inhibited RNF41 auto-ubiquitination, accompanied by a reduction in EpoR ubiquitination. To confirm that RNF41 is the principal target responsible for EpoR stabilization, HEK293T cells were transfected with EpoR and/or RNF41 gene expression vectors. Steady-state EpoR expression was reduced in EpoR/RNF41 cells, whereas EpoR upregulation by lenalidomide was abrogated, indicating that cellular RNF41 is a critical determinant of drug-induced receptor modulation. Notably, shRNA suppression of CRBN gene expression failed to alter EpoR upregulation, indicating that drug-induced receptor modulation is independent of cereblon. Immunohistochemical staining showed that RNF41 expression decreased in primary erythroid cells of lenalidomide-responding patients, suggesting that cellular RNF41 expression merits investigation as a biomarker for lenalidomide response. Our findings indicate that lenalidomide has E3 ubiquitin ligase inhibitory effects that extend to RNF41 and that inhibition of RNF41 auto-ubiquitination promotes membrane accumulation of signaling competent JAK2/EpoR complexes that augment Epo responsiveness. Cancer Res; 76(12); 3531-40. ©2016 AACR.
Collapse
Affiliation(s)
- Ashley A Basiorka
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and the Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida
| | - Kathy L McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Leentje De Ceuninck
- VIB Department of Medical Protein Research, Ghent University, Albert Baertsoenkaai, Ghent, Belgium
| | - Lori N Griner
- National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Ling Zhang
- Department of Hematopathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Justine A Clark
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Gisela Caceres
- Morsani Molecular Diagnostic Laboratory, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Gary W Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jan Tavernier
- VIB Department of Medical Protein Research, Ghent University, Albert Baertsoenkaai, Ghent, Belgium
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
15
|
Helzer KT, Hooper C, Miyamoto S, Alarid ET. Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. J Mol Endocrinol 2015; 54:R151-67. [PMID: 25943391 PMCID: PMC4457637 DOI: 10.1530/jme-14-0308] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
The nuclear receptor (NR) superfamily is a group of transcriptional regulators that control multiple aspects of both physiology and pathology and are broadly recognized as viable therapeutic targets. While receptor-modulating drugs have been successful in many cases, the discovery of new drug targets is still an active area of research, because resistance to NR-targeting therapies remains a significant clinical challenge. Many successful targeted therapies have harnessed the control of receptor activity by targeting events within the NR signaling pathway. In this review, we explore the role of NR ubiquitylation and discuss how the expanding roles of ubiquitin could be leveraged to identify additional entry points to control receptor function for future therapeutic development.
Collapse
Affiliation(s)
- Kyle T Helzer
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Christopher Hooper
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Elaine T Alarid
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
16
|
Mujoo K, Choi BK, Huang Z, Zhang N, An Z. Regulation of ERBB3/HER3 signaling in cancer. Oncotarget 2014; 5:10222-36. [PMID: 25400118 PMCID: PMC4279368 DOI: 10.18632/oncotarget.2655] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/02/2014] [Indexed: 12/18/2022] Open
Abstract
ERBB3/HER3 is emerging as a molecular target for various cancers. HER3 is overexpressed and activated in a number of cancer types under the conditions of acquired resistance to other HER family therapeutic interventions such as tyrosine kinase inhibitors and antibody therapies. Regulation of the HER3 expression and signaling involves numerous HER3 interacting proteins. These proteins include PI3K, Shc, and E3 ubiquitin ligases NEDD4 and Nrdp1. Furthermore, recent identification of a number of HER3 oncogenic mutations in colon and gastric cancers elucidate the role of HER3 in cancer development. Despite the strong evidence regarding the role of HER3 in cancer, the current understanding of the regulation of HER3 expression and activation requires additional research. Moreover, the lack of biomarkers for HER3-driven cancer poses a big challenge for the clinical development of HER3 targeting antibodies. Therefore, a better understanding of HER3 regulation should improve the strategies to therapeutically target HER3 for cancer therapy.
