1
|
Eftekhar Z, Aghaei M, Saki N. DNA damage repair in megakaryopoiesis: molecular and clinical aspects. Expert Rev Hematol 2024; 17:705-712. [PMID: 39117495 DOI: 10.1080/17474086.2024.2391102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Endogenous DNA damage is a significant factor in the damage of hematopoietic cells. Megakaryopoiesis is one of the pathways of hematopoiesis that ends with the production of platelets and plays the most crucial role in hemostasis. Despite the presence of efficient DNA repair mechanisms, some endogenous lesions can lead to mutagenic alterations, disruption of pathways of hematopoiesis including megakaryopoiesis and potentially result in human diseases. AREAS COVERED The complex regulation of DNA repair mechanisms plays a central role in maintaining genomic integrity during megakaryopoiesis and influences platelet production efficiency and quality. Moreover, anomalies in DNA repair processes are involved in several diseases associated with megakaryopoiesis, including myeloproliferative disorders and thrombocytopenia. EXPERT OPINION In the era of personalized medicine, diagnosing diseases related to megakaryopoiesis can only be made with a complete assessment of their molecular aspects to provide physicians with critical molecular data for patient management and to identify the subset of patients who could benefit from targeted therapy.
Collapse
Affiliation(s)
- Zeinab Eftekhar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Demagny J, Poirault‐Chassac S, Ilsaint DN, Marchelli A, Gomila C, Ouled‐Haddou H, Collet L, Le Guyader M, Gaussem P, Garçon L, Bachelot‐Loza C. Role of the mechanotransductor PIEZO1 in megakaryocyte differentiation. J Cell Mol Med 2024; 28:e70055. [PMID: 39304946 PMCID: PMC11415291 DOI: 10.1111/jcmm.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
From haematopoietic stem cells to megakaryocytes (Mks), cells undergo various mechanical forces that affect Mk differentiation, maturation and proplatelet formation. The mechanotransductor PIEZO1 appears to be a natural candidate for sensing these mechanical forces and regulating megakaryopoiesis and thrombopoiesis. Gain-of-function mutations of PIEZO1 cause hereditary xerocytosis, a haemolytic anaemia associated with thrombotic events. If some functions of PIEZO1 have been reported in platelets, few data exist on PIEZO1 role in megakaryopoiesis. To address this subject, we used an in vitro model of Mk differentiation from CD34+ cells and studied step-by-step the effects of PIEZO1 activation by the chemical activator YODA1 during Mk differentiation and maturation. We report that PIEZO1 activation by 4 μM YODA1 at early stages of culture induced cytosolic calcium ion influx and reduced cell maturation. Indeed, CD41+CD42+ numbers were reduced by around 1.5-fold, with no effects on proliferation. At later stages of Mk differentiation, PIEZO1 activation promoted endomitosis and proplatelet formation that was reversed by PIEZO1 gene invalidation with a shRNA-PIEZO1. Same observations on endomitosis were reproduced in HEL cells induced into Mks by PMA and treated with YODA1. We provide for the first time results suggesting a dual role of PIEZO1 mechanotransductor during megakaryopoiesis.
Collapse
Affiliation(s)
- Julien Demagny
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
- Biological Hematology DepartmentCHU Amiens‐PicardieAmiensFrance
| | | | | | - Aurore Marchelli
- Université de Paris Cité, Innovative Therapies in Hemostasis, INSERMParisFrance
| | - Cathy Gomila
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
| | | | - Louison Collet
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
| | | | - Pascale Gaussem
- Université de Paris Cité, Innovative Therapies in Hemostasis, INSERMParisFrance
- Service d'hématologie biologiqueHôpital Européen Georges Pompidou, Assistance Publique‐Hôpitaux de ParisParisFrance
| | - Loïc Garçon
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
- Biological Hematology DepartmentCHU Amiens‐PicardieAmiensFrance
| | | |
Collapse
|
3
|
Meng F, Chen S, Liu C, Khan MS, Yan Y, Wan J, Xia Y, Sun C, Yang M, Hu R, Dai K. The role of PKC in X-ray-induced megakaryocyte apoptosis and thrombocytopenia. Blood Cells Mol Dis 2024; 104:102798. [PMID: 37813040 DOI: 10.1016/j.bcmd.2023.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Thrombocytopenia is a critical complication after radiation therapy and exposure. Dysfunction of megakaryocyte development and platelet production are key pathophysiological stages in ionizing radiation (IR)-induced thrombocytopenia. Protein kinase C (PKC) plays an important role in regulating megakaryocyte development and platelet production. However, it remains unclear how PKC regulates IR-induced megakaryocyte apoptosis. In this study, we found that pretreatment of PKC pan-inhibitor Go6983 delayed IR-induced megakaryocyte apoptosis, and inhibited IR-induced mitochondrial membrane potential and ROS production in CMK cells. Moreover, suppressing PKC activation inhibited cleaved caspase3 expression and reduced p38 phosphorylation levels, and IR-induced PKC activation might be regulated by p53. In vivo experiments confirmed that Go6983 promoted platelet count recovery after 21 days of 3 Gy total body irradiation. Furthermore, Go6983 reduced megakaryocyte apoptosis, increased the number of megakaryocyte and polyploid formation in bone marrow, and improved the survival rate of 6 Gy total body irradiation. In conclusion, our results provided a potential therapeutic target for IR-induced thrombocytopenia.
Collapse
Affiliation(s)
- Fanbi Meng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Shuang Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Chunliang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Muhammad Shoaib Khan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Yan Yan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Jun Wan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Yue Xia
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Chenglin Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Mengnan Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Renping Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China
| | - Kesheng Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Cyrus Tang Medical Institute, Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Suzhou 215000, China.
| |
Collapse
|
4
|
Dressel N, Natusch L, Munz CM, Costas Ramon S, Morcos MNF, Loff A, Hiller B, Haase C, Schulze L, Müller P, Lesche M, Dahl A, Luksch H, Rösen-Wolff A, Roers A, Behrendt R, Gerbaulet A. Activation of the cGAS/STING Axis in Genome-Damaged Hematopoietic Cells Does Not Impact Blood Cell Formation or Leukemogenesis. Cancer Res 2023; 83:2858-2872. [PMID: 37335136 DOI: 10.1158/0008-5472.can-22-3860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Genome damage is a main driver of malignant transformation, but it also induces aberrant inflammation via the cGAS/STING DNA-sensing pathway. Activation of cGAS/STING can trigger cell death and senescence, thereby potentially eliminating genome-damaged cells and preventing against malignant transformation. Here, we report that defective ribonucleotide excision repair (RER) in the hematopoietic system caused genome instability with concomitant activation of the cGAS/STING axis and compromised hematopoietic stem cell function, ultimately resulting in leukemogenesis. Additional inactivation of cGAS, STING, or type I IFN signaling, however, had no detectable effect on blood cell generation and leukemia development in RER-deficient hematopoietic cells. In wild-type mice, hematopoiesis under steady-state conditions and in response to genome damage was not affected by loss of cGAS. Together, these data challenge a role of the cGAS/STING pathway in protecting the hematopoietic system against DNA damage and leukemic transformation. SIGNIFICANCE Loss of cGAS/STING signaling does not impact DNA damage-driven leukemogenesis or alter steady-state, perturbed or malignant hematopoiesis, indicating that the cGAS/STING axis is not a crucial antioncogenic mechanism in the hematopoietic system. See related commentary by Zierhut, p. 2807.