Collapse
Affiliation(s)
- Kalpana Mujoo
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
- Current address: Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX
| | - Byung-Kwon Choi
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhao Huang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
17
|
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets. Sci Rep 2014; 4:5199. [PMID: 24903657 PMCID: PMC4047531 DOI: 10.1038/srep05199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 05/16/2014] [Indexed: 01/23/2023] Open
Abstract
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.
Collapse
|
18
|
Wei Q, Sha Y, Bhattacharya A, Abdel Fattah E, Bonilla D, Jyothula SSSK, Pandit L, Khurana Hershey GK, Eissa NT. Regulation of IL-4 receptor signaling by STUB1 in lung inflammation. Am J Respir Crit Care Med 2014; 189:16-29. [PMID: 24251647 DOI: 10.1164/rccm.201305-0874oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE IL-4Rα, the common receptor component for IL-4 and IL-13, plays a critical role in IL-4- and IL-13-mediated signaling pathways that regulate airway inflammation and remodeling. However, the regulatory mechanisms underlying IL-4Rα turnover and its signal termination remain elusive. OBJECTIVES To evaluate the role of STUB1 (STIP1 homology and U-Box containing protein 1) in regulating IL-4R signaling in airway inflammation. METHODS The roles of STUB1 in IL-4Rα degradation and its signaling were investigated by immunoblot, immunoprecipitation, and flow cytometry. The involvement of STUB1 in airway inflammation was determined in vivo by measuring lung inflammatory cells infiltration, mucus production, serum lgE levels, and alveolar macrophage M2 activation in STUB1(-/-) mice. STUB1 expression was evaluated in airway epithelium of patients with asthma and lung tissues of subjects with chronic obstructive pulmonary disease. MEASUREMENTS AND MAIN RESULTS STUB1 interacted with IL-4Rα and targeted it for ubiquitination-mediated proteasomal degradation, terminating IL-4 or IL-13 signaling. STUB1 knockout cells showed increased levels of IL-4Rα and sustained STAT6 activation, whereas STUB1 overexpression reduced IL-4Rα levels. Mice deficient in STUB1 had spontaneous airway inflammation, alternative M2 activation of alveolar macrophage, and increased serum IgE. STUB1 levels were increased in airways of subjects with asthma or chronic obstructive pulmonary disease, suggesting that up-regulation of STUB1 might be an important feedback mechanism to dampen IL-4R signaling in airway inflammation. CONCLUSIONS Our study identified a previously uncharacterized role for STUB1 in regulating IL-4R signaling, which might provide a new strategy for attenuating airway inflammation.
Collapse
Affiliation(s)
- Qin Wei
- 1 Department of Medicine, Baylor College of Medicine, Houston, Texas; and
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Printsev I, Yen L, Sweeney C, Carraway KL. Oligomerization of the Nrdp1 E3 ubiquitin ligase is necessary for efficient autoubiquitination but not ErbB3 ubiquitination. J Biol Chem 2014; 289:8570-8. [PMID: 24519943 DOI: 10.1074/jbc.m113.527036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the ErbB3 receptor tyrosine kinase protein in breast and other cancers contributes to tumor malignancy and therapeutic resistance. The RBCC/TRIM family RING finger E3 ubiquitin ligase Nrdp1 mediates the ubiquitination of ErbB3 in normal mammary epithelial cells to facilitate receptor degradation and suppress steady-state receptor levels. Post-transcriptional loss of Nrdp1 in patient breast tumors allows ErbB3 overexpression and receptor contribution to tumor progression, and elevated lability through autoubiquitination contributes to the observed loss of Nrdp1 in tumors relative to normal tissue. To begin to understand the mechanisms underlying Nrdp1 protein self-regulation through lability, we investigated the structural determinants required for efficient autoubiquitination and ErbB3 ubiquitination. Using mutagenesis, chemical cross-linking, size exclusion chromatography, and native polyacrylamide gel electrophoresis, we demonstrate that Nrdp1 self-associates into a stable oligomeric complex in cells. Deletion of its coiled-coil domain abrogates oligomerization but does not affect Nrdp1-mediated ErbB3 ubiquitination or degradation. On the other hand, the presence of the coiled-coil domain is necessary for efficient Nrdp1 autoubiquitination via a trans mechanism, indicating that Nrdp1 ubiquitination of its various targets is functionally separable. Finally, a GFP fusion of the coiled-coil domain stabilizes Nrdp1 and potentiates ErbB3 ubiquitination and degradation. These observations point to a model whereby the coiled-coil domain plays a key role in regulating Nrdp1 lability by promoting its assembly into an oligomeric complex, and raise the possibility that inhibition of ligase oligomerization via its coiled-coil domain could be of therapeutic benefit to breast cancer patients by restoring Nrdp1 protein.
Collapse
Affiliation(s)
- Ignat Printsev
- From the Department of Biochemistry and Molecular Medicine and the UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California 95817
| | | | | | | |
Collapse
|
20
|
Lewandowski KT, Piwnica-Worms H. Phosphorylation of the E3 ubiquitin ligase RNF41 by the kinase Par-1b is required for epithelial cell polarity. J Cell Sci 2013; 127:315-27. [PMID: 24259665 DOI: 10.1242/jcs.129148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The establishment and maintenance of cell polarity is an essential property governing organismal homeostasis, and loss of polarity is a common feature of cancer cells. The ability of epithelial cells to establish apical-basal polarity depends on intracellular signals generated from polarity proteins, such as the Par-1 family of proteins, as well as extracellular signals generated through cell contacts with the extracellular matrix (ECM). The Par-1 family has a well-established role in regulating cell-cell contacts in the form of tight junctions by phosphorylating Par-3. In addition, Par-1 has been shown to impact on cell-ECM interactions by regulating laminin receptor localization and laminin deposition on the basal surface of epithelial cells. Laminins are major structural and signaling components of basement membrane (BM), a sheet of specialized ECM underlying epithelia. In this study, we identify RNF41, an E3 ubiquitin ligase, as a novel Par-1b (also known as MARK2) effector in the cell-ECM pathway. Par-1b binds to and phosphorylates RNF41 on serine 254. Phosphorylation of RNF41 by Par-1b is required for epithelial cells to localize laminin-111 receptors to their basolateral surfaces and to properly anchor to laminin-111. In addition, phosphorylation of RNF41 is required for epithelial cells to establish apical-basal polarity. Our data suggests that phosphorylation of RNF41 by Par-1b regulates basolateral membrane targeting of laminin-111 receptors, thereby facilitating cell anchorage to laminin-111 and ultimately forming the cell-ECM contacts required for epithelial cells to establish apical-basal cell polarity.
Collapse
Affiliation(s)
- Katherine T Lewandowski
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
21
|
De Ceuninck L, Wauman J, Masschaele D, Peelman F, Tavernier J. Reciprocal cross-regulation between RNF41 and USP8 controls cytokine receptor sorting and processing. J Cell Sci 2013; 126:3770-81. [DOI: 10.1242/jcs.131250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mechanisms controlling the steady-state cytokine receptor cell surface levels, and consequently the cellular response to cytokines, remain poorly understood. The number of surface-exposed receptors is a dynamic balance of de novo synthesis, transport to the plasma membrane, internalization, recycling, degradation and ectodomain shedding. We previously reported that the E3 ubiquitin ligase Ring Finger Protein 41 (RNF41) inhibits basal lysosomal degradation and enhance ectodomain shedding of JAK2-associated cytokine receptors. Ubiquitin-specific protease 8 (USP8), an RNF41 interacting deubiquitinating enzyme (DUB) stabilizes RNF41 and is involved in trafficking of various transmembrane proteins. The present study identifies USP8 as a substrate of RNF41 and reveals that loss of USP8 explains the aforementioned RNF41 effects. RNF41 redistributes and ubiquitinates USP8, and reduces USP8 levels. In addition, USP8 knockdown functionally matches the effects of RNF41 ectopic expression on the model leptin and leukemia inhibitory factor (LIF) receptors. Moreover, RNF41 indirectly destabilizes the ESCRT-0 complex via USP8 suppression. Collectively, our findings demonstrate that RNF41 controls JAK2-associated cytokine receptor trafficking by acting as a key regulator of USP8 and ESCRT-0 stability. Balanced reciprocal cross-regulation between RNF41 and USP8 thus decides if receptors are sorted for lysosomal degradation or recycling, this way regulating basal cytokine receptor levels.