Collapse
Affiliation(s)
- Nicole Dressel
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Loreen Natusch
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Clara M Munz
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Mina N F Morcos
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Anja Loff
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Björn Hiller
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christa Haase
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Livia Schulze
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Patrick Müller
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Hella Luksch
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
5
|
Abnormal Platelet Counts and Clonal Hematopoiesis in the General Population. Hemasphere 2023; 7:e821. [PMID: 36698617 PMCID: PMC9829283 DOI: 10.1097/hs9.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/21/2022] [Indexed: 01/27/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined by the presence of somatic mutations that may cause clonal expansion of hematopoietic cells. Here, we investigated the association between platelet count abnormalities, CH and consequences on overall survival and the development of hematological malignancies. Individuals with thrombocytopenia (n = 631) or thrombocytosis (n = 178) ≥60 years, and their age- and sex-matched controls, were selected within the population-based Lifelines cohort (n = 167,729). Although the prevalence of CH was not increased in thrombocytopenia cases compared with their controls (37.9% vs 39.3%; P = 0.639), mutations in spliceosome genes (SF3B1, SRSF2, U2AF1) were significantly enriched in thrombocytopenia cases (P = 0.007). Overall, CH in combination with thrombocytopenia did not impact on survival, but thrombocytopenia in combination with multiple mutated genes (hazard ratio [HR] = 2.08, 95% confidence interval [CI], 1.24-3.50; P = 0.006), mutations in TP53 (HR = 5.83, 95% CI, 2.49-13.64; P < 0.001) or spliceosome genes (HR = 2.69, 95% CI, 1.29-5.63; P = 0.009) increased the risk of death. The prevalence of CH in thrombocytosis cases was higher compared with controls (55.8% vs 37.7%; P < 0.001). Especially mutations in JAK2 (P < 0.001) and CALR (P = 0.003) were enriched in individuals with thrombocytosis. The presence of CH in individuals with thrombocytosis did not impact on overall survival. However, during follow-up of 11 years 23% of the individuals with thrombocytosis and CH were diagnosed with hematological malignancies. From these, 81% were diagnosed with myeloproliferative disease and 76% carried driver mutations JAK2, CALR, or MPL.
Collapse
|
6
|
Kao CY, Jiang J, Thompson W, Papoutsakis ET. miR-486-5p and miR-22-3p Enable Megakaryocytic Differentiation of Hematopoietic Stem and Progenitor Cells without Thrombopoietin. Int J Mol Sci 2022; 23:ijms23105355. [PMID: 35628168 PMCID: PMC9141330 DOI: 10.3390/ijms23105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/07/2022] [Indexed: 12/10/2022] Open
Abstract
Megakaryocytes release submicron size microparticles (MkMPs) in circulation. We have shown that MkMPs target CD34+ hematopoietic stem/progenitor cells (HSPCs) to induce megakaryocytic differentiation, and that small RNAs in MkMPs play an important role in the development of this phenotype. Here, using single-molecule real-time (SMRT) RNA sequencing (RNAseq), we identify the synergetic effect of two microRNAs (miRs), miR-486-5p and miR-22-3p (highly enriched in MkMPs), in driving the Mk differentiation of HSPCs in the absence of thrombopoietin (TPO). Separately, our data suggest that the MkMP-induced Mk differentiation of HSPCs is enabled through JNK and PI3K/Akt/mTOR signaling. The interaction between the two signaling pathways is likely mediated by a direct target of miR-486-5p and a negative regulator of PI3K/Akt signaling, the phosphatase and tensin homologue (PTEN) protein. Our data provide a possible mechanistic explanation of the biological effect of MkMPs in inducing megakaryocytic differentiation of HSPCs, a phenotype of potential physiological significance in stress megakaryopoiesis.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
| | - Jinlin Jiang
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
| | - Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA; (C.-Y.K.); (J.J.); (W.T.)
- Department of Biological Sciences, University of Delaware, 590 Ave. 1743, Newark, DE 19713, USA
- Correspondence: ; Tel.: +1-302-831-8376
| |
Collapse
|
7
|
Su CH, Liao WJ, Ke WC, Yang RB, Tarn WY. The Y14-p53 regulatory circuit in megakaryocyte differentiation and thrombocytopenia. iScience 2021; 24:103368. [PMID: 34816104 PMCID: PMC8593568 DOI: 10.1016/j.isci.2021.103368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022] Open
Abstract
Thrombocytopenia-absent radius (TAR) syndrome is caused by RBM8A insufficiency. We generated megakaryocyte-specific Rbm8a knockout (Rbm8aKOMK) mice that exhibited marked thrombocytopenia, internal hemorrhage, and splenomegaly, providing evidence that genetic deficiency of Rbm8a causes a disorder of platelet production. Rbm8aKOMK mice accumulated low-ploidy immature megakaryocytes in the bone marrow and exhibited defective platelet activation and aggregation. Accordingly, depletion of Y14 (RBM8A) in human erythroleukemia (HEL) cells compromised phorbol-ester-induced polyploidization. Notably, Y14/RBM8A deficiency induced both p53 and p21 in megakaryocytes and HEL cells. Treatment with a p53 inhibitor restored ex vivo differentiation of Rbm8aKOMK megakaryocytes and unexpectedly activated Y14 expression in HEL cells. Trp53 knockout partially restored megakaryocyte differentiation by reversing cell-cycle arrest and increased platelet counts of Rbm8aKOMK, indicating that excess p53 in part accounts for thrombocytopenia in TAR syndrome. This study provides evidence for the role of the Y14-p53 circuit in platelet production and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Chun-Hao Su
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
| | - Wei-Ju Liao
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
| | - Wei-Chi Ke
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
- Corresponding author
| |
Collapse
|
8
|
Human megakaryocytic microparticles induce de novo platelet biogenesis in a wild-type murine model. Blood Adv 2021; 4:804-814. [PMID: 32119736 DOI: 10.1182/bloodadvances.2019000753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Platelet transfusions are used to treat idiopathic or drug-induced thrombocytopenia. Platelets are an expensive product in limited supply, with limited storage and distribution capabilities because they cannot be frozen. We have demonstrated that, in vitro, human megakaryocytic microparticles (huMkMPs) target human CD34+ hematopoietic stem and progenitor cells (huHSPCs) and induce their Mk differentiation and platelet biogenesis in the absence of thrombopoietin. In this study, we showed that, in vitro, huMkMPs can also target murine HSPCs (muHSPCs) to induce them to differentiate into megakaryocytes in the absence of thrombopoietin. Based on that, using wild-type BALB/c mice, we demonstrated that intravenously administering 2 × 106 huMkMPs triggered de novo murine platelet biogenesis to increase platelet levels up to 49% 16 hours after administration. huMkMPs also largely rescued low platelet levels in mice with induced thrombocytopenia 16 hours after administration by increasing platelet counts by 51%, compared with platelet counts in thrombocytopenic mice. Normalized on a tissue-mass basis, biodistribution experiments show that MkMPs localized largely to the bone marrow, lungs, and liver 24 hours after huMkMP administration. Beyond the bone marrow, CD41+ (megakaryocytes and Mk-progenitor) cells were frequent in lungs, spleen, and especially, liver. In the liver, infused huMKMPs colocalized with Mk progenitors and muHSPCs, thus suggesting that huMkMPs interact with muHSPCs in vivo to induce platelet biogenesis. Our data demonstrate the potential of huMkMPs, which can be stored frozen, to treat thrombocytopenias and serve as effective carriers for in vivo, target-specific cargo delivery to HSPCs.
Collapse
|
9
|
Veninga A, De Simone I, Heemskerk JWM, Cate HT, van der Meijden PEJ. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica 2020; 105:2020-2031. [PMID: 32554558 PMCID: PMC7395290 DOI: 10.3324/haematol.2019.235994] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are key elements in thrombosis, particularly in atherosclerosis-associated arterial thrombosis (atherothrombosis), and hemostasis. Megakaryocytes in the bone marrow, differentiated from hematopoietic stem cells are generally considered as a uniform source of platelets. However, recent insights into the causes of malignancies, including essential thrombocytosis, indicate that not only inherited but also somatic mutations in hematopoietic cells are linked to quantitative or qualitative platelet abnormalities. In particular cases, these form the basis of thrombo-hemorrhagic complications regularly observed in patient groups. This has led to the concept of clonal hematopoiesis of indeterminate potential (CHIP), defined as somatic mutations caused by clonal expansion of mutant hematopoietic cells without evident disease. This concept also provides clues regarding the importance of platelet function in relation to cardiovascular disease. In this summative review, we present an overview of genes associated with clonal hematopoiesis and altered platelet production and/or functionality, like mutations in JAK2 We consider how reported CHIP genes can influence the risk of cardiovascular disease, by exploring the consequences for platelet function related to (athero)thrombosis, or the risk of bleeding. More insight into the functional consequences of the CHIP mutations may favor personalized risk assessment, not only with regard to malignancies but also in relation to thrombotic vascular disease.
Collapse
Affiliation(s)
- Alicia Veninga
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Ilaria De Simone
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Hugo Ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht.,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht .,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht
| |
Collapse
|
10
|
Yang M, Liu Q, Niu T, Kuang J, Zhang X, Jiang L, Li S, He X, Wang L, Li J. Trp53 regulates platelets in bone marrow via the PI3K pathway. Exp Ther Med 2020; 20:1253-1260. [PMID: 32765666 PMCID: PMC7388439 DOI: 10.3892/etm.2020.8850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
The p53 gene is well known as a key tumor suppressor gene; it is vital for hematopoietic stem cell differentiation and growth. In the present study, the change of platelets (PLTs) in p53 knockout mice (p53-/- mice) was investigated. The peripheral blood cell subsets and PLT parameters in p53-/-mice were compared with those in age-matched p53+/+ mice. Bleeding time as well as the alteration of PLT levels, were analyzed with the PLT marker CD41 antibody using flow cytometry. The results revealed that the number of PLTs in p53-/- mice was significantly lower than that in p53+/+ mice. Bleeding time was prolonged in the peripheral blood of p53-/- mice compared with that of p53+/+ mice. Furthermore, the related gene expression of the PI3K signaling pathway in the bone marrow of p53-/- mice was shown to be associated with plateletogenesis. PI3K inhibitor (LY294002) was also used to treat p53-/- mice, and the results demonstrated that LY294002 revert the change of PLTs in these mice. In summary, PLTs were altered in p53-/- mice, and the PI3K signaling pathway was involved in that process, suggesting that the p53-dependent PI3K signaling pathway is involved in thrombocytopenia or PLT diseases. PLT number is reduced in p53 deficiency; however, this reduction could be reverted by inhibiting the PI3K pathway.
Collapse
Affiliation(s)
- Mingming Yang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Qing Liu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Ting Niu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jianbiao Kuang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaohan Zhang
- Department of Pathology, Zhuhai Branch of Traditional Chinese Medicine Hospital of Guangdong Province, Zhuhai, Guangdong 519015, P.R. China
| | - Lingbi Jiang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Siqi Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiangchao Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
11
|
Abstract
Mammal megakaryocytes (MK) undergo polyploidization during their differentiation. This process leads to a marked increase in the MK size and of their cytoplasm. Contrary to division by classical mitosis, ploidization allows an economical manner to produce platelets as they arise from the fragmentation of the MK cytoplasm. The platelet production in vivo correlates to the entire MK cytoplasm mass that depends both upon the number of MKs and their size. Polyploidization occurs by several rounds of DNA replication with at the end of each round an aborted mitosis at late phase of cytokinesis. As there is also a defect in karyokinesis, MKs are giant cells with a single polylobulated nucleus with a 2xN ploidy. However, polyploidization per se does not increase platelet production because it requires a parallel development of MK organelles such as mitochondria, granules and the demarcation membrane system. MK polyploidization is regulated by extrinsic factors, more particularly by thrombopoietin (TPO), which during a platelet stress increases first polyploidization before enhancing the MK number and by transcription factors such as RUNX1, GATA1, and FLI1 that regulate MK differentiation explaining why polyploidization and cytoplasmic maturation are intermingled. MK polyploidization is ontogenically regulated and is markedly altered in malignant myeloid disorders such as acute megakaryoblastic leukemia and myeloproliferative disorders as well as in hereditary thrombocytopenia, more particularly those involving transcription factors or signaling pathways. In addition, MKs arising from progenitors in vitro have a much lower ploidy in vitro than in vivo leading to a low yield of platelet production in vitro. Thus, it is tempting to find approaches to increase MK polyploidization in vitro. However, these approaches require molecules that are able to simultaneously increase MK polyploidization and to induce terminal differentiation. Here, we will focus on the regulation by extrinsic and intrinsic factors of MK polyploidization during development and pathological conditions.