Collapse
|
22
|
Genetic screen for regulators of lymph gland homeostasis and hemocyte maturation in Drosophila. G3-GENES GENOMES GENETICS 2012; 2:393-405. [PMID: 22413093 PMCID: PMC3291509 DOI: 10.1534/g3.111.001693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/20/2012] [Indexed: 12/25/2022]
Abstract
Blood cell development in the Drosophila lymph gland is controlled by multiple factors, most of them conserved from flies to mammals. The Drosophila homolog of vertebrate PDCD2, Zfrp8, is required in Drosophila hematopoietic stem cell development. Zfrp8 mutant larvae show a disruption of homeostasis in the lymph gland and vast lymph gland overgrowth. The loss of one copy of Zfrp8 also causes a lymph gland enlargement. This dominant phenotype can be modified by heterozygous mutations in cell-cycle genes and several genes functioning in blood development. To identify additional genes that function in hematopoiesis, we screened a collection of second and third chromosome deficiencies for modifiers of Zfrp8 heterozygous phenotype. Using deficiency mapping, available single gene mutations, and RNAi lines, we identified several novel factors required for lymph gland development and hemocyte differentiation. Distinct lymph gland phenotypes of nine of these genes are reported here for the first time. Importantly, the orthologs of four of them have a role in mammalian blood development and leukemogenesis. Our work has shown that the number of genes regulating normal blood cell development in Drosophila is much larger than expected, and that the complex molecular mechanisms regulating hemocyte differentiation are comparable to those in vertebrates.
Collapse
|
23
|
Sato T, Okumura F, Iguchi A, Ariga T, Hatakeyama S. TRIM32 promotes retinoic acid receptor α-mediated differentiation in human promyelogenous leukemic cell line HL60. Biochem Biophys Res Commun 2011; 417:594-600. [PMID: 22182411 DOI: 10.1016/j.bbrc.2011.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 12/26/2022]
Abstract
Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor α (RARα). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RARα and enhances transcriptional activity of RARα in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RARα, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RARα-mediated transcriptional activity even in the absence of RA and stabilizes RARα in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RARα-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.
Collapse
Affiliation(s)
- Tomonobu Sato
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
24
|
Sato T, Okumura F, Kano S, Kondo T, Ariga T, Hatakeyama S. TRIM32 promotes neural differentiation through retinoic acid receptor-mediated transcription. J Cell Sci 2011; 124:3492-502. [PMID: 21984809 DOI: 10.1242/jcs.088799] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Retinoic acid (RA), a metabolite of vitamin A, plays versatile roles in development, differentiation, cell cycles and regulation of apoptosis by regulating gene transcription through nuclear receptor activation. Ubiquitinylation, which is one of the post-translational modifications, appears to be involved in the transcriptional activity of intranuclear receptors including retinoic acid receptor α (RARα). Mutations in the tripartite motif-containing protein 32 gene (TRIM32; also known as E3 ubiquitin-protein ligase) have been reported to be responsible for limb-girdle muscular dystrophy type 2H in humans, and its encoded protein has been shown to interact with several other important proteins. In this study, we found that TRIM32 interacts with RARα and enhances its transcriptional activity in the presence of RA. We also found that overexpression of TRIM32 in mouse neuroblastoma cells and embryonal carcinoma cells promoted stability of RARα, resulting in enhancement of neural differentiation. These findings suggest that TRIM32 functions as one of the co-activators for RARα-mediated transcription, and thereby TRIM32 is a potential therapeutic target for developmental disorders and RA-dependent leukemias.