Collapse
Affiliation(s)
- William Vainchenker
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer , Villejuif, France
| | - Hana Raslova
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer , Villejuif, France
| |
Collapse
|
12
|
Takaishi K, Takeuchi M, Tsukamoto S, Takayama N, Oshima M, Kimura K, Isshiki Y, Kayamori K, Hino Y, Oshima-Hasegawa N, Mitsukawa S, Takeda Y, Mimura N, Ohwada C, Iseki T, Nakamura S, Eto K, Iwama A, Yokote K, Nakaseko C, Sakaida E. Suppressive effects of anagrelide on cell cycle progression and the maturation of megakaryocyte progenitor cell lines in human induced pluripotent stem cells. Haematologica 2019; 105:e216-e220. [PMID: 31488559 DOI: 10.3324/haematol.2018.214841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Koji Takaishi
- Department of Hematology, Chiba University Hospital, Chiba
| | | | | | - Naoya Takayama
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo
| | - Kenji Kimura
- Department of Hematology, Chiba University Hospital, Chiba
| | - Yusuke Isshiki
- Department of Hematology, Chiba University Hospital, Chiba
| | | | - Yutaro Hino
- Department of Hematology, Chiba University Hospital, Chiba
| | | | - Shio Mitsukawa
- Department of Hematology, Chiba University Hospital, Chiba.,Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba
| | - Yusuke Takeda
- Department of Hematology, Chiba University Hospital, Chiba
| | - Naoya Mimura
- Department of Hematology, Chiba University Hospital, Chiba.,Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba
| | - Chikako Ohwada
- Department of Hematology, Chiba University Hospital, Chiba
| | - Tohru Iseki
- Department of Hematology, Chiba University Hospital, Chiba.,Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto
| | - Koji Eto
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba.,Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo
| | - Koutaro Yokote
- Department of Clinical Biology and Medicine, Chiba University Graduate School of Medicine, Chiba
| | | | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba
| |
Collapse
|
13
|
Stasik S, Middeke JM, Kramer M, Röllig C, Krämer A, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause S, Herbst R, Hänel M, Frickhofen N, Noppeney R, Kaiser U, Baldus CD, Kaufmann M, Rácil Z, Platzbecker U, Berdel WE, Mayer J, Serve H, Müller-Tidow C, Ehninger G, Bornhäuser M, Schetelig J, Thiede C. EZH2 mutations and impact on clinical outcome: an analysis in 1,604 patients with newly diagnosed acute myeloid leukemia. Haematologica 2019; 105:e228-e231. [PMID: 31413097 DOI: 10.3324/haematol.2019.222323] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Sebastian Stasik
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Jan M Middeke
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Michael Kramer
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Christoph Röllig
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Alwin Krämer
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| | - Sebastian Scholl
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Jena, Germany
| | - Andreas Hochhaus
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Jena, Germany
| | - Martina Crysandt
- Uniklinik RWTH Aachen, Klinik für Hämatologie, Onkologie, Hämostasiologie und Stammzelltransplantation, Aachen, Germany
| | - Tim H Brümmendorf
- Uniklinik RWTH Aachen, Klinik für Hämatologie, Onkologie, Hämostasiologie und Stammzelltransplantation, Aachen, Germany
| | - Ralph Naumann
- St. Marien-Krankenhaus Siegen, Medizinische Klinik III, Siegen, Germany
| | - Björn Steffen
- Universitätsklinikum Frankfurt, Medizinische Klinik II, Frankfurt am Main, Germany
| | - Volker Kunzmann
- Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik II, Würzburg, Germany
| | - Hermann Einsele
- Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik II, Würzburg, Germany
| | - Markus Schaich
- Rems-Murr-Klinikum Winnenden, Klinik für Hämatologie, Onkologie und Palliativmedizin, Winnenden, Germany
| | - Andreas Burchert
- Philipps Universität Marburg, Klinik für Hämatologie, Onkologie, Immunologie, Marburg, Germany
| | - Andreas Neubauer
- Philipps Universität Marburg, Klinik für Hämatologie, Onkologie, Immunologie, Marburg, Germany
| | | | | | - Stefan Krause
- Universitätsklinikum Erlangen, Medizinische Klinik V, Erlangen, Germany
| | - Regina Herbst
- Klinikum Chemnitz, Medizinische Klinik III, Chemnitz, Germany
| | - Mathias Hänel
- Klinikum Chemnitz, Medizinische Klinik III, Chemnitz, Germany
| | | | - Richard Noppeney
- Universitätsklinikum Essen, Klinik für Hämatologie, Essen, Germany
| | - Ulrich Kaiser
- St. Bernward Krankenhaus, Medizinische Klinik II, Hildesheim, Germany
| | - Claudia D Baldus
- Charité-Universitätsmedizin Berlin, Hämatologie und Onkologie, Berlin, Germany
| | - Martin Kaufmann
- Robert-Bosch-Krankenhaus, Abteilung für Hämatologie, Onkologie und Palliativmedizin, Stuttgart, Germany
| | - Zdenek Rácil
- Masaryk University and University Hospital, Department of Internal Medicine, Hematology and Oncology, Brno, Czech Republic
| | - Uwe Platzbecker
- Universitätsklinikum Leipzig, Medizinische Klinik und Poliklinik I, Hämatologie und Zelltherapie, Leipzig, Germany
| | - Wolfgang E Berdel
- Universitätsklinikum Münster, Medizinische Klinik A, Münster, Germany
| | - Jiri Mayer
- Masaryk University and University Hospital, Department of Internal Medicine, Hematology and Oncology, Brno, Czech Republic
| | - Hubert Serve
- Universitätsklinikum Frankfurt, Medizinische Klinik II, Frankfurt am Main, Germany
| | | | - Gerhard Ehninger
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Martin Bornhäuser
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Johannes Schetelig
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | - Christian Thiede
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | | |
Collapse
|
14
|
Luff SA, Kao CY, Papoutsakis ET. Role of p53 and transcription-independent p53-induced apoptosis in shear-stimulated megakaryocytic maturation, particle generation, and platelet biogenesis. PLoS One 2018; 13:e0203991. [PMID: 30231080 PMCID: PMC6145578 DOI: 10.1371/journal.pone.0203991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/02/2018] [Indexed: 12/18/2022] Open
Abstract
Megakaryocytes (Mks) derive from hematopoietic stem and progenitor cells (HSPCs) in the bone marrow and develop into large, polyploid cells that eventually give rise to platelets. As Mks mature, they migrate from the bone marrow niche into the vasculature, where they are exposed to shear forces from blood flow, releasing Mk particles (platelet-like particles (PLPs), pro/preplatelets (PPTs), and Mk microparticles (MkMPs)) into circulation. We have previously shown that transcription factor p53 is important in Mk maturation, and that physiological levels of shear promote Mk particle generation and platelet biogenesis. Here we examine the role of p53 in the Mk shear-stress response. We show that p53 is acetylated in response to shear in both immature and mature Mks, and that decreased expression of deacetylase HDAC1, and increased expression of the acetyltransferases p300 and PCAF might be responsible for these changes. We also examined the hypothesis that p53 might be involved in the shear-induced Caspase 3 activation, phosphatidylserine (PS) externalization, and increased biogenesis of PLPs, PPTs, and MkMPs. We show that p53 is involved in all these shear-induced processes. We show that in response to shear, acetyl-p53 binds Bax, cytochrome c is released from mitochondria, and Caspase 9 is activated. We also show that shear-stimulated Caspase 9 activation and Mk particle biogenesis depend on transcription-independent p53-induced apoptosis (TIPA), but PS externalization is not. This is the first report to show that shear flow stimulates TIPA and that Caspase 9 activation and Mk-particle biogenesis are directly modulated by TIPA.
Collapse
Affiliation(s)
- Stephanie A. Luff
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Chen-Yuan Kao
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Eleftherios T. Papoutsakis
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
15
|
Yang J, Ma J, Xiong Y, Wang Y, Jin K, Xia W, Chen Q, Huang J, Zhang J, Jiang N, Jiang S, Ma D. Epigenetic regulation of megakaryocytic and erythroid differentiation by PHF2 histone demethylase. J Cell Physiol 2018; 233:6841-6852. [PMID: 29336484 DOI: 10.1002/jcp.26438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
Plant homeodomain finger 2 (PHF2) is a JmjC family histone demethylase that demethylates H3K9me2, a repressive gene marker. PHF2 was found to play a role in the differentiation of several tissue types such as osteoblast and adipocyte differentiation. We report here that PHF2 plays a role in the epigenetic regulation of megakaryocytic (MK) and erythroid differentiation. We investigated PHF2 expression during MK and erythroid differentiation in K562 and human CD34+ progenitor (hCD34+ ) cells. Our data demonstrate that PHF2 expression is down-regulated during megakaryopoiesis and erythropoiesis. PHF2 has a negative role in MK and erythroid differentiation of K562 cells; knockdown of PHF2 promotes MK and erythroid differentiation of hCD34+ cells. Similarly, we found that p53 expression is also down-regulated during MK and erythroid differentiation, which parallels PHF2 expression. PHF2 binds to the p53 promoter and regulates the expression of p53 by demethylating H3K9me2 in the promoter region of p53. Taken together, our data show that PHF2 is a negative epigenetic regulator of MK and erythroid differentiation, and that one of the pathways through which PHF2 affects MK and erythroid differentiation is via regulation of p53 expression.
Collapse
Affiliation(s)
- Jichun Yang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Xiong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yanlin Wang
- International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyue Jin
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjun Xia
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qing Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianbo Huang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shayi Jiang
- Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Duan Ma
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Affiliation(s)
- Praveen K Suraneni
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Megakaryocyte and polyploidization. Exp Hematol 2018; 57:1-13. [DOI: 10.1016/j.exphem.2017.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
18
|
Mahfoudhi E, Lordier L, Marty C, Pan J, Roy A, Roy L, Rameau P, Abbes S, Debili N, Raslova H, Chang Y, Debussche L, Vainchenker W, Plo I. P53 activation inhibits all types of hematopoietic progenitors and all stages of megakaryopoiesis. Oncotarget 2017; 7:31980-92. [PMID: 26959882 PMCID: PMC5077990 DOI: 10.18632/oncotarget.7881] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
TP53 also known as p53 is a tumor suppressor gene mutated in a variety of cancers. P53 is involved in cell cycle, apoptosis and DNA repair mechanisms and is thus tightly controlled by many regulators. Recently, strategies to treat cancer have focused on the development of MDM2 antagonists to induce p53 stabilization and restore cell death in p53 non-mutated cancers. However, some of these molecules display adverse effects in patients including induction of thrombocytopenia. In the present study, we have explored the effect of SAR405838 not only on human megakaryopoiesis but also more generally on hematopoiesis. We compared its effect to MI-219 and Nutlin, which are less potent MDM2 antagonists than SAR405838. We found that all these compounds induce a deleterious effect on all types of hematopoietic progenitors, as well as on erythroid and megakaryocytic differentiation. Moreover, they inhibit both early and late stages of megakaryopoiesis including ploidization and proplatelet formation. In conclusion, MDM2 antagonists induced a major hematopoietic defect in vitro as well as an inhibition of all stages of megakaryopoiesis that may account for in vivo thrombocytopenia observed in treated patients.
Collapse
Affiliation(s)
- Emna Mahfoudhi
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratory of Excellence GR-Ex, Villejuif, France.,Laboratoire d'Hématologie Moléculaire et Cellulaire, Institut Pasteur de Tunis, Université de Tunis El Manar, Belvédère, Tunisie
| | - Larissa Lordier
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Jiajia Pan
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Anita Roy
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Lydia Roy
- Départment of Clinical Hematology, Hôpital Henri-Mondor, Créteil, France
| | | | - Salem Abbes
- Laboratoire d'Hématologie Moléculaire et Cellulaire, Institut Pasteur de Tunis, Université de Tunis El Manar, Belvédère, Tunisie
| | - Najet Debili
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Hana Raslova
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Yunhua Chang
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | | | - William Vainchenker
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratory of Excellence GR-Ex, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France.,UMR 1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratory of Excellence GR-Ex, Villejuif, France
| |
Collapse
|
19
|
Moyo TK, Savona MR. Molecular Testing in Patients with Suspected Myelodysplastic Syndromes. Curr Hematol Malig Rep 2017; 11:441-448. [PMID: 27734261 DOI: 10.1007/s11899-016-0356-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of clonal hematologic malignancies characterized by a hypercellular bone marrow and morphologic dysplasia in one or more lineage (i.e., myeloid, erythroid, or megakaryocytic), presenting clinically with leukopenia, anemia, and/or thrombocytopenia and with a propensity to transform to acute myelogenous leukemia. Newer technologies such as next-generation sequencing have allowed better understanding of the genetic landscape in MDS. Nearly 80 % of MDS patients have at least one mutation, and approximately 40 recurrent somatic mutations have been identified to occur in >1 % of cases. Many of these mutations are relevant for prognosis, help with selection of therapy, and/or have specific targeted treatment options. In this article, we will explore the impact of molecular testing on diagnosis, prognosis, and treatment decisions in patients with suspected MDS.