Collapse
Affiliation(s)
- Tomonobu Sato
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Cytosolic lysine residues enhance anterograde transport and activation of the erythropoietin receptor. Biochem J 2011; 435:509-18. [PMID: 21291419 DOI: 10.1042/bj20101876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lysine residues are key residues in many cellular processes, in part due to their ability to accept a wide variety of post-translational modifications. In the present study, we identify the EPO-R [EPO (erythropoietin) receptor] cytosolic lysine residues as enhancers of receptor function. EPO-R drives survival, proliferation and differentiation of erythroid progenitor cells via binding of its ligand EPO. We mutated the five EPO-R cytosolic lysine residues to arginine residues (5KR EPO-R), eliminating putative lysine-dependent modifications. Overexpressed 5KR EPO-R displayed impaired ubiquitination and improved stability compared with wt (wild-type) EPO-R. Unexpectedly, fusion proteins consisting of VSVGtsO45 (vesicular stomatitis virus glycoprotein temperature-sensitive folding mutant) with wt or 5KR EPO-R cytosolic domains demonstrated delayed glycan maturation kinetics upon substitution of the lysine residues. Moreover, VSVG-wt EPO-R, but not VSVG-5KR EPO-R, displayed endoplasmic reticulum-associated ubiquitination. Despite similar cell-surface EPO-binding levels of both receptors and the lack of EPO-induced ubiquitination by 5KR EPO-R, the lysine-less mutant produced weaker receptor activation and signalling than the wt receptor. We thus propose that EPO-R cytosolic lysine residues enhance receptor function, most probably through ubiquitination and/or other post-translational modifications.
Collapse
|
26
|
Wauman J, De Ceuninck L, Vanderroost N, Lievens S, Tavernier J. RNF41 (Nrdp1) controls type 1 cytokine receptor degradation and ectodomain shedding. J Cell Sci 2011; 124:921-32. [PMID: 21378310 PMCID: PMC3115735 DOI: 10.1242/jcs.078055] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytokines, such as interferons, erythropoietin, leptin and most interleukins, signal through type 1 cytokine receptors and activate the canonical JAK–STAT pathway. Aberrant cytokine signalling underlies numerous pathologies and adequate, temporary receptor activation is therefore under tight control. Negative-feedback mechanisms are very well studied, but cellular sensitivity also depends on the number of receptors exposed at the cell surface. This is determined by the equilibrium between receptor synthesis and transport to the plasma membrane, internalisation and recycling, degradation and ectodomain shedding, but the molecular basis of how cells establish steady state receptor levels is poorly understood. Here, we report that ring finger protein 41 (RNF41, also known as E3 ubiquitin-protein ligase Nrdp1) interacts with JAK2-associated cytokine receptor complexes and modulates their cell surface exposure and signalling. Moreover, ectopic expression of RNF41 affected turnover of leptin, leukaemia inhibitory factor and interleukin-6 receptor in a dual way: it blocked intracellular cathepsin-L-dependent receptor cleavage and concomitantly enhanced receptor shedding by metalloproteases of the ADAM family. Receptor degradation and shedding are thus interconnected phenomena with a single protein, RNF41, determining the balance.
Collapse
Affiliation(s)
- Joris Wauman
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
27
|
Wu YL, Zhou HC, Chen GQ. Molecular mechanisms of leukemia-associated protein degradation. ACTA ACUST UNITED AC 2010; 4:363-70. [PMID: 21104160 DOI: 10.1007/s11684-010-0210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
Chemical biology, using small molecules as probes to study the cellular signaling network, has developed rapidly in recent years. The interaction between chemistry and biology not only provides new insight into the understanding of cellular activities, but also generates new lead compounds for the treatment of diseases. Transcription factors and kinases such as retinoic acid receptor-alpha (RARα), acute myeloid leukemia 1 (AML1), CAAT/enhancer-binding protein α (C/EBPα), c-myc, and c-abl play important roles in the differentiation of hematopoietic stem/progenitor cells. Abnormalities in these proteins may cause the dysregulation of hematopoiesis and even the occurrence of leukemia. Ubiquitin-mediated protein degradation represents a critical mechanism in regulating the cellular levels and functions of these proteins. Thus, targeting protein degradation has been emerging as an important strategy to conquer malignant diseases. In this review, we will summarize the recent advances in the understanding of the roles of protein degradation in leukemia, with an emphasis on the mechanisms revealed by small molecules.