Collapse
Affiliation(s)
- Tamara K Moyo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA.
| |
Collapse
|
20
|
Roy A, Lordier L, Pioche-Durieu C, Souquere S, Roy L, Rameau P, Lapierre V, Le Cam E, Plo I, Debili N, Raslova H, Vainchenker W. Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint. Haematologica 2016; 101:1469-1478. [PMID: 27515249 DOI: 10.3324/haematol.2016.149914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Megakaryocytes are naturally polyploid cells that increase their ploidy by endomitosis. However, very little is known regarding the mechanism by which they escape the tetraploid checkpoint to become polyploid. Recently, it has been shown that the tetraploid checkpoint was regulated by the Hippo-p53 pathway in response to a downregulation of Rho activity. We therefore analyzed the role of Hippo-p53 pathway in the regulation of human megakaryocyte polyploidy. Our results revealed that Hippo-p53 signaling pathway proteins are present and are functional in megakaryocytes. Although this pathway responds to the genotoxic stress agent etoposide, it is not activated in tetraploid or polyploid megakaryocytes. Furthermore, Hippo pathway was observed to be uncoupled from Rho activity. Additionally, polyploid megakaryocytes showed increased expression of YAP target genes when compared to diploid and tetraploid megakaryocytes. Although p53 knockdown increased both modal ploidy and proplatelet formation in megakaryocytes, YAP knockdown caused no significant change in ploidy while moderately affecting proplatelet formation. Interestingly, YAP knockdown reduced the mitochondrial mass in polyploid megakaryocytes and decreased expression of PGC1α, an important mitochondrial biogenesis regulator. Thus, the Hippo pathway is functional in megakaryocytes, but is not induced by tetraploidy. Additionally, YAP regulates the mitochondrial mass in polyploid megakaryocytes.
Collapse
Affiliation(s)
- Anita Roy
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Larissa Lordier
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Catherine Pioche-Durieu
- Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France.,Centre Nationale de la Recherche Scientifique (CNRS), UMR 8126, Gustave Roussy, Villejuif, France
| | - Sylvie Souquere
- Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France.,CNRS UMR 8122, Gustave Roussy, Villejuif, France
| | - Lydia Roy
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Hématologie Clinique, Hôpital Henri Mondor, Créteil, France
| | | | | | - Eric Le Cam
- Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France.,Centre Nationale de la Recherche Scientifique (CNRS), UMR 8126, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Najet Debili
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Hana Raslova
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - William Vainchenker
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France .,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| |
Collapse
|
21
|
Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Ann Hematol 2016; 95:1765-76. [PMID: 27236577 DOI: 10.1007/s00277-016-2703-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by increased bleeding tendency and thrombocytopenia. In fact, the precise pathogenesis of this disease is still not clear. Megakaryopoiesis involves complete differentiation of megakaryocyte (MK) progenitors to functional platelets. This complex process occurs in specific bone marrow (BM) niches composed of several hematopoietic and non-hematopoietic cell types, soluble factors, and extracellular matrix proteins. These specialized microenvironments sustain MK maturation and localization to sinusoids as well as platelet release into circulation. However, MKs in ITP patients show impaired maturation and signs of degradation. Intrinsic defects in MKs and their extrinsic environment have been implicated in altered megakaryopoiesis in this disease. In particular, aberrant expression of miRNAs directing MK proliferation, differentiation, and platelet production; defective MK apoptosis; and reduced proliferation and differentiation rate of the MSC compartment observed in these patients may account for BM defects in ITP. Furthermore, insufficient production of thrombopoietin is another likely reason for ITP development. Therefore, identifying the signaling pathways and transcription factors influencing the interaction between MKs and BM niche in ITP patients will contribute to increased platelet production in order to prevent incomplete MK maturation and destruction as well as BM fibrosis and apoptosis in ITP. In this review, we will examine the interaction and role of BM niches in orchestrating megakaryopoiesis in ITP patients and discuss how these factors can be exploited to improve the quality of patient treatment and prognosis.
Collapse
|
22
|
Malherbe JAJ, Fuller KA, Mirzai B, Kavanagh S, So CC, Ip HW, Guo BB, Forsyth C, Howman R, Erber WN. Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms. J Clin Pathol 2016; 69:jclinpath-2016-203625. [PMID: 27060176 PMCID: PMC5136711 DOI: 10.1136/jclinpath-2016-203625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
AIMS Megakaryocyte expansion in myeloproliferative neoplasms (MPNs) is due to uncontrolled proliferation accompanied by dysregulation of proapoptotic and antiapoptotic mechanisms. Here we have investigated the intrinsic and extrinsic apoptotic pathways of megakaryocytes in human MPNs to further define the mechanisms involved. METHODS The megakaryocytic expression of proapoptotic caspase-8, caspase-9, Diablo, p53 and antiapoptotic survivin proteins was investigated in bone marrow specimens of the MPNs (n=145) and controls (n=15) using immunohistochemistry. The megakaryocyte percentage positivity was assessed by light microscopy and correlated with the MPN entity, JAK2V617F/CALR mutation status and platelet count. RESULTS The proportion of megakaryocytes in the MPNs expressing caspase-8, caspase-9, Diablo, survivin and p53 was significantly greater than controls. A greater proportion of myeloproliferative megakaryocytes expressed survivin relative to its reciprocal inhibitor, Diablo. Differences were seen between myelofibrosis, polycythaemia vera and essential thrombocythaemia for caspase-9 and p53. CALR-mutated cases had greater megakaryocyte p53 positivity compared to those with the JAK2V617F mutation. Proapoptotic caspase-9 expression showed a positive correlation with platelet count, which was most marked in myelofibrosis and CALR-mutated cases. CONCLUSIONS Disruptions targeting the intrinsic apoptotic cascade promote megakaryocyte hyperplasia and thrombocytosis in the MPNs. There is progressive dysfunction of apoptosis as evidenced by the marked reduction in proapoptotic caspase-9 and accumulation of p53 in myelofibrosis. The dysfunction of caspase-9, which is necessary for proplatelet formation, may be the mechanism for the excess thrombocytosis associated with CALR mutations. Survivin seems to be the key protein mediating the megakaryocyte survival signature in the MPNs and is a potential therapeutic target.
Collapse
Affiliation(s)
- Jacques A J Malherbe
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Kathryn A Fuller
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Bob Mirzai
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Simon Kavanagh
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Chi-Chiu So
- Department of Pathology, Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Ho-Wan Ip
- Department of Pathology & Clinical Biochemistry, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Belinda B Guo
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Cecily Forsyth
- Jarrett Street Specialist Centre, North Gosford, New South Wales, Australia
| | - Rebecca Howman
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Wendy N Erber
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| |
Collapse
|
23
|
Konieczna IM, DeLuca TA, Eklund EA, Miller WM. Hoxa10 null animals exhibit reduced platelet biogenesis. Br J Haematol 2016; 173:303-13. [PMID: 26847476 DOI: 10.1111/bjh.13949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023]
Abstract
The transcription factor HOXA10 is an important regulator of myelopoiesis. Engineered over-expression of Hoxa10 in mice results in a myeloproliferative disorder that progresses to acute myeloid leukaemia (AML) over time, and in humans over-expression is associated with poor outcomes in AML. Here, we report that loss of Hoxa10 expression in mice results in reduced platelet count and platelet production, but does not affect clotting efficiency. About 40% fewer platelets were found in Hoxa10 null animals in comparison to wild type littermates. We found a nearly 50% reduction in the percentage of reticulated platelets in Hoxa10 null mice, suggesting deficient platelet production. Furthermore, Hoxa10 null animals recovered less efficiently from induced thrombocytopenia, supporting our hypothesis of defective platelet production. This also correlated with reduced colony formation potential of stem and progenitor cells seeded in megakaryocyte-enhancing conditions in vitro. Together, our results indicate that HOXA10 is important for megakaryopoiesis and platelet biogenesis.
Collapse
Affiliation(s)
- Iwona M Konieczna
- Chemical and Biological Engineering Department, Northwestern University, Evanston, IL, USA.,Currently at Transplant Surgery Division, Northwestern University School of Medicine, Chicago, IL, USA
| | - Teresa A DeLuca
- Chemical and Biological Engineering Department, Northwestern University, Evanston, IL, USA
| | - Elizabeth A Eklund
- Hematology Oncology Division, Northwestern University School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - William M Miller
- Chemical and Biological Engineering Department, Northwestern University, Evanston, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
24
|
Luff SA, Papoutsakis ET. Megakaryocytic Maturation in Response to Shear Flow Is Mediated by the Activator Protein 1 (AP-1) Transcription Factor via Mitogen-activated Protein Kinase (MAPK) Mechanotransduction. J Biol Chem 2016; 291:7831-43. [PMID: 26814129 DOI: 10.1074/jbc.m115.707174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Indexed: 12/26/2022] Open
Abstract
Megakaryocytes (MKs) are exposed to shear flow as they migrate from the bone marrow hematopoietic compartment into circulation to release pro/preplatelets into circulating blood. Shear forces promote DNA synthesis, polyploidization, and maturation in MKs, and platelet biogenesis. To investigate mechanisms underlying these MK responses to shear, we carried out transcriptional analysis on immature and mature stem cell-derived MKs exposed to physiological shear. In immature (day (d)9) MKs, shear exposure up-regulated genes related to growth and MK maturation, whereas in mature (d12) MKs, it up-regulated genes involved in apoptosis and intracellular transport. Following shear-flow exposure, six activator protein 1 (AP-1) transcripts (ATF4,JUNB,JUN,FOSB,FOS, andJUND) were up-regulated at d9 and two AP-1 proteins (JunD and c-Fos) were up-regulated both at d9 and d12. We show that mitogen-activated protein kinase (MAPK) signaling is linked to both the shear stress response and AP-1 up-regulation. c-Jun N-terminal kinase (JNK) phosphorylation increased significantly following shear stimulation, whereas JNK inhibition reduced shear-induced JunD expression. Although p38 phosphorylation did not increase following shear flow, its inhibition reduced shear-induced JunD and c-Fos expression. JNK inhibition reduced fibrinogen binding and P-selectin expression of d12 platelet-like particles (PLPs), whereas p38 inhibition reduced fibrinogen binding of d12 PLPs. AP-1 expression correlated with increased MK DNA synthesis and polyploidization, which might explain the observed impact of shear on MKs. To summarize, we show that MK exposure to shear forces results in JNK activation, AP-1 up-regulation, and downstream transcriptional changes that promote maturation of immature MKs and platelet biogenesis in mature MKs.
Collapse
Affiliation(s)
- Stephanie A Luff
- From the Department of Biological Sciences, Delaware Biotechnology Institute, and
| | - Eleftherios T Papoutsakis
- From the Department of Biological Sciences, Delaware Biotechnology Institute, and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19711
| |
Collapse
|
25
|
Li W, Morrone K, Kambhampati S, Will B, Steidl U, Verma A. Thrombocytopenia in MDS: epidemiology, mechanisms, clinical consequences and novel therapeutic strategies. Leukemia 2015; 30:536-44. [PMID: 26500138 DOI: 10.1038/leu.2015.297] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
Thrombocytopenia is commonly seen in myelodysplastic syndrome (MDS) patients, and bleeding complications are a major cause of morbidity and mortality. Thrombocytopenia is an independent factor for decreased survival and has been incorporated in newer prognostic scoring systems. The mechanisms of thrombocytopenia are multifactorial and involve a differentiation block of megakaryocytic progenitor cells, leading to dysplastic, hypolobated and microscopic appearing megakaryocytes or increased apoptosis of megakaryocytes and their precursors. Dysregulated thrombopoietin (TPO) signaling and increased platelet destruction through immune or nonimmune mechanisms are frequently observed in MDS. The clinical management of patients with low platelet counts remains challenging and approved chemotherapeutic agents such as lenalidomide and azacytidine can also lead to a transient worsening of thrombocytopenia. Platelet transfusion is the only supportive treatment option currently available for clinically significant thrombocytopenia. The TPO receptor agonists romiplostim and eltrombopag have shown clinical activity in clinical trials in MDS. In addition to thrombopoietic effects, eltrombopag can inhibit leukemic cell proliferation via TPO receptor-independent effects. Other approaches such as treatment with cytokines, immunomodulating drugs and signal transduction inhibitors have shown limited activity in selected groups of MDS patients. Combination trials of approved agents with TPO agonists are ongoing and hold promise for this important clinical problem.