Collapse
MESH Headings
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/physiopathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RUNX1 Translocation Partner 1 Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ubiquitin/genetics
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Ying-Li Wu
- Department of Pathophysiology and Chemical Biology Division of Shanghai Universities E-Institutes, Key laboratory of Cell Differentiation and Apoptosis of the Ministry of Education of China, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | | | | |
Collapse
|
28
|
Pharicin B stabilizes retinoic acid receptor-α and presents synergistic differentiation induction with ATRA in myeloid leukemic cells. Blood 2010; 116:5289-97. [PMID: 20739655 DOI: 10.1182/blood-2010-02-267963] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans retinoic acid (ATRA), a natural ligand for the retinoic acid receptors (RARs), induces clinical remission in most acute promyelocytic leukemia (APL) patients through the induction of differentiation and/or eradication of leukemia-initiating cells. Here, we identify a novel natural ent-kaurene diterpenoid derived from Isodon pharicus leaves, called pharicin B, that can rapidly stabilize RAR-α protein in various acute myeloid leukemic (AML) cell lines and primary leukemic cells from AML patients, even in the presence of ATRA, which is known to induce the loss of RAR-α protein. Pharicin B also enhances ATRA-dependent the transcriptional activity of RAR-α protein in the promyelocytic leukemia-RARα-positive APL cell line NB4 cells. We also showed that pharicin B presents a synergistic or additive differentiation-enhancing effect when used in combination with ATRA in several AML cell lines and, especially, some primary leukemic cells from APL patients. In addition, pharicin B can overcome retinoid resistance in 2 of 3 NB4-derived ATRA-resistant subclones. These findings provide a good example for chemical biology-based investigations of pathophysiological and therapeutic significances of RAR-α and PML-RAR-α proteins. The effectiveness of the ATRA/pharicin B combination warrants further investigation on their use as a therapeutic strategy for AML patients.
Collapse
|
29
|
Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL). PLoS One 2009; 4:e7169. [PMID: 19779621 PMCID: PMC2745703 DOI: 10.1371/journal.pone.0007169] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short, noncoding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. The miRNAs, MIR-15a/16-1, at chromosome band 13q14 are down-regulated in the majority of patients with chronic lymphocytic leukaemia (CLL). Methodology/Principal Findings We have measured the expression of MIR-15a/16-1, and 92 computationally-predicted MIR-15a/16-1 target genes in CLL patients and in normal controls. We identified 35 genes that are deregulated in CLL patients, 5 of which appear to be specific targets of the MIR-15a/16-1 cluster. These targets included 2 genes (BAZ2A and RNF41) that were significantly up-regulated (p<0.05) and 3 genes (RASSF5, MKK3 and LRIG1) that were significantly down-regulated (p<0.05) in CLL patients with down-regulated MIR-15a/16-1 expression. Significance The genes identified here as being subject to MIR-15a/16-1 regulation could represent direct or indirect targets of these miRNAs. Many of these are good biological candidates for involvement in tumorigenesis and as such, may be important in the aetiology of CLL.
Collapse
|
30
|
Kutlesa S, Zayas J, Valle A, Levy RB, Jurecic R. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system. Exp Hematol 2009; 37:909-23. [PMID: 19447159 DOI: 10.1016/j.exphem.2009.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. MATERIALS AND METHODS EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. RESULTS The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Talpha, RAG-1, and T-cell receptor-Vbeta genes; and 3) produced interferon-gamma in response to T-cell receptor stimulation. CONCLUSIONS These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation.
Collapse
Affiliation(s)
- Snjezana Kutlesa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Fla. 33136, USA
| | | | | | | | | |
Collapse
|