Collapse
Affiliation(s)
- W Li
- Department of Medicine, Albert Einstein College of Medicine/Jacobi Medical Center, Bronx, NY, USA
| | - K Morrone
- Department of Pediatrics, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - S Kambhampati
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - B Will
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - U Steidl
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A Verma
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
26
|
Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells. Blood 2014; 124:2094-103. [PMID: 24948658 DOI: 10.1182/blood-2014-01-547927] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In vivo visualization of thrombopoiesis suggests an important role for shear flow in platelet biogenesis. In vitro, shear stress was shown to accelerate proplatelet formation from mature megakaryocytes (Mks). Yet, the role of biomechanical forces on Mk biology and platelet biogenesis remains largely unexplored. In this study, we investigated the impact of shear stress on Mk maturation and formation of platelet-like particles (PLPs), pro/preplatelets (PPTs), and Mk microparticles (MkMPs), and furthermore, we explored a physiological role for MkMPs. We found that shear accelerated DNA synthesis of immature Mks in an exposure time- and shear stress level-dependent manner. Both phosphatidylserine exposure and caspase-3 activation were enhanced by shear stress. Exposure to physiological shear dramatically increased generation of PLPs/PPTs and MkMPs by up to 10.8 and 47-fold, respectively. Caspase-3 inhibition reduced shear-induced PLP/PPT and MkMP formation. PLPs generated under shear flow displayed improved functionality as assessed by CD62P exposure and fibrinogen binding. Significantly, coculture of MkMPs with hematopoietic stem and progenitor cells promoted hematopoietic stem and progenitor cell differentiation to mature Mks synthesizing α- and dense-granules, and forming PPTs without exogenous thrombopoietin, thus identifying a novel and unexplored potential physiological role for MkMPs.
Collapse
|
27
|
Activation of p53 by the MDM2 inhibitor RG7112 impairs thrombopoiesis. Exp Hematol 2013; 42:137-45.e5. [PMID: 24309210 DOI: 10.1016/j.exphem.2013.11.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Abstract
The tumor suppressor p53 is thought to play a role in megakaryocyte (MK) development. To assess the influence of the p53 regulatory pathway further, we studied the effect of RG7112, a small molecule MDM2 antagonist that activates p53 by preventing its interaction with MDM2, on normal megakaryocytopoiesis and platelet production. This drug has been previously been evaluated in clinical trials of cancer patients where thrombocytopenia was one of the major dose-limiting toxicities. In this study, we demonstrated that administration of RG7112 in vivo in rats and monkeys results in thrombocytopenia. In addition, we identified two distinct mechanisms by which RG7112-mediated activation of p53 affected human megakaryocytopoiesis and platelet production in vitro. RG7112 promoted apoptosis of MK progenitor cells, resulting in a reduction of their numbers and RG7112 affected mature MK by blocking DNA synthesis during endomitosis and impairing platelet production. Together, the disruption of these events provides an explanation for RG7112-induced thrombocytopenia and insight into the role of the p53-MDM2 auto-regulatory loop in normal megakaryocytopoiesis.
Collapse
|
28
|
Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA. Exp Cell Res 2013; 319:2205-15. [PMID: 23770036 DOI: 10.1016/j.yexcr.2013.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 05/22/2013] [Accepted: 06/01/2013] [Indexed: 01/07/2023]
Abstract
The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation.
Collapse
|
29
|
Chen PK, Chang HH, Lin GL, Wang TP, Lai YL, Lin TK, Hsieh MC, Kau JH, Huang HH, Hsu HL, Liao CY, Sun DS. Suppressive effects of anthrax lethal toxin on megakaryopoiesis. PLoS One 2013; 8:e59512. [PMID: 23555687 PMCID: PMC3605335 DOI: 10.1371/journal.pone.0059512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/15/2013] [Indexed: 01/14/2023] Open
Abstract
Anthrax lethal toxin (LT) is a major virulence factor of Bacillus anthracis. LT challenge suppresses platelet counts and platelet function in mice, however, the mechanism responsible for thrombocytopenia remains unclear. LT inhibits cellular mitogen-activated protein kinases (MAPKs), which are vital pathways responsible for cell survival, differentiation, and maturation. One of the MAPKs, the MEK1/2-extracellular signal-regulated kinase pathway, is particularly important in megakaryopoiesis. This study evaluates the hypothesis that LT may suppress the progenitor cells of platelets, thereby inducing thrombocytopenic responses. Using cord blood-derived CD34(+) cells and mouse bone marrow mononuclear cells to perform in vitro differentiation, this work shows that LT suppresses megakaryopoiesis by reducing the survival of megakaryocytes. Thrombopoietin treatments can reduce thrombocytopenia, megakaryocytic suppression, and the quick onset of lethality in LT-challenged mice. These results suggest that megakaryocytic suppression is one of the mechanisms by which LT induces thrombocytopenia. These findings may provide new insights for developing feasible approaches against anthrax.
Collapse
Affiliation(s)
- Po-Kong Chen
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Guan-Ling Lin
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Tsung-Pao Wang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Yi-Ling Lai
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Ting-Kai Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Chun Hsieh
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Jyh-Hwa Kau
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hsien Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Yuan Liao
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
30
|
Konieczna IM, Panuganti S, DeLuca TA, Papoutsakis ET, Eklund EA, Miller WM. Administration of nicotinamide does not increase platelet levels in mice. Blood Cells Mol Dis 2012; 50:171-6. [PMID: 23265740 DOI: 10.1016/j.bcmd.2012.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/15/2012] [Indexed: 11/16/2022]
Abstract
Elucidating ways to enhance megakaryopoiesis in vivo would have therapeutic applications for thrombocytopenia and transfusion medicine. Nicotinamide has been shown to enhance endomitosis in megakaryocytes cultured in vitro, suggesting that it may be beneficial for the production of platelets in culture. We hypothesized that regular injections of nicotinamide in mice would also increase platelets in vivo. However, we found that platelet counts were reduced by about 25% with daily injections of nicotinamide. Altering the schedule, duration, or nicotinamide dose did not improve platelet production. Consistent with lower platelet levels, nicotinamide also tended to decrease megakaryocyte frequency in sternum and spleen sections, as well as colony formation in vitro by bone marrow progenitor cells. However, there was no effect on the fraction or ploidy of CD41(+) cells harvested from bone marrow. Together, our results suggest that, although nicotinamide increases polyploidization of megakaryocytes in culture, it does not have translatable effects in vivo.
Collapse
Affiliation(s)
- Iwona M Konieczna
- Chemical and Biological Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
31
|
Apostolidis PA, Lindsey S, Miller WM, Papoutsakis ET. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation. Physiol Genomics 2012; 44:638-50. [PMID: 22548738 DOI: 10.1152/physiolgenomics.00028.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects.
Collapse
Affiliation(s)
- Pani A Apostolidis
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
| | | | | | | |
Collapse
